
Roboception GmbH | January 2026

rc_reason_stack
3D Vision Software Platform
INSTALLATION AND OPERATING MANUAL

Revisions

This product may be modified without notice, when necessary, due to product improvements, modifications, or
changes in specifications. If such modification is made, the manual will also be revised; see revision information.

DOCUMENTATION REVISION 26.01.4 Jan 30, 2026

Applicable to rc_reason_stack firmware 26.01.x

MANUFACTURER

Roboception GmbH

Kaflerstrasse 2

81241 Munich

Germany

CUSTOMER SUPPORT: support@roboception.de | +49 89 889 50 79-0 (09:00-17:00 CET)

Please read the operating manual in full and keep it with the product.

COPYRIGHT

This manual and the product it describes are protected by copyright. Unless permitted by German intellectual prop-
erty and related rights legislation, any use and circulation of this content requires the prior consent of Roboception
or the individual owner of the rights. This manual and the product it describes therefore, may not be reproduced in
whole or in part, whether for sale or not, without prior written consent from Roboception.

Information provided in this document is believed to be accurate and reliable. However, Roboception assumes no
responsibility for its use.

Differences may exist between the manual and the product if the product has been modified after the manual’s
edition date. The information contained in this document is subject to change without notice.

Roboception GmbH
Manual: rc_reason_stack

1 Rev: 26.01.4
Status: Jan 30, 2026

mailto:support@roboception.de

Contents

Contents

1 Introduction 5
1.1 Overview . 5

2 Safety 6
2.1 General warnings . 6
2.2 Intended use . 6

3 Installation 8
3.1 Offline installation guide . 8

3.1.1 Prerequisites . 8
3.1.2 Install Ubuntu 24.04 . 8
3.1.3 Install NVIDIA driver . 9
3.1.4 Install Docker . 10
3.1.5 Install NVIDIA Container Toolkit . 10
3.1.6 Limit docker log file size . 11
3.1.7 Install WIBU CodeMeter runtime . 11
3.1.8 Create network interfaces . 11
3.1.9 Ensure network settings for GigE Vision . 13
3.1.10 Load container images . 13
3.1.11 Start the Docker stack . 13
3.1.12 Access the Web GUI . 13
3.1.13 Troubleshooting . 14

3.2 Software license . 14
3.3 Connection of cameras . 14

4 Measurement principles 15
4.1 Stereo vision . 15
4.2 General information on 3D data . 16

4.2.1 Computing disparity images . 16
4.2.2 Computing depth images and point clouds . 17
4.2.3 Confidence and error images . 17

5 Camera pipelines 19
5.1 Configuration of camera pipelines . 19
5.2 Configuration of connected cameras . 20

6 Software modules 23
6.1 Camera module . 24

6.1.1 Rectification . 24
6.1.2 Viewing and downloading images . 24
6.1.3 Pipeline types rc_visard and rc_viscore . 24
6.1.4 Pipeline type stereo_ace . 32
6.1.5 Pipeline type orbbec . 42
6.1.6 Pipeline type zivid . 47

6.2 3D modules . 52
6.2.1 Viewing and downloading images and point clouds 52

Roboception GmbH
Manual: rc_reason_stack

2 Rev: 26.01.4
Status: Jan 30, 2026

Contents

6.2.2 Stereo matching module . 52
6.2.3 Zivid module . 61
6.2.4 Orbbec module . 66

6.3 Detection & Measure modules . 69
6.3.1 Measure . 70
6.3.2 LoadCarrier . 75
6.3.3 TagDetect . 90
6.3.4 ItemPick and ItemPickAI . 103
6.3.5 BoxPick . 127
6.3.6 SilhouetteMatch and SilhouetteMatchAI . 159
6.3.7 CADMatch . 201

6.4 Configuration modules . 240
6.4.1 Hand-eye calibration . 240
6.4.2 CollisionCheck . 262
6.4.3 Camera calibration . 271
6.4.4 IO and Projector Control . 279

6.5 Database modules . 283
6.5.1 LoadCarrierDB . 283
6.5.2 RoiDB . 291
6.5.3 GripperDB . 298

7 Interfaces 310
7.1 Web GUI . 310

7.1.1 Accessing the Web GUI . 310
7.1.2 Exploring the Web GUI . 310
7.1.3 Web GUI access control . 312
7.1.4 Downloading camera images . 312
7.1.5 Downloading depth images and point clouds . 313

7.2 REST-API interface . 313
7.2.1 General API structure . 314
7.2.2 Available resources and requests . 315
7.2.3 Data type definitions . 339
7.2.4 Swagger UI . 346

7.3 Generic Robot Interface . 349
7.3.1 Job definition . 349
7.3.2 Hand-Eye Calibration . 351
7.3.3 GRI binary protocol specification . 352
7.3.4 Integration with a robot . 359
7.3.5 Job and HEC_config API . 360

7.4 OPC UA interface . 365
7.5 KUKA Ethernet KRL Interface . 365

7.5.1 Ethernet connection configuration . 365
7.5.2 Generic XML structure . 366
7.5.3 Services . 367
7.5.4 Parameters . 371
7.5.5 Example applications . 372
7.5.6 Troubleshooting . 372

7.6 gRPC image stream interface . 373
7.6.1 gRPC service definition . 373
7.6.2 Example client . 376

8 Maintenance 377
8.1 Creating and restoring backups of settings . 377
8.2 Updating the software license . 377
8.3 Downloading log files . 378

9 Troubleshooting 379
9.1 Camera-image issues . 379
9.2 Depth/Disparity, error, and confidence image issues . 379

Roboception GmbH
Manual: rc_reason_stack

3 Rev: 26.01.4
Status: Jan 30, 2026

Contents

10 Contact 381
10.1 Support . 381
10.2 Downloads . 381
10.3 Address . 381

11 Appendix 382
11.1 Pose formats . 382

11.1.1 Rotation matrix and translation vector . 383
11.1.2 ABB pose format . 383
11.1.3 FANUC XYZ-WPR format . 383
11.1.4 Franka Emika Pose Format . 384
11.1.5 Fruitcore HORST pose format . 386
11.1.6 Kawasaki XYZ-OAT format . 386
11.1.7 KUKA XYZ-ABC format . 387
11.1.8 Mitsubishi XYZ-ABC format . 388
11.1.9 Universal Robots pose format . 388
11.1.10 Yaskawa Pose Format . 389

HTTP Routing Table 391

Index 393

Roboception GmbH
Manual: rc_reason_stack

4 Rev: 26.01.4
Status: Jan 30, 2026

1 Introduction

Indications in the manual

To prevent damage to the equipment and ensure the user’s safety, this manual indicates each precaution
related to safety with Warning. Supplementary information is provided as a Note.

Warning: Warnings in this manual indicate procedures and actions that must be observed to
avoid danger of injury to the operator/user, or damage to the equipment. Software-related warnings
indicate procedures that must be observed to avoid malfunctions or unexpected behavior of the
software.

Note: Notes are used in this manual to indicate supplementary relevant information.

1.1 Overview

The rc_reason_stack is a high-performance 3D-image-processing Docker software stack for deploy-
ment on Ubuntu machines. It enhances the computing capabilities of the Roboception stereo camera
rc_visard and supports the rc_viscore, the Basler Stereo ace camera, the Orbbec camera and the zivid
camera.

The rc_reason_stack provides real-time camera images and depth images, which can be used to com-
pute 3D point clouds. Additionally, it provides confidence and error images as quality measures for each
image acquisition. It offers an intuitive web UI (user interface) and standardized interfaces, making it
compatible with all major image processing libraries.

With optionally available software modules the rc_reason_stack provides out-of-the-box solutions for
object detection and robotic pick-and-place applications.

Note: This manual uses the metric system and mostly uses the units meter and millimeter. Unless
otherwise specified, all dimensions in technical drawings are in millimeters.

Roboception GmbH
Manual: rc_reason_stack

5 Rev: 26.01.4
Status: Jan 30, 2026

2 Safety

Warning: The operator must have read and understood all of the instructions in this manual before
handling the rc_reason_stack product.

Warning: If operating the rc_reason_stack with rc_visard product(s), the operator must have read
and understood all of the safety, installation, and maintenance instructions given in the rc_visard
manual.

Note: The term “operator” refers to anyone responsible for any of the following tasks performed in
conjunction with rc_reason_stack :

• Installation
• Maintenance
• Inspection
• Calibration
• Programming
• Decommissioning

This manual explains the rc_reason_stack ’s various components and general operations regarding the
product’s whole life-cycle, from installation through operation to decommissioning.

The drawings and photos in this documentation are representative examples; differences may exist
between them and the delivered product.

2.1 General warnings

Note: Any use of the rc_reason_stack in noncompliance with these warnings is inappropriate and
may cause injury or damage as well as void the warranty.

2.2 Intended use

Warning: The rc_reason_stack is NOT intended for safety critical applications.

The GigE Vision® industry standard used by the rc_reason_stack does not support authentication and
encryption. All data from and to the device is transmitted without authentication and encryption and
could be monitored or manipulated by a third party. It is the operator’s responsibility to connect the
rc_reason_stack only to a secured internal network.

Roboception GmbH
Manual: rc_reason_stack

6 Rev: 26.01.4
Status: Jan 30, 2026

2.2. Intended use

Warning: The rc_reason_stack must be connected to secured internal networks.

The rc_reason_stack may be used only within the scope of its technical specification. Any other use of
the product is deemed unintended use. Roboception will not be liable for any damages resulting from
any improper or unintended use.

Warning: Always comply with local and/or national laws, regulations and directives on automation
safety and general machine safety.

Roboception GmbH
Manual: rc_reason_stack

7 Rev: 26.01.4
Status: Jan 30, 2026

3 Installation

Warning: The instructions on Safety (Section 2) related to the rc_reason_stack must be read and
understood prior to installation.

The rc_reason_stack is a Docker-based software stacks that can be installed on machines meeting
the prerequisites given in Prerequisites. This chapter provides detailed information about installing the
rc_reason_stack software.

3.1 Offline installation guide

This section explains the manual installation of rc_reason_stack on a host system. Unlike the automated
Docker-compose workflow, the Docker images are first copied to the host machine and then loaded into
Docker manually. Follow the steps below to get the stack up and running, ready for your development
or production environment.

All commands must be executed on the host machine (not inside a container).

3.1.1 Prerequisites

Component Minimum Version
Ubuntu 24.04 LTS
NVIDIA GPU Any RTX with minimum 8GB VRAM, or better [1]
Docker 20.10+
NVIDIA Driver 535+ (the guide uses nvidia-driver-575-server)

[1] Tested with Nvidia RTX A4000, RTX 4000 Ada, RTX 3080, RTX 4070, RTX 4080

The following files are provided by Roboception and needed for installation.

File Description
rc_container-xx.yy.zz.tar rc_container docker image
tritonserver-xx.yy.tar triton server docker image
docker-compose.yml The docker compose file
docker-compose.json The docker compose file in JSON format

Replace xx.yy.zz with the desired rc_container and tritonserver versions.

3.1.2 Install Ubuntu 24.04

This section can be skipped if a working Ubuntu 24.04 installation is present.

Roboception GmbH
Manual: rc_reason_stack

8 Rev: 26.01.4
Status: Jan 30, 2026

3.1. Offline installation guide

For installing Ubuntu, follow the official Ubuntu installation guide under https://ubuntu.com/download/
desktop or https://ubuntu.com/download/server.

3.1.3 Install NVIDIA driver

The NVIDIA driver is required for the host to expose the GPU to Docker containers. After installing the
driver, the GPU and its capabilities should be visible with nvidia-smi. If the driver is not installed or not
loaded correctly, nvidia-smi will either not be found or will report “No devices were found”.

Update package lists
sudo apt update

run nvidia-detector to find the correct driver
sudo nvidia-detector

Install the latest NVIDIA driver (replace 570 with the version that matches your GPU)
sudo apt install -y nvidia-driver-570-server

Reboot to load the driver
sudo reboot

After the reboot, verify that the driver is active:

$ nvidia-smi
+---+
| NVIDIA-SMI 570.195.03 Driver Version: 570.195.03 CUDA Version: 12.8 |
|---+------------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===+========================+======================		
0 NVIDIA RTX A4000 Off	00000000:06:00.0 Off	Off
41% 60C P0 37W / 140W	10719MiB / 16376MiB	9% Default
		N/A
+---+------------------------+----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
|...
+---+

The table shows:

• GPU: the device ID (0, 1, . . .)

• Name: the GPU model (e.g., GeForce RTX 3080)

• Driver Version: the installed NVIDIA driver

• CUDA Version: the CUDA toolkit that ships with the driver

• Memory-Usage: total RAM allocated to the GPU

• GPU-Util: current GPU utilization percentage

If this output is displayed, the driver is correctly installed and the GPU is ready to be used by the NVIDIA
Container Toolkit and the containers.

Roboception GmbH
Manual: rc_reason_stack

9 Rev: 26.01.4
Status: Jan 30, 2026

https://ubuntu.com/download/desktop
https://ubuntu.com/download/desktop
https://ubuntu.com/download/server

3.1. Offline installation guide

3.1.4 Install Docker

Update the apt package index and install packages to allow apt to use a repository over HTTPS
sudo apt-get update
sudo apt-get install \

ca-certificates \
curl \
gnupg \
lsb-release

Add Docker’s official GPG key
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /usr/share/
→˓keyrings/docker-archive-keyring.gpg

Set up the stable repository
echo \
"deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/docker-archive-keyring.gpg]
→˓https://download.docker.com/linux/ubuntu \
$(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

Install Docker Engine
sudo apt-get update
sudo apt-get install -y docker-ce docker-ce-cli docker-compose-plugin containerd.io

Verify Docker installation
sudo docker --version

3.1.5 Install NVIDIA Container Toolkit

The NVIDIA Container Toolkit gives Docker the ability to see, expose, and sandbox NVIDIA GPUs inside
containers. Without it CUDA workloads cannot run in the container. The toolkit is the bridge between
Docker’s container runtime and the NVIDIA driver stack on the host

Add the NVIDIA GPG key
sudo curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | \

sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg

Add the NVIDIA Container Toolkit repository
sudo curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.
→˓list | \

sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg]
→˓https://#g' | \

sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list

Update package lists and install
sudo apt update && sudo apt install -y nvidia-container-toolkit

Restart Docker to apply changes
sudo systemctl restart docker

Modify /etc/docker/daemon.json. This is necessary for older docker versions
sudo nvidia-ctk runtime configure --runtime=docker

Verify that nvidia is now available as docker runtime
docker info | grep -i runtime

For fixing an issue that lets the GPU fail after some time in the container (can be seen when nvidia-smi
in the container fails), open the file /etc/nvidia-container-runtime/config.toml and set no-cgroups
= false. After changing the configuration, start docker with:

Roboception GmbH
Manual: rc_reason_stack

10 Rev: 26.01.4
Status: Jan 30, 2026

3.1. Offline installation guide

sudo systemctl restart docker

Test that Docker can access the GPU:

sudo docker run --rm --gpus all nvidia/cuda:12.1.1-base-ubuntu22.04 nvidia-smi

3.1.6 Limit docker log file size

By default docker uses the json-file logging driver with not limit on log sizes. We recommend to switch
to the local logging driver (https://docs.docker.com/engine/logging/drivers/local/) which by default limits
the max log size.

In /etc/docker/daemon.json add the following:

{
"log-driver": "local",
}

3.1.7 Install WIBU CodeMeter runtime

Install the CodeMeter runtime (https://www.wibu.com/de/support/anwendersoftware/anwendersoftware.
html) on the host system.

After installing, stop the runtime:

sudo service codemeter stop

Switch network licensing on by setting IsNetworkServer to 1 in the file /etc/wibu/CodeMeter/Server.
ini.

Start the runtime:

sudo service codemeter start

A firewall may be used to not expose the WIBU network license server in the external network (WIBU
uses the ports 22350-22352), since the license server must only be visible to the docker container.

3.1.8 Create network interfaces

This example shows a network setup using a separate ethernet port (enp9s0) for sensor0 interface via
macvlan. Adjust the name of the ethernet port accordingly, in this example port enp9s0 will be used. For
multiple cameras (e.g. rc_viscore or multiple |rc_visard|s) create a separate network for each camera.

Create /etc/netplan/40-sensor0.yaml with content

network:
version: 2
renderer: networkd
ethernets:

enp9s0:
dhcp4: false
dhcp6: false
addresses:
- 172.23.42.1/28

Alternative network configuration for multiple cameras can be created as follows. In this example the
interfaces enp7s0 is used for an rc_visard and interfaces ens4f0 and ens4f1 are used for an rc_viscore.

Roboception GmbH
Manual: rc_reason_stack

11 Rev: 26.01.4
Status: Jan 30, 2026

https://docs.docker.com/engine/logging/drivers/local/
https://www.wibu.com/de/support/anwendersoftware/anwendersoftware.html
https://www.wibu.com/de/support/anwendersoftware/anwendersoftware.html

3.1. Offline installation guide

network:
version: 2
renderer: networkd
ethernets:

enp7s0:
dhcp4: false
dhcp6: false
addresses:
- 172.23.42.1/28

ens4f0:
dhcp4: false
dhcp6: false
addresses:
- 172.23.43.1/28

ens4f1:
dhcp4: false
dhcp6: false
addresses:
- 172.23.44.1/28

Change permissions and apply with:

sudo chmod 600 /etc/netplan/40-sensor0.yaml
sudo netplan apply

Create docker network with macvlan driver:

sudo docker network create -d macvlan --subnet=172.23.42.0/28 --gateway=172.23.42.1 --ip-
→˓range=172.23.42.8/29 -o parent=enp9s0 sensor0
or for multiple interfaces
sudo docker network create -d macvlan --subnet=172.23.42.0/28 --gateway=172.23.42.1 --ip-
→˓range=172.23.42.8/29 -o parent=enp7s0 sensor0
sudo docker network create -d macvlan --subnet=172.23.43.0/28 --gateway=172.23.43.1 --ip-
→˓range=172.23.43.8/29 -o parent=ens4f0 sensor1
sudo docker network create -d macvlan --subnet=172.23.44.0/28 --gateway=172.23.44.1 --ip-
→˓range=172.23.44.8/29 -o parent=ens4f1 sensor2

Verify in docker-compose.yml (or docker-compose.json):

docker-compose.yml with multiple sensor interfaces
#... config truncated - for readability
networks:
back-tier:

driver: bridge
sensor0:

external: true
name: sensor0

#... config truncated - for readability
services:
rc-container:
#... config truncated - for readability

networks:
- back-tier
- sensor0

#... config truncated - for readability

The docker-compose.yml for multiple interfaces is as follows.

Roboception GmbH
Manual: rc_reason_stack

12 Rev: 26.01.4
Status: Jan 30, 2026

3.1. Offline installation guide

3.1.9 Ensure network settings for GigE Vision

GigE Vision cameras stream images with high bandwidth via UDP packages. Lost packages lead to
image loss that degrades the performance of the application. To avoid that, the Ethernet read buffers
should be increased on the host. For Ubuntu, create the file /etc/sysctl.d/10-gev-perf.conf with the
following content:

Increase readbuffer size for GigE Vision
net.core.rmem_max=33554432

Apply settings with:

sudo sysctl -p /etc/sysctl.d/10-gev-perf.conf

3.1.10 Load container images

replace xx.yy.zz with the desired rc_container and tritonserver version
gunzip -c ./rc_container-xx.yy.zz.tar.gz | docker load
gunzip -c ./tritonserver-xx.yy.tar.gz | docker load

3.1.11 Start the Docker stack

The preferred method to start the docker-compose stack is

cd /path/to/rc_container/
use docker-compose.yml
docker compose up -d --pull never

If the host system requires a docker-compose file in JSON format, use the following command.

cd /path/to/rc_container/
use docker-compose.json
docker compose -f docker-compose.json up -d --pull never

Wait a few minutes for all containers to start. The status can be monitored with:

docker compose ps

3.1.12 Access the Web GUI

Once the stack is running, the Web GUI can be accessed via:

http://<host-ip>:8080/

Roboception GmbH
Manual: rc_reason_stack

13 Rev: 26.01.4
Status: Jan 30, 2026

3.2. Software license

3.1.13 Troubleshooting

Symptom Likely Cause Fix
docker: error: driver nvidia
does not support the requested
device

NVIDIA driver /
Docker integration
mismatch

Re-run the NVIDIA Container Toolkit in-
stallation and reboot

Containers fail to start Wrong network
name

Ensure a Docker network named sensor0
exists

Web GUI not reachable Containers not up docker compose logs to inspect errors
Very low depth image frame
rate

GPU does not work
in container

Verify by running nvidia-smi on the host
and inside the container and fix problems
[2]

[2] If nvidia-smi on the host fails, ensure that packages are consistent, because an unattended upgrade
under Ubuntu may upgrade the Nvidia driver, but not the Nvidia toolkit. This can be fixed by running sudo
apt update && sudo apt upgrade manually. Unattended upgrades may be disabled. If nvidia-smi
fails inside the container, ensure that no-cgroups = false in /etc/nvidia-container-runtime/
config.toml and restart docker if the configuration had to be changed. This configuration file may
have been overwritten by an update of the Nvidia container toolkit.

3.2 Software license

The rc_reason_stack ships with a USB dongle for licensing and protection of the installed software
packages. The purchased software licenses are installed on and are bound to this dongle and its ID.

The functionality of the rc_reason_stack can be enhanced anytime by upgrading the license (Section
8.2), e.g., for optionally available software modules.

Note: The rc_reason_stack requires to be restarted whenever the installed licenses have changed.

Note: The dongle ID and the license status can be retrieved via the rc_reason_stack ’s various
interfaces such as the System → Firmware & License page of the Web GUI (Section 7.1).

Note: For the software components to be properly licensed, the USB dongle must be plugged to the
rc_reason_stack before power up.

Note: The rc_reason_stack requires to be restarted, whenever the license dongle is plugged to or
unplugged from the device.

3.3 Connection of cameras

The rc_reason_stack offers up to four software camera pipelines for processing data from the connected
sensors. The configuration of the camera pipelines is explained in Camera pipelines (see Section 4.2.3).

Roboception GmbH
Manual: rc_reason_stack

14 Rev: 26.01.4
Status: Jan 30, 2026

4 Measurement principles

The rc_reason_stack is a high-performance 3D-image-processing software stack that is used in com-
bination with one or more 3D cameras such as Roboception’s 3D camera rc_visard or rc_viscore.
Together, they provide rectified camera, disparity, confidence, and error images, which allow the viewed
scene’s depth values along with their uncertainties to be computed.

In the following, the underlying measurement principles are explained in more detail.

4.1 Stereo vision

In stereo vision, 3D information about a scene can be extracted by comparing two images taken from
different viewpoints. The main idea behind using a camera pair for measuring depth is the fact that
object points appear at different positions in the two camera images depending on their distance from
the camera pair. Very distant object points appear at approximately the same position in both images,
whereas very close object points occupy different positions in the left and right camera image. The
object points’ displacement in the two images is called disparity. The larger the disparity, the closer the
object is to the camera. The principle is illustrated in Fig. 4.1.

Image plane

Left camera Right camera

Left image

Right image

d1 d2

Fig. 4.1: Sketch of the stereo-vision principle: The more distant object (black) exhibits a smaller disparity
𝑑2 than that of the close object (gray), 𝑑1.

Stereo vision is a form of passive sensing, meaning that it emits neither light nor other signals to
measure distances, but uses only light that the environment emits or reflects. Thus, the Robocep-
tion products utilizing this sensing principle can work indoors and outdoors and multiple devices can
work together without interferences.

To compute the 3D information, the stereo matching algorithm must be able to find corresponding object
points in the left and right camera images. For this, the algorithm requires texture, meaning changes in
image intensity values due to patterns or the objects’ surface structure, in the images. Stereo matching

Roboception GmbH
Manual: rc_reason_stack

15 Rev: 26.01.4
Status: Jan 30, 2026

4.2. General information on 3D data

is not possible for completely untextured regions, such as a flat white wall without any visible surface
structure. The stereo matching method used by the rc_reason_stack is SGM (Semi-Global Matching),
which provides the best trade-off between runtime and accuracy, even for fine structures.

The following software modules are required to compute 3D information:

• Camera module: This module is responsible for capturing synchronized image pairs and trans-
forming them into images approaching those taken by an ideal camera (rectification).

• Stereo matching module: This module computes disparities for the rectified stereo image pair
using SGM (Section 6.2.2).

4.2 General information on 3D data

While on stereo pipelines, such as rc_visard, rc_viscore and stereo_ace, disparity images are com-
puted by matching the left and right camera images, on zivid or orbbec pipelines the 3D data is inter-
nally converted into a disparity image that can be used to compute depth information using a provided
virtual baseline.

The following sections describe how disparity images are computed from stereo image pairs and how
disparity, error and confidence images can be used to compute depth data and depth errors.

4.2.1 Computing disparity images

After rectification, an object point is guaranteed to be projected onto the same pixel row in both left and
right image. That point’s pixel column in the right image is always lower than or equal to the same point’s
pixel column in the left image. The term disparity signifies the difference between the pixel columns in
the right and left images and expresses the depth or distance of the object point from the camera. The
disparity image stores the disparity values of all pixels in the left camera image.

The larger the disparity, the closer the object point. A disparity of 0 means that the projections of the
object point are in the same image column and the object point is at infinite distance. Often, there are
pixels for which disparity cannot be determined. This is the case for occlusions that appear on the left
sides of objects, because these areas are not seen from the right camera. Furthermore, disparity cannot
be determined for textureless areas. Pixels for which the disparity cannot be determined are marked as
invalid with the special disparity value of 0. To distinguish between invalid disparity measurements and
disparity measurements of 0 for objects that are infinitely far away, the disparity value for the latter is set
to the smallest possible disparity value above 0.

To compute disparity values, the stereo matching algorithm has to find corresponding object points in
the left and right camera images. These are points that represent the same object point in the scene.
For stereo matching, the rc_reason_stack uses SGM (Semi-Global Matching), which offers quick run
times and great accuracy, especially at object borders, fine structures, and in weakly textured areas.

A key requirement for any stereo matching method is the presence of texture in the image, i.e., image-
intensity changes due to patterns or surface structure within the scene. In completely untextured regions
such as a flat white wall without any structure, disparity values can either not be computed or the results
are erroneous or have low confidence (see Confidence and error images, Section 4.2.3). The texture in
the scene should not be an artificial, repetitive pattern, since those structures may lead to ambiguities
and hence to wrong disparity measurements.

When working with poorly textured objects or in untextured environments, a static artificial texture can
be projected onto the scene using an external pattern projector. This pattern should be random-like
and not contain repetitive structures. The rc_reason_stack provides the IOControl module (see IO and
Projector Control , Section 6.4.4) as optional software module which can control a pattern projector
connected to the sensor.

Roboception GmbH
Manual: rc_reason_stack

16 Rev: 26.01.4
Status: Jan 30, 2026

4.2. General information on 3D data

4.2.2 Computing depth images and point clouds

The following equations show how to compute an object point’s actual 3D coordinates 𝑃𝑥, 𝑃𝑦, 𝑃𝑧 in the
camera coordinate frame from the disparity image’s pixel coordinates 𝑝𝑥, 𝑝𝑦 and the disparity value 𝑑 in
pixels:

𝑃𝑥 =
𝑝𝑥 · 𝑡
𝑑

𝑃𝑦 =
𝑝𝑦 · 𝑡
𝑑

𝑃𝑧 =
𝑓 · 𝑡
𝑑

,

(4.1)

where 𝑓 is the focal length after rectification in pixels and 𝑡 is the stereo baseline in meters, which was
determined during calibration.

Note: The rc_reason_stack reports a focal length factor via its various interfaces. It relates to the
image width for supporting different image resolutions. The focal length 𝑓 in pixels can be easily
obtained by multiplying the focal length factor by the image width in pixels.

Please note that equations (4.1) assume that the coordinate frame is centered in the principal point that
is typically in the center of the image, and 𝑝𝑥, 𝑝𝑦 refer to the middle of the pixel, i.e. by adding 0.5 to the
integer pixel coordinates. The following figure shows the definition of the image coordinate frame.

Fig. 4.2: The image coordinate frame’s origin is defined to be at the image center – 𝑤 is the image width
and ℎ is the image height.

The set of all object points computed from the disparity image gives the point cloud, which can be used
for 3D modeling applications. The disparity image is converted into a depth image by replacing the
disparity value in each pixel with the value of 𝑃𝑧.

Note: Roboception provides software and examples for receiving disparity images from the
rc_reason_stack via GigE Vision and computing depth images and point clouds. See http://www.
roboception.com/download.

4.2.3 Confidence and error images

For each disparity image, additionally an error image and a confidence image are provided, which give
uncertainty measures for each disparity value. These images have the same resolution and the same
frame rate as the disparity image. The error image contains the disparity error 𝑑𝑒𝑝𝑠 in pixels corre-
sponding to the disparity value at the same image coordinates in the disparity image. The confidence
image contains the corresponding confidence value 𝑐 between 0 and 1. The confidence is defined as
the probability of the true disparity value being within the interval of three times the error around the
measured disparity 𝑑, i.e., [𝑑 − 3𝑑𝑒𝑝𝑠, 𝑑 + 3𝑑𝑒𝑝𝑠]. Thus, the disparity image with error and confidence
values can be used in applications requiring probabilistic inference. The confidence and error values
corresponding to an invalid disparity measurement will be 0.

Roboception GmbH
Manual: rc_reason_stack

17 Rev: 26.01.4
Status: Jan 30, 2026

http://www.roboception.com/download
http://www.roboception.com/download

4.2. General information on 3D data

The disparity error 𝑑𝑒𝑝𝑠 (in pixels) can be converted to a depth error 𝑧𝑒𝑝𝑠 (in meters) using the focal
length 𝑓 (in pixels), the baseline 𝑡 (in meters), and the disparity value 𝑑 (in pixels) of the same pixel in
the disparity image:

𝑧𝑒𝑝𝑠 =
𝑑𝑒𝑝𝑠 · 𝑓 · 𝑡

𝑑2
. (4.2)

Combining equations (4.1) and (4.2) allows the depth error to be related to the depth:

𝑧𝑒𝑝𝑠 =
𝑑𝑒𝑝𝑠 · 𝑃𝑧

2

𝑓 · 𝑡
.

Roboception GmbH
Manual: rc_reason_stack

18 Rev: 26.01.4
Status: Jan 30, 2026

5 Camera pipelines

The rc_reason_stack supports multiple cameras at the same time. For this, it offers up to four camera
pipelines that can be configured by the user.

A camera pipeline contains several software modules which are responsible for acquiring data of the
camera connected to that pipeline, performing detections or configuring modules used in this pipeline,
e.g. by hand-eye calibration.

The rc_reason_stack supports cameras of type rc_visard, rc_viscore, zivid, Orbbec and Stereo ace.
The type of the corresponding camera pipeline has to be configured to match the connected device.

5.1 Configuration of camera pipelines

The camera pipelines can be configured via the Web GUI (Section 7.1) under System → Camera
Pipelines. This page shows the running pipelines with their types and the connected devices.

Fig. 5.1: Example of the Camera Pipelines page on an rc_reason_stack with two running pipelines of
type rc_visard

Clicking on Configure Camera Pipelines allows to configure the number and type of running pipelines
as shown in the next figure.

Roboception GmbH
Manual: rc_reason_stack

19 Rev: 26.01.4
Status: Jan 30, 2026

5.2. Configuration of connected cameras

Fig. 5.2: Configuring the camera pipelines

The type of a running pipeline can be changed by selecting a different type in the drop down field. A
running pipeline can be removed by clicking Remove Pipeline. Only pipeline 0 can never be removed,
because this is the primary pipeline. Clicking on + Add Pipeline allows to choose the type for the new
pipeline and creates a new pipeline of the chosen type.

Once the pipelines are configured as desired, clicking Apply Changes will apply the new configuration.
Then, the rc_reason_stack has to be restarted for the changes to take effect.

5.2 Configuration of connected cameras

A pipeline of a certain type can only discover devices of the same type. That means, a pipeline of type
rc_visard can only connect to an rc_visard. In case multiple cameras of the same type are connected
to the rc_reason_stack, the user can set a device filter to choose a specific camera for each pipeline.
The current device filter value is displayed for each running pipeline as shown in Fig. 5.1. By default,
the device filter is set to *, which means that any device matching the pipeline type will automatically be
connected, but only if there is a unique match. Otherwise, no camera will be connected to that pipeline
and an error will be shown.

To adjust the device filter and select the camera to be connected to a pipeline, click on Configure
Camera Connection on the Camera Pipelines page, or select the corresponding pipeline in the menu,
e.g. under System → Camera Pipelines → Pipeline 1. This will show the current device filter value and
more information about the connected camera.

Roboception GmbH
Manual: rc_reason_stack

20 Rev: 26.01.4
Status: Jan 30, 2026

5.2. Configuration of connected cameras

Fig. 5.3: Configuring the camera connection of pipeline 0

Clicking Choose Camera opens a dialog to edit the device filter.

Fig. 5.4: Choosing the camera by setting a device filter

This dialog also shows a list of all discovered devices matching the pipeline type and highlights the ones
that match the current value entered for the device filter. It also indicates if the devices are already in
use in a different pipeline. Device filters can be selected by clicking on an Interface, Name or Serial of
the desired device in the list. The following table shows possible device filter values.

Roboception GmbH
Manual: rc_reason_stack

21 Rev: 26.01.4
Status: Jan 30, 2026

5.2. Configuration of connected cameras

Table 5.1: Possible device filter values
Device filter Description
* selects any device matching the pipeline type
sensor<n>:* selects any device connected via the sensor<n> interface that matches the

pipeline type
<name> selects the device by the user-defined name
<serial> selects the device by the full serial number
sensor<n>:<serial> selects the device connected via the sensor<n> interface with the given serial
sensor<n>:<name> selects the device connected via the sensor<n> interface with the given

user-defined name
if empty, no camera will be connected

By pressing Save, the entered device filter is applied and a camera matching the device filter is
connected to this pipeline, if possible. Changing the device filter does not require a restart of the
rc_reason_stack.

Roboception GmbH
Manual: rc_reason_stack

22 Rev: 26.01.4
Status: Jan 30, 2026

6 Software modules

The rc_reason_stack comes with several software modules, each of which corresponds to a certain
functionality and can be interfaced via its respective node in the REST-API interface (Section 7.2) or in
the Generic Robot Interface (Section 7.3).

The rc_reason_stack offers the possibility to connect multiple 3D cameras such as the rc_visard. The
image data from each device is processed in a separate camera pipeline, which consists of several dif-
ferent software modules. The modules inside each pipeline are pipeline specific, which means that they
can have different parameters for each pipeline. The modules running outside the pipelines are global
and provide data for all modules in all pipelines. An overview is given in Fig. 6.1. The port numbers
are given for the default installation as described in Installation (Section ??) and may be changed in the
docker compose file.

rc_reason_stack

3D Camera
Modules

Detection
Modules

Database
Modules

Pipeline 0

Camera & 3D
Modules

Detection
Modules

Configuration
Modules3D Camera 0

3D Camera 1
3D Camera

Modules
Detection
Modules

Pipeline 1

Camera & 3D
Modules

Detection
Modules

Configuration
Modules

… Pipeline 2 ...

… Pipeline 3 ...

3D Camera 2

3D Camera 3

gRPC (Port 50052)

EKI (Port 7000)

gRPC (Port 50051)

EKI (Port 7001)

gRPC (Port 50053)
EKI (Port 7002)

gRPC (Port 50054)
EKI (Port 7003)

Generic Robot Interface
(Port 7100)

Rest API
(Port 8080)

Fig. 6.1: Overview of the pipeline-specific and global software modules on the rc_reason_stack

The rc_reason_stack ’s pipeline-specific software modules can be divided into

• Camera module (Section 6.1) acquires images and performs planar rectification for using the
camera as a measurement device. Depending on the chosen camera pipeline type, this
module offers different run-time parameters.

• 3D modules (Section 6.2) which provide 3D depth information such as disparity, error, and con-
fidence images,

• Detection & Measure modules (Section 6.3) which provide a variety of detection functionalities,
such as grasp point computation and object detection,

• Configuration modules (Section 6.4) which enable the user to perform calibrations and config-
ure the rc_reason_stack for specific applications.

Roboception GmbH
Manual: rc_reason_stack

23 Rev: 26.01.4
Status: Jan 30, 2026

6.1. Camera module

The modules that are global for all camera pipelines running on the rc_reason_stack are the

• Database modules (Section 6.5) which enable the user to configure global data available to all
other modules, such as load carriers, regions of interest and grippers.

6.1 Camera module

The camera module is a base module which is available on every rc_reason_stack and is responsible
for image acquisition and rectification. It provides various parameters, e.g. to control exposure and
frame rate.

Note: Depending on the chosen camera pipeline type, this module offers different run-time parame-
ters.

6.1.1 Rectification

To simplify image processing, the camera module rectifies all camera images based on the camera
calibration. This means that lens distortion is removed and the principal point is located exactly in the
middle of the image.

The model of a rectified camera is described with just one value, which is the focal length. The
rc_reason_stack reports a focal length factor via its various interfaces. It relates to the image width
for supporting different image resolutions. The focal length 𝑓 in pixels can be easily obtained by multi-
plying the focal length factor by the image width in pixels.

In case of a stereo camera, rectification also aligns images such that an object point is always projected
onto the same image row in both images. The cameras’ optical axes become exactly parallel.

Note: If a zivid or orbbec camera is used instead of a stereo camera, only one camera image is
provided. However, the image is rectified, i.e. lens distortion is removed and the principal point is in
the image center.

6.1.2 Viewing and downloading images

The rc_reason_stack provides time-stamped rectified images via the gRPC image stream interface (see
Section 7.6).

Live streams of the images are provided with reduced quality in the Web GUI (Section 7.1).

The Web GUI also provides the possibility to download a snapshot of the current scene as a .tar.gz file
as described in Downloading camera images (Section 7.1.4).

6.1.3 Pipeline types rc_visard and rc_viscore

6.1.3.1 Parameters

The camera module is called rc_camera and is represented by the Camera page in the desired pipeline
in the Web GUI (Section 7.1). The user can change the camera parameters there, or directly via the
REST-API (REST-API interface, Section 7.2).

Roboception GmbH
Manual: rc_reason_stack

24 Rev: 26.01.4
Status: Jan 30, 2026

6.1. Camera module

Parameter overview

Note: The minimum, maximum and default values in the parameter table below show the values of
the rc_visard. The values will be different for other camera models and for the rc_viscore pipeline.

This module offers the following run-time parameters:

Table 6.1: The rc_camera module’s run-time parameters on a
pipeline of type rc_visard

Name Type Min Max Default Description
acquisition_mode string - - Continuous Acquisition mode: [Continuous,

Trigger]
exp_auto bool false true true Switching between auto and man-

ual exposure (deprecated, please
use exp_control instead)

exp_auto_average_max float64 0.0 1.0 0.75 Maximum average intensity in Auto
exposure mode

exp_auto_average_min float64 0.0 1.0 0.25 Minimum average intensity in Auto
exposure mode

exp_auto_mode string - - Normal Auto-exposure mode: [Normal,
Out1High, AdaptiveOut1]

exp_control string - - Auto Exposure control mode: [Manual,
Auto, HDR]

exp_height int32 0 959 0 Height of auto exposure region. 0
for whole image.

exp_max float64 6.6e-05 0.018 0.018 Maximum exposure time in seconds
in Auto exposure mode

exp_offset_x int32 0 1279 0 First column of auto exposure re-
gion

exp_offset_y int32 0 959 0 First row of auto exposure region
exp_value float64 6.6e-05 0.018 0.005 Exposure time in seconds in Manual

exposure mode
exp_width int32 0 1279 0 Width of auto exposure region. 0 for

whole image.
fps float64 1.0 25.0 25.0 Frames per second in Hertz
gain_value float64 0.0 18.0 0.0 Gain value in decibel if not in Auto

exposure mode
gamma float64 0.1 10.0 1.0 Gamma factor
trigger_activation string - - RisingEdge Trigger activation: [RisingEdge,

FallingEdge, AnyEdge]
trigger_source string - - Software Trigger source: [Software, In1, In2,

In3, In4]
wb_auto bool false true true Switching white balance on and off

(only for color camera)
wb_ratio_blue float64 0.125 8.0 2.4 Blue balance ratio if wb_auto is

false (only for color camera)
wb_ratio_red float64 0.125 8.0 1.2 Red balance ratio if wb_auto is false

(only for color camera)

Description of run-time parameters

Each run-time parameter is represented by a row on the Web GUI’s Camera page. The name in the
Web GUI is given in brackets behind the parameter name and the parameters are listed in the order
they appear in the Web GUI.

Roboception GmbH
Manual: rc_reason_stack

25 Rev: 26.01.4
Status: Jan 30, 2026

6.1. Camera module

Fig. 6.2: The Web GUI’s Camera page

fps (FPS (Hz))

This value is the cameras’ frame rate (fps, frames per second), which determines the upper
frequency at which depth images can be computed. This is also the frequency at which the
rc_reason_stack delivers images via GigE Vision. Reducing this frequency also reduces the

Roboception GmbH
Manual: rc_reason_stack

26 Rev: 26.01.4
Status: Jan 30, 2026

6.1. Camera module

network bandwidth required to transmit the images.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?fps=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?fps=<value>

gamma (Gamma)

The gamma value determines the mapping of perceived light to the brightness of a pixel. A
gamma value of 1 corresponds to a linear relationship. Lower gamma values let dark image
parts appear brighter. A value around 0.5 corresponds to human vision.

Note: For a pipeline of type rc_visard this value can only be changed when the con-
nected rc_visard has at least firmware version 22.07. Otherwise the gamma value will
always be 1.0.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?gamma=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?gamma=<value>

exp_control (Exposure Auto, HDR or Manual)

The exposure control mode can be set to Auto, HDR or Manual. This replaces the depre-
cated exp_auto parameter.

Auto: This is the default mode in which the exposure time and gain factor is chosen auto-
matically to correctly expose the image. The last automatically determined exposure and
gain values are set into exp_value and gain_value when switching auto-exposure off.

HDR: The HDR mode computes high-dynamic-range images by combining images with
different exposure times to avoid under-exposed and over-exposed areas. This decreases
the frame rate and is only suitable for static scenes.

Manual : In the manual exposure mode the exposure time and gain are kept fixed indepen-
dent of the resulting image brightness.

Note: For a pipeline of type rc_visard the HDR mode is only available when the con-
nected rc_visard has at least firmware version 23.01.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?exp_control=
→˓<value>

API version 1 (deprecated)

Roboception GmbH
Manual: rc_reason_stack

27 Rev: 26.01.4
Status: Jan 30, 2026

6.1. Camera module

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_control=<value>

exp_auto_mode (Auto Exposure Mode)

The auto exposure mode can be set to Normal, Out1High or AdaptiveOut1. These modes
are relevant when the rc_reason_stack is used with an external light source or projector
connected to the camera’s GPIO Out1, which can be controlled by the IOControl module (IO
and Projector Control , Section 6.4.4).

Normal : All images are considered for exposure control, except if the IOControl mode for
GPIO Out1 is ExposureAlternateActive: then only images where GPIO Out1 is HIGH will be
considered, since these images may be brighter in case GPIO Out1 is used to trigger an
external light source.

Out1High: This exposure mode adapts the exposure time using only images with GPIO
Out1 HIGH. Images where GPIO Out1 is LOW are not considered at all, which means,
that the exposure time does not change when only images with Out1 LOW are acquired.
This mode is recommended for using the acquisition_mode SingleFrameOut1 in the stereo
matching module as described in Stereo Matching Parameters (Section 6.2.2.1) and having
an external projector connected to GPIO Out1, when changes in the brightness of the scene
should only be considered when Out1 is HIGH. This is the case, for example, when a bright
part of the robot moves through the field of view of the camera just before a detection is
triggered, which should not affect the exposure time.

AdaptiveOut1: This exposure mode uses all camera images and tracks the exposure dif-
ference between images with GPIO Out1 LOW and HIGH. While the IOControl mode for
GPIO Out1 is LOW, the images are under-exposed by this exposure difference to avoid
over-exposure for when GPIO Out1 triggers an external projector. The resulting exposure
difference is given as Out1 Reduction below the live images. This mode is recommended for
using the acquisition_mode SingleFrameOut1 in the stereo matching module as described
in Stereo Matching Parameters (Section 6.2.2.1) and having an external projector connected
to GPIO Out1, when changes in the brightness of the scene should be considered at all
times. This is the case, for example, in applications where the external lighting changes.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?exp_auto_mode=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_auto_mode=<value>

exp_max (Max Exposure)

This value is the maximal exposure time in auto-exposure mode in seconds. The actual ex-
posure time is adjusted automatically so that the images are exposed correctly. If the maxi-
mum exposure time is reached, but the images are still underexposed, the rc_reason_stack
stepwise increases the gain to increase the images’ brightness. Limiting the exposure time
is useful for avoiding or reducing motion blur during fast movements. However, higher gain
introduces noise into the image. The best trade-off depends on the application.

Via the REST-API, this parameter can be set as follows.

API version 2

Roboception GmbH
Manual: rc_reason_stack

28 Rev: 26.01.4
Status: Jan 30, 2026

6.1. Camera module

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?exp_max=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_max=<value>

exp_auto_average_max (Max Brightness) and exp_auto_average_min (Min Brightness)

The auto-exposure tries to set the exposure time and gain factor such that the average
intensity (i.e. brightness) in the image or exposure region is between a maximum and a
minimum. The maximum brightness will be used if there is no saturation, e.g. no over-
exposure due to bright surfaces or reflections. In case of saturation, the exposure time and
gain factor are reduced, but only down to the minimum brightness.

The maximum brightness has precedence over the minimum brightness parameter. If the
minimum brightness is larger than the maximum brightness, the auto-exposure always tries
to make the average intensity equal to the maximum brightness.

The current brightness is always shown in the status bar below the images.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?<exp_auto_

→˓average_max|exp_auto_average_min>=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?<exp_auto_average_max|exp_auto_

→˓average_min>=<value>

exp_offset_x, exp_offset_y, exp_width, exp_height (Exposure Region)

These values define a rectangular region in the left rectified image for limiting the area used
for computing the auto exposure. The exposure time and gain factor of both images are
chosen to optimally expose the defined region. This can lead to over- or underexposure of
image parts outside the defined region. If either the width or height is 0, then the whole left
and right images are considered by the auto exposure function. This is the default.

The region is visualized in the Web GUI by a rectangle in the left rectified image. It can
be defined using the sliders or by selecting it in the image after pressing the button Select
Region in Image.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?<exp_offset_

→˓x|exp_offset_y|exp_width|exp_height>=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?<exp_offset_x|exp_offset_y|exp_

→˓width|exp_height>=<value>

Roboception GmbH
Manual: rc_reason_stack

29 Rev: 26.01.4
Status: Jan 30, 2026

6.1. Camera module

exp_value (Exposure)

This value is the exposure time in manual exposure mode in seconds. This expo-
sure time is kept constant even if the images are underexposed.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?exp_value=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_value=<value>

gain_value (Gain (dB))

This value is the gain factor in decibel that can be set in manual exposure mode. Higher
gain factors reduce the required exposure time but introduce noise.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?gain_value=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?gain_value=<value>

wb_auto (White Balance Auto or Manual)

This value can be set to true for automatic white balancing or false for manually setting the
ratio between the colors using wb_ratio_red and wb_ratio_blue. The last automatically
determined ratios are set into wb_ratio_red and wb_ratio_blue when switching automatic
white balancing off. White balancing is without function for monochrome cameras and will
not be displayed in the Web GUI in this case.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?wb_auto=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?wb_auto=<value>

wb_ratio_blue and wb_ratio_red (Blue | Green and Red | Green)

These values are used to set blue to green and red to green ratios for manual white balance. White
balancing is without function for monochrome cameras and will not be displayed in the Web GUI in this
case.

Via the REST-API, this parameter can be set as follows.

API version 2

Roboception GmbH
Manual: rc_reason_stack

30 Rev: 26.01.4
Status: Jan 30, 2026

6.1. Camera module

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?<wb_ratio_blue|wb_ratio_

→˓red>=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?<wb_ratio_blue|wb_ratio_red>=<value>

6.1.3.2 Status values

This module reports the following status values:

Table 6.2: The rc_camera module’s status values
Name Description
baseline Stereo baseline 𝑡 in meters
brightness Current brightness of the image as value between 0 and 1
color 0 for monochrome cameras, 1 for color cameras
exp Current exposure time in seconds. This value is shown below the

image preview in the Web GUI as Exposure (ms).
device_trigger_sources Gives the available trigger sources, in case the device can be triggered
focal Focal length factor normalized to an image width of 1
fps Current frame rate of the camera images in Hertz. This value is shown

in the Web GUI below the image preview as FPS (Hz).
gain Current gain factor in decibel. This value is shown in the Web GUI

below the image preview as Gain (dB).
gamma Current gamma value.
height Height of the camera image in pixels. This value is shown in the Web

GUI below the image preview as the second part of Resolution (px).
last_timestamp_grabbed Timestamp of the last image acquired in case the camera is in trigger

mode
out1_reduction Fraction of reduction (0.0 - 1.0) of brightness for images with GPIO

Out1=LOW in exp_auto_mode=AdaptiveOut1 or
exp_auto_mode=Out1High. This value is shown in the Web GUI below
the image preview as Out1 Reduction (%).

params_override_active 1 if parameters are temporarily overwritten by a running calibration
process

selfcalib_counter How often a correction has been performed by the self-calibration
selfcalib_offset Current offset determined by the self-calibration
test 0 for live images and 1 for test images
width Width of the camera image in pixels. This value is shown in the Web

GUI below the image preview as the first part of Resolution (px).

6.1.3.3 Services

The camera module offers the following services.

reset_defaults

Restores and applies the default values for this module’s parameters (“factory reset”).

Details

This service can be called as follows.

API version 2

Roboception GmbH
Manual: rc_reason_stack

31 Rev: 26.01.4
Status: Jan 30, 2026

6.1. Camera module

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/services/reset_defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.1.4 Pipeline type stereo_ace

6.1.4.1 Parameters

The camera module on a pipeline of type stereo_ace is called rc_camera and is represented by the
Camera page in the desired pipeline in the Web GUI (Section 7.1). The user can change the camera
parameters there, or directly via the REST-API (REST-API interface, Section 7.2).

Parameter overview

This module offers the following run-time parameters:

Roboception GmbH
Manual: rc_reason_stack

32 Rev: 26.01.4
Status: Jan 30, 2026

6.1. Camera module

Table 6.3: The rc_camera module’s run-time parameters on a
pipeline of type stereo_ace

Name Type Min Max Default Description
acquisition_mode string - - Continuous Acquisition mode: [Continuous,

Trigger]
brightness float64 -1.0 1.0 0.0 Brightness
contrast float64 -1.0 1.0 0.0 Contrast
contrast_mode string - - Linear Contrast mode [Linear, SCurve]
exp_auto bool false true false Switching between auto and man-

ual exposure (deprecated, please
use exp_control instead)

exp_auto_average_max float64 0.0 1.0 0.75 Maximum average intensity in Auto
exposure mode

exp_auto_average_min float64 0.0 1.0 0.25 Minimum average intensity in Auto
exposure mode

exp_auto_mode string - - Normal Auto-exposure mode: [Normal,
Out1High, AdaptiveOut1]

exp_control string - - Manual Exposure control mode: [Manual,
Auto, HDR]

exp_height int32 0 2047 0 Height of auto exposure region. 0
for whole image.

exp_max float64 6.6e-05 0.1 0.018 Maximum exposure time in seconds
in Auto exposure mode

exp_offset_x int32 0 2447 0 First column of auto exposure re-
gion

exp_offset_y int32 0 2047 0 First row of auto exposure region
exp_value float64 6.6e-05 0.1 0.005 Exposure time in seconds in Manual

exposure mode
exp_width int32 0 2447 0 Width of auto exposure region. 0 for

whole image.
fps float64 1.0 50.0 25.0 Frames per second in Hertz
gain_value float64 0.0 48.0 0.0 Gain value in decibel if not in Auto

exposure mode
gamma float64 0.1 3.99998 1.0 Gamma factor
light_source_preset string - - Daylight6500K Light source preset [Off, Tungsten,

Daylight5000K, Daylight6500K,
FactoryLED6000K]

saturation float64 0.0 2.0 1.0 Saturation
trigger_activation string - - RisingEdge Trigger activation: [RisingEdge,

FallingEdge, AnyEdge]
trigger_source string - - Software Trigger source: [Software, In1, In2,

In3, In4]
wb_auto bool false true true Switching white balance on and off

(only for color camera)
wb_ratio_blue float64 0.125 16.0 2.4 Blue balance ratio if wb_auto is

false (only for color camera)
wb_ratio_green float64 0.125 16.0 1.0 Green balance ratio if wb_auto is

false (only for some color cameras)
wb_ratio_red float64 0.125 16.0 1.2 Red balance ratio if wb_auto is false

(only for color camera)

Description of run-time parameters

Each run-time parameter is represented by a row on the Web GUI’s Camera page. The name in the
Web GUI is given in brackets behind the parameter name and the parameters are listed in the order

Roboception GmbH
Manual: rc_reason_stack

33 Rev: 26.01.4
Status: Jan 30, 2026

6.1. Camera module

they appear in the Web GUI.

acquisition_mode (Acquisition Mode)

This values determines the camera acquisition mode. In Continuous mode, the camera will
acquire images at the specified frame rate fps. In Trigger mode, images are only acquired
when the camera receives a trigger signal.

Note: This parameter only has an effect when used in a pipeline with an rc_viscore or
rc_visard NG.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?acquisition_

→˓mode=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?acquisition_mode=<value>

trigger_source (Trigger Source)

This value is only used when acquisition_mode is set to Trigger and determines the
source for the trigger. In Software mode a trigger can be sent via the rc_camera/
acquisition_trigger service. When the acquisition_mode for the depth images is set to
SingleFrame or SingleFrameOut1 (see Parameters, Section 6.2.2.1), the camera software
trigger is sent automatically whenever a depth image acquisition is triggered. The modes
In1 and In2 are hardware trigger modes. An image is acquired whenever a signal on the
chosen input is received.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?trigger_

→˓source=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?trigger_source=<value>

trigger_activation (Trigger Activation)

This value is only used when acquisition_mode is set to Trigger and trigger_source is
set to In1 or In2. It determines the signal edge that should be used to trigger an acquisition.
Possible values are RisingEdge, FallingEdge or AnyEdge.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?trigger_

→˓activation=<value>

API version 1 (deprecated)

Roboception GmbH
Manual: rc_reason_stack

34 Rev: 26.01.4
Status: Jan 30, 2026

6.1. Camera module

PUT http://<host>/api/v1/nodes/rc_camera/parameters?trigger_activation=<value>

fps (FPS (Hz))

This value is the cameras’ frame rate (fps, frames per second), which determines the upper
frequency at which depth images can be computed. This is also the frequency at which the
rc_reason_stack delivers images via GigE Vision. Reducing this frequency also reduces the
network bandwidth required to transmit the images.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?fps=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?fps=<value>

gamma (Gamma)

The gamma value determines the mapping of perceived light to the brightness of a pixel. A
gamma value of 1 corresponds to a linear relationship. Lower gamma values let dark image
parts appear brighter. A value around 0.5 corresponds to human vision.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?gamma=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?gamma=<value>

contrast_mode (Contrast Mode)

The contrast mode can be set to Linear (Linear) or SCurve (S-Curve) and determines how
the image intensity values are scaled when the contrast is adjusted. In the Linear mode, the
camera uses a linear function to adjust the contrast. Increasing or decreasing the contrast,
increases or decreases the gradient of the linear function. When increasing the contrast, the
darkest and lightest regions of the image will appear completely black or completely white,
but the other areas will appear more defined. Decreasing the contrast has the opposite
effect. In the SCurve mode, the camera uses an S-curve function to adjust the contrast.
Increasing the contrast darkens dark pixels and lightens light pixels, but the dynamic range
of the image is preserved.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?contrast_mode=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?contrast_mode=<value>

Roboception GmbH
Manual: rc_reason_stack

35 Rev: 26.01.4
Status: Jan 30, 2026

6.1. Camera module

contrast (Contrast)

Adjusting the contrast increases or decreases the difference between light and dark areas in
the image. The way the light and dark regions change when adjusting the contrast depends
on the specified contrast_mode.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?contrast=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?contrast=<value>

exp_control (Exposure Auto, HDR or Manual)

The exposure control mode can be set to Auto, HDR or Manual.

Auto: This is the default mode in which the exposure time and gain factor is chosen auto-
matically to correctly expose the image. The last automatically determined exposure and
gain values are set into exp_value and gain_value when switching auto-exposure off.

HDR: The HDR mode computes high-dynamic-range images by combining images with
different exposure times to avoid under-exposed and over-exposed areas. This decreases
the frame rate and is only suitable for static scenes.

Manual : In the manual exposure mode the exposure time and gain are kept fixed indepen-
dent of the resulting image brightness.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?exp_control=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_control=<value>

exp_auto_mode (Auto Exposure Mode)

The auto exposure mode can be set to Normal, Out1High or AdaptiveOut1. These modes
are relevant when the rc_reason_stack is used with an external light source or projector
connected to the camera’s GPIO Out1, which can be controlled by the IOControl module (IO
and Projector Control , Section 6.4.4).

Normal : All images are considered for exposure control, except if the IOControl mode for
GPIO Out1 is ExposureAlternateActive: then only images where GPIO Out1 is HIGH will be
considered, since these images may be brighter in case GPIO Out1 is used to trigger an
external light source.

Out1High: This exposure mode adapts the exposure time using only images with GPIO
Out1 HIGH. Images where GPIO Out1 is LOW are not considered at all, which means,
that the exposure time does not change when only images with Out1 LOW are acquired.
This mode is recommended for using the acquisition_mode SingleFrameOut1 in the stereo
matching module as described in Stereo Matching Parameters (Section 6.2.2.1) and having
an external projector connected to GPIO Out1, when changes in the brightness of the scene

Roboception GmbH
Manual: rc_reason_stack

36 Rev: 26.01.4
Status: Jan 30, 2026

6.1. Camera module

should only be considered when Out1 is HIGH. This is the case, for example, when a bright
part of the robot moves through the field of view of the camera just before a detection is
triggered, which should not affect the exposure time.

AdaptiveOut1: This exposure mode uses all camera images and tracks the exposure dif-
ference between images with GPIO Out1 LOW and HIGH. While the IOControl mode for
GPIO Out1 is LOW, the images are under-exposed by this exposure difference to avoid
over-exposure for when GPIO Out1 triggers an external projector. The resulting exposure
difference is given as Out1 Reduction below the live images. This mode is recommended for
using the acquisition_mode SingleFrameOut1 in the stereo matching module as described
in Stereo Matching Parameters (Section 6.2.2.1) and having an external projector connected
to GPIO Out1, when changes in the brightness of the scene should be considered at all
times. This is the case, for example, in applications where the external lighting changes.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?exp_auto_mode=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_auto_mode=<value>

exp_max (Max Exposure)

This value is the maximal exposure time in auto-exposure mode in seconds. The actual ex-
posure time is adjusted automatically so that the images are exposed correctly. If the maxi-
mum exposure time is reached, but the images are still underexposed, the rc_reason_stack
stepwise increases the gain to increase the images’ brightness. Limiting the exposure time
is useful for avoiding or reducing motion blur during fast movements. However, higher gain
introduces noise into the image. The best trade-off depends on the application.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?exp_max=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_max=<value>

exp_auto_average_max (Max Brightness) and exp_auto_average_min (Min Brightness)

The auto-exposure tries to set the exposure time and gain factor such that the average
intensity (i.e. brightness) in the image or exposure region is between a maximum and a
minimum. The maximum brightness will be used if there is no saturation, e.g. no over-
exposure due to bright surfaces or reflections. In case of saturation, the exposure time and
gain factor are reduced, but only down to the minimum brightness.

The maximum brightness has precedence over the minimum brightness parameter. If the
minimum brightness is larger than the maximum brightness, the auto-exposure always tries
to make the average intensity equal to the maximum brightness.

The current brightness is always shown in the status bar below the images.

Via the REST-API, this parameter can be set as follows.

API version 2

Roboception GmbH
Manual: rc_reason_stack

37 Rev: 26.01.4
Status: Jan 30, 2026

6.1. Camera module

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?<exp_auto_

→˓average_max|exp_auto_average_min>=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?<exp_auto_average_max|exp_auto_

→˓average_min>=<value>

exp_offset_x, exp_offset_y, exp_width, exp_height (Exposure Region)

These values define a rectangular region in the left rectified image for limiting the area used
for computing the auto exposure. The exposure time and gain factor of both images are
chosen to optimally expose the defined region. This can lead to over- or underexposure of
image parts outside the defined region. If either the width or height is 0, then the whole left
and right images are considered by the auto exposure function. This is the default.

The region is visualized in the Web GUI by a rectangle in the left rectified image. It can
be defined using the sliders or by selecting it in the image after pressing the button Select
Region in Image.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?<exp_offset_

→˓x|exp_offset_y|exp_width|exp_height>=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?<exp_offset_x|exp_offset_y|exp_

→˓width|exp_height>=<value>

exp_value (Exposure)

This value is the exposure time in manual exposure mode in seconds. This expo-
sure time is kept constant even if the images are underexposed.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?exp_value=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_value=<value>

gain_value (Gain (dB))

This value is the gain factor in decibel that can be set in manual exposure mode. Higher
gain factors reduce the required exposure time but introduce noise.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?gain_value=
→˓<value>

Roboception GmbH
Manual: rc_reason_stack

38 Rev: 26.01.4
Status: Jan 30, 2026

6.1. Camera module

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?gain_value=<value>

brightness (Brightness)

Adjusting the brightness lightens or darkens the entire image.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?brightness=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?brightness=<value>

wb_auto (White Balance Auto or Manual, only available for color cameras)

This value can be set to true for automatic white balancing or false for manually setting the
ratio between the colors using wb_ratio_red and wb_ratio_blue. The last automatically
determined ratios are set into wb_ratio_red and wb_ratio_blue when switching automatic
white balancing off. White balancing is without function for monochrome cameras and will
not be displayed in the Web GUI in this case.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?wb_auto=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?wb_auto=<value>

wb_ratio_blue, wb_ratio_red and wb_ratio_green (Blue Ratio, Red Ratio and Green Ratio, only
available for color cameras)

These values are used to set blue, red and green ratios for manual white balance. White balancing is
without function for monochrome cameras and will not be displayed in the Web GUI in this case.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?<wb_ratio_blue|wb_ratio_

→˓red|wb_ratio_green>=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?<wb_ratio_blue|wb_ratio_red|wb_ratio_green>=
→˓<value>

Roboception GmbH
Manual: rc_reason_stack

39 Rev: 26.01.4
Status: Jan 30, 2026

6.1. Camera module

light_source_preset (Light Source Preset, only available for color cameras)

The light source preset parameter allows to correct color shifts caused by certain light
sources. Depending on its specific color temperature, the light used for image acquisition
can cause color shifts in the image. These color shifts can be corrected by selecting the re-
lated light source preset. Possible values are Off, Tungsten, Daylight5000K, Daylight6500K
and FactoryLED6000K.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?light_source_

→˓preset=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?light_source_preset=<value>

saturation (Saturation, only available for color cameras)

Adjusting the saturation changes the colorfulness (intensity) of the colors. A higher satura-
tion, e.g., makes colors easier to distinguish.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?saturation=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?saturation=<value>

6.1.4.2 Status values

The rc_camera module reports the following status values on a pipeline of type stereo_ace.

Roboception GmbH
Manual: rc_reason_stack

40 Rev: 26.01.4
Status: Jan 30, 2026

6.1. Camera module

Table 6.4: The rc_camera module’s status values
Name Description
baseline Stereo baseline 𝑡 in meters
brightness Current brightness of the image as value between 0 and 1
color 0 for monochrome cameras, 1 for color cameras
exp Current exposure time in seconds. This value is shown below the

image preview in the Web GUI as Exposure (ms).
device_trigger_sources Gives the available trigger sources, in case the device can be triggered
focal Focal length factor normalized to an image width of 1
fps Current frame rate of the camera images in Hertz. This value is shown

in the Web GUI below the image preview as FPS (Hz).
gain Current gain factor in decibel. This value is shown in the Web GUI

below the image preview as Gain (dB).
gamma Current gamma value.
height Height of the camera image in pixels. This value is shown in the Web

GUI below the image preview as the second part of Resolution (px).
last_timestamp_grabbed Timestamp of the last image acquired in case the camera is in trigger

mode
out1_reduction Fraction of reduction (0.0 - 1.0) of brightness for images with GPIO

Out1=LOW in exp_auto_mode=AdaptiveOut1 or
exp_auto_mode=Out1High. This value is shown in the Web GUI below
the image preview as Out1 Reduction (%).

params_override_active 1 if parameters are temporarily overwritten by a running calibration
process

selfcalib_counter How often a correction has been performed by the self-calibration
selfcalib_offset Current offset determined by the self-calibration
test 0 for live images and 1 for test images
width Width of the camera image in pixels. This value is shown in the Web

GUI below the image preview as the first part of Resolution (px).

6.1.4.3 Services

The rc_camera module offers the following services on a pipeline of type stereo_ace.

acquisition_trigger

Triggers an image acquisition when acquisition_mode is set to Trigger and
trigger_source is set to Software.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/acquisition_trigger

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/services/acquisition_trigger

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

Roboception GmbH
Manual: rc_reason_stack

41 Rev: 26.01.4
Status: Jan 30, 2026

6.1. Camera module

{
"name": "acquisition_trigger",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

reset_defaults

Restores and applies the default values for this module’s parameters (“factory reset”).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/services/reset_defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.1.5 Pipeline type orbbec

Note: The firmware version of the connected Orbbec camera must be at least 1.6.00, otherwise the
Orbbec cannot be used.

6.1.5.1 Parameters

The camera module on a pipeline of type orbbec is called rc_camera and is represented by the Camera
page in the desired pipeline in the Web GUI (Section 7.1). The user can change the camera parameters
there, or directly via the REST-API (REST-API interface, Section 7.2).

Roboception GmbH
Manual: rc_reason_stack

42 Rev: 26.01.4
Status: Jan 30, 2026

6.1. Camera module

Parameter overview

This module offers the following run-time parameters:

Table 6.5: The rc_camera module’s run-time parameters on a
pipeline of type orbbec

Name Type Min Max Default Description
exp_control string - - Auto Exposure control mode: [Manual,

Auto]
exp_height int32 0 799 0 Height of auto exposure region. 0

for whole image.
exp_max float64 1.0 1999.0 665.0 Maximum exposure time in seconds

in Auto exposure mode
exp_offset_x int32 0 1279 0 First column of auto exposure re-

gion
exp_offset_y int32 0 799 0 First row of auto exposure region
exp_value float64 1.0 1999.0 156.0 Exposure time in seconds in Manual

exposure mode
exp_width int32 0 1279 0 Width of auto exposure region. 0 for

whole image.
gain_value float64 0.0 128.0 16.0 Gain value in decibel if not in Auto

exposure mode
gamma float64 100.0 500.0 300.0 Gamma factor
wb_auto bool false true true Switching white balance on and off
wb_value float64 2800.0 6500.0 4600.0 White balance value

Description of run-time parameters

Each run-time parameter is represented by a row on the Web GUI’s Camera page. The name in the
Web GUI is given in brackets behind the parameter name and the parameters are listed in the order
they appear in the Web GUI.

gamma (Gamma)

The gamma value determines the mapping of perceived light to the brightness of a pixel.
Lower gamma values let dark image parts appear brighter.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?gamma=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?gamma=<value>

exp_control (Exposure Auto or Manual)

The exposure control mode can be set to Auto or Manual.

Auto: This is the default mode in which the exposure time and gain factor is chosen auto-
matically to correctly expose the image. The last automatically determined exposure and
gain values are set into exp_value and gain_value when switching auto-exposure off.

Roboception GmbH
Manual: rc_reason_stack

43 Rev: 26.01.4
Status: Jan 30, 2026

6.1. Camera module

Manual : In the manual exposure mode the exposure time and gain are kept fixed indepen-
dent of the resulting image brightness.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?exp_control=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_control=<value>

exp_max (Max Exposure)

This value is the maximal exposure in auto-exposure mode in seconds. The actual exposure
time is adjusted automatically so that the images are exposed correctly. If the maximum
exposure is reached, but the images are still underexposed, the gain is stepwise increased
to increase the image brightness. Limiting the exposure is useful for avoiding or reducing
motion blur during fast movements. However, higher gain introduces noise into the image.
The best trade-off depends on the application.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?exp_max=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_max=<value>

exp_offset_x, exp_offset_y, exp_width, exp_height (Exposure Region)

These values define a rectangular region in the left rectified image for limiting the area used
for computing the auto exposure. The exposure time and gain factor of both images are
chosen to optimally expose the defined region. This can lead to over- or underexposure of
image parts outside the defined region. If either the width or height is 0, then the whole left
and right images are considered by the auto exposure function. This is the default.

The region is visualized in the Web GUI by a rectangle in the left rectified image. It can
be defined using the sliders or by selecting it in the image after pressing the button Select
Region in Image.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?<exp_offset_

→˓x|exp_offset_y|exp_width|exp_height>=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?<exp_offset_x|exp_offset_y|exp_

→˓width|exp_height>=<value>

Roboception GmbH
Manual: rc_reason_stack

44 Rev: 26.01.4
Status: Jan 30, 2026

6.1. Camera module

exp_value (Exposure)

This value is the exposure in manual exposure mode. This exposure is kept con-
stant even if the images are underexposed.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?exp_value=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_value=<value>

gain_value (Gain)

This value is the gain factor that can be set in manual exposure mode. Higher gain factors
reduce the required exposure time but introduce noise.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?gain_value=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?gain_value=<value>

wb_auto (White Balance Auto or Manual)

This value can be set to true for automatic white balancing or false for manually setting the
white balance using wb_value.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?wb_auto=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?wb_auto=<value>

wb_value (White Balance Manual Value)

This value determines the white balance when wb_auto is false.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?<wb_ratio_blue|wb_ratio_

→˓red>=<value>

API version 1 (deprecated)

Roboception GmbH
Manual: rc_reason_stack

45 Rev: 26.01.4
Status: Jan 30, 2026

6.1. Camera module

PUT http://<host>/api/v1/nodes/rc_camera/parameters?<wb_ratio_blue|wb_ratio_red>=<value>

6.1.5.2 Status values

The rc_camera module of an orbbec pipeline reports the following status values:

Table 6.6: The rc_camera module’s status values
Name Description
baseline Internally assumed stereo baseline 𝑡 in meters for disparity image

computation
brightness Current brightness of the image as value between 0 and 1
color 0 for monochrome cameras, 1 for color cameras
exp Current exposure. This value is shown below the image preview in the

Web GUI as Exposure.
focal Focal length factor normalized to an image width of 1
fps Current frame rate of the camera images in Hertz. This value is shown

in the Web GUI below the image preview as FPS (Hz).
gain Current gain factor. This value is shown in the Web GUI below the

image preview as Gain.
height Height of the camera image in pixels. This value is shown in the Web

GUI below the image preview as the second part of Resolution (px).
last_capture_ok 1 if the last image capture was successful
last_timestamp_grabbed Timestamp of the last image acquired
test 0 for live images and 1 for test images
width Width of the camera image in pixels. This value is shown in the Web

GUI below the image preview as the first part of Resolution (px).

6.1.5.3 Services

In a pipeline of type orbbec the rc_camera module offers the following services.

reset_defaults

Restores and applies the default values for this module’s parameters (“factory reset”).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/services/reset_defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

Roboception GmbH
Manual: rc_reason_stack

46 Rev: 26.01.4
Status: Jan 30, 2026

6.1. Camera module

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.1.6 Pipeline type zivid

Note: The firmware version of the connected zivid camera has to match the version required by the
rc_reason_stack, otherwise the zivid cannot be used. To update the zivid to the required firmware
version, open the Web GUI (Section 7.1), navigate to System → Camera Pipelines and select the
zivid pipeline. Then click on Update zivid firmware and wait for the update process to finish.

6.1.6.1 User-defined presets

The zivid camera comes with multiple pre-configured settings for capturing images, so-called presets.
The 2D presets are tailored specifically for 2D image captures, focusing on settings like resolution,
exposure time, brightness, and gain. They are optimized for applications requiring detailed color or
monochrome images.

Users can also create own 2D presets using the Zivid Studio software (https://www.zivid.com/
zivid-studio-software) and save them as .yml files. These preset files can be uploaded to the
rc_reason_stack on the Camera page of the Web GUI or using the REST-API as described in Pre-
sets API. User-defined presets can then be selected for image acquisition in the same way as the
pre-defined presets via the preset_name run-time parameter. Also 3D presets including 2D settings can
be uploaded and used as 2D preset. In this case, only the 2D settings will be applied.

6.1.6.2 Parameters

The camera module on a pipeline of type zivid is called rc_camera and is represented by the Camera
page in the desired pipeline in the Web GUI (Section 7.1). The user can change the camera parameters
there, or directly via the REST-API (REST-API interface, Section 7.2).

Parameter overview

This module offers the following run-time parameters:

Table 6.7: The rc_camera module’s run-time parameters on a
pipeline of type zivid

Name Type Min Max Default Description
acquisition_mode string - - Trigger Acquisition mode: [Continuous,

Trigger]
fps float64 1.0 25.0 25.0 Frames per second in Hertz
preset_name string - - - Name of preset configuration

Roboception GmbH
Manual: rc_reason_stack

47 Rev: 26.01.4
Status: Jan 30, 2026

https://www.zivid.com/zivid-studio-software
https://www.zivid.com/zivid-studio-software

6.1. Camera module

Description of run-time parameters

Each run-time parameter is represented by a row on the Web GUI’s Camera page. The name in the
Web GUI is given in brackets behind the parameter name and the parameters are listed in the order
they appear in the Web GUI.

acquisition_mode (Acquisition Mode)

This parameter determines the acquisition mode of the 2D camera images. In Continuous
mode, the camera will acquire images at the specified frame rate fps. In Trigger mode, im-
ages are only acquired when the camera receives a software trigger signal, either by clicking
on the Acquire button in the Web GUI, or by calling the rc_camera/acquisition_trigger
service (see Services (Section 6.1.6.4)).

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?acquisition_

→˓mode=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?acquisition_mode=<value>

fps (FPS (Hz))

This value is the camera’s frame rate (fps, frames per second), which determines the upper
frequency at which camera images can be acquired.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?fps=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?fps=<value>

preset_name (Preset Name)

This parameter allows to select a preset for 2D image acquisition. The preset can be any of
the zivid ’s pre-configured presets which depend on the zivid model and are read from the
connected device, or a user-defined preset that has been uploaded to the rc_reason_stack
(User-defined presets, Section 6.1.6.1).

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?preset_name=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?preset_name=<value>

Roboception GmbH
Manual: rc_reason_stack

48 Rev: 26.01.4
Status: Jan 30, 2026

6.1. Camera module

6.1.6.3 Status values

The rc_camera module of a zivid pipeline reports the following status values:

Table 6.8: The rc_camera module’s status values
Name Description
baseline Internally assumed stereo baseline 𝑡 in meters for disparity image

computation
brightness Current brightness of the image as value between 0 and 1
color 0 for monochrome cameras, 1 for color cameras
exp Current exposure time in seconds. This value is shown below the

image preview in the Web GUI as Exposure (ms).
focal Focal length factor normalized to an image width of 1
fps Current frame rate of the camera images in Hertz. This value is shown

in the Web GUI below the image preview as FPS (Hz).
height Height of the camera image in pixels. This value is shown in the Web

GUI below the image preview as the second part of Resolution (px).
last_capture_ok 1 if the last image capture was successful
last_timestamp_grabbed Timestamp of the last image acquired
test 0 for live images and 1 for test images
width Width of the camera image in pixels. This value is shown in the Web

GUI below the image preview as the first part of Resolution (px).

6.1.6.4 Services

In a pipeline of type zivid the rc_camera module offers the following services.

acquisition_trigger

Triggers an image acquisition when acquisition_mode is set to Trigger.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/acquisition_trigger

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/services/acquisition_trigger

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "acquisition_trigger",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

49 Rev: 26.01.4
Status: Jan 30, 2026

6.1. Camera module

(continued from previous page)

}
}

reset_defaults

Restores and applies the default values for this module’s parameters (“factory reset”).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/services/reset_defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.1.6.5 Presets API

The 2D presets can be set, retrieved and deleted via the following REST-API endpoints.

GET /presets/rc_zivid/2d_presets
Get zivid 2D presets.

Template request

GET /api/v2/presets/rc_zivid/2d_presets HTTP/1.1

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation

GET /presets/rc_zivid/2d_presets/{id}
Get zivid 2D preset yml file.

Template request

Roboception GmbH
Manual: rc_reason_stack

50 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

6.1. Camera module

GET /api/v2/presets/rc_zivid/2d_presets/<id> HTTP/1.1

Parameters

• id (string) – ID/filename without extension (required)

Response Headers

• Content-Type – application/octet-stream

Status Codes

• 200 OK – successful operation

• 404 Not Found – yml file not found

PUT /presets/rc_zivid/2d_presets/{id}
Create or update a zivid 2D preset yml file.

Template request

PUT /api/v2/presets/rc_zivid/2d_presets/<id> HTTP/1.1
Accept: multipart/form-data application/json

Parameters

• id (string) – ID/filename without extension (required)

Form Parameters

• file – preset yml file (required)

Request Headers

• Accept – multipart/form-data application/json

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation

• 400 Bad Request – yml is not valid or max number of elements reached

• 413 Request Entity Too Large – File too large

DELETE /presets/rc_zivid/2d_presets/{id}
Remove a zivid 2D preset yml file.

Template request

DELETE /api/v2/presets/rc_zivid/2d_presets/<id> HTTP/1.1
Accept: application/json

Parameters

• id (string) – ID/filename without extension (required)

Request Headers

• Accept – application/json

Response Headers

• Content-Type – application/json

Status Codes

Roboception GmbH
Manual: rc_reason_stack

51 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

6.2. 3D modules

• 200 OK – successful operation

• 404 Not Found – element not found

6.2 3D modules

The rc_reason_stack ’s 3D camera software consists of the following modules:

• Stereo matching module (rc_stereomatching, Section 6.2.2) uses the rectified stereo image
pairs of the connected stereo camera, e.g. the rc_visard, to compute 3D depth informa-
tion such as disparity, error, and confidence images. This module only runs on pipeline types
for stereo cameras, i.e. rc_visard, rc_viscore and stereo_ace.

• Zivid module (rc_zivid, Section 6.2.3) provides 3D depth information such as disparity, error,
and confidence images of the connected zivid structured light camera. This module only
runs on pipelines of type zivid.

• Orbbec module (rc_orbbec, Section 6.2.4) provides 3D depth information such as disparity, er-
ror, and confidence images of the connected Orbbec Gemini 335Le stereo camera. This
module only runs on pipelines of type orbbec.

These modules are pipeline specific, which means that they run inside each camera pipeline. Changes
to their settings or parameters only affect the corresponding pipeline and have no influence on the other
camera pipelines running on the rc_reason_stack.

6.2.1 Viewing and downloading images and point clouds

The rc_reason_stack provides time-stamped disparity, error, and confidence images via the gRPC im-
age stream interface (see Section 7.6).

Live streams of the images are provided with reduced quality on the Depth Image page in the desired
pipeline of the Web GUI (Section 7.1).

The Web GUI also provides the possibility to download a snapshot of the current scene containing the
depth, error and confidence images, as well as a point cloud in ply format as described in Downloading
depth images and point clouds (Section 7.1.5).

6.2.2 Stereo matching module

The stereo matching module is a base module which is available on every rc_reason_stack and uses
the rectified stereo-image pair to compute disparity, error, and confidence images.

Note: This module is not available in camera pipelines of type zivid or orbbec.

To compute full resolution disparity, error and confidence images, an additional StereoPlus license
(Section 8.2) is required. This license is included in every rc_reason_stack purchased after 31.01.2019.

6.2.2.1 Parameters

The stereo matching module is called rc_stereomatching in the REST-API and it is represented by the
Depth Image page in the desired pipeline in the Web GUI (Section 7.1). The user can change the stereo
matching parameters there, or use the REST-API (REST-API interface, Section 7.2).

Roboception GmbH
Manual: rc_reason_stack

52 Rev: 26.01.4
Status: Jan 30, 2026

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.2. 3D modules

Parameter overview

This module offers the following run-time parameters:

Table 6.9: The rc_stereomatching module’s run-time parameters
Name Type Min Max Default Description
acquisition_mode string - - Continuous Acquisition mode: [Continuous, Sin-

gleFrame, SingleFrameOut1]
double_shot bool false true false Combination of disparity images

from two subsequent stereo image
pairs

exposure_adapt_timeout float64 0.0 2.0 0.0 Maximum time in seconds to wait
after triggering in SingleFrame
modes until auto exposure has
finished adjustments

fill int32 0 4 3 Disparity tolerance for hole filling in
pixels

maxdepth float64 0.1 100.0 100.0 Maximum depth in meters
maxdeptherr float64 0.01 100.0 100.0 Maximum depth error in meters
minconf float64 0.5 1.0 0.5 Minimum confidence
mindepth float64 0.1 100.0 0.1 Minimum depth in meters
quality string - - High Quality: [Low, Medium, High, Full].

Full requires ‘stereo_plus’ license.
seg int32 0 4000 200 Minimum size of valid disparity seg-

ments in pixels
smooth bool false true true Smoothing of disparity image (re-

quires ‘stereo_plus’ license)
static_scene bool false true false Accumulation of images in static

scenes to reduce noise

Description of run-time parameters

Each run-time parameter is represented by a row on the Web GUI’s Depth Image page. The name in
the Web GUI is given in brackets behind the parameter name and the parameters are listed in the order
they appear in the Web GUI:

Roboception GmbH
Manual: rc_reason_stack

53 Rev: 26.01.4
Status: Jan 30, 2026

6.2. 3D modules

Fig. 6.3: The Web GUI’s Depth Image page

acquisition_mode (Acquisition Mode)

The acquisition mode can be set to Continuous, SingleFrame (Single) or
SingleFrameOut1 (Single + Out1). The first one is the default, which performs
stereo matching continuously according to the user defined frame rate and the
available computation resources. The two other modes perform stereo match-
ing upon each click of the Acquire button. The Single + Out1 mode additionally
controls an external projector that is connected to GPIO Out1 (IO and Projector
Control , Section 6.4.4). In this mode, out1_mode of the IOControl module is auto-
matically set to ExposureAlternateActive upon each trigger call and reset to Low
after receiving images for stereo matching.

Roboception GmbH
Manual: rc_reason_stack

54 Rev: 26.01.4
Status: Jan 30, 2026

6.2. 3D modules

Note: The Single + Out1 mode can only change the out1_mode if the IOCon-
trol license is available on the rc_reason_stack.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?
→˓acquisition_mode=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?acquisition_mode=<value>

exposure_adapt_timeout (Exposure Adaptation Timeout)

The exposure adaptation timeout gives the maximum time in seconds that the
system will wait after triggering an image acquisition until auto exposure has found
the optimal exposure time. This timeout is only used in SingleFrame (Single) or
SingleFrameOut1 (Single + Out1) acquisition mode with auto exposure active. This
value should be increased in applications with changing lighting conditions, when
images are under- oder overexposed and the resulting disparity images are too
sparse. In these cases multiple images are acquired until the auto-exposure mode
has adjusted or the timeout is reached, and only then the actual image acquisition
is triggered.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?
→˓exposure_adapt_timeout=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?exposure_adapt_timeout=
→˓<value>

quality (Quality)

Disparity images can be computed in different resolutions: Full (full image res-
olution), High (half of the full image resolution), Medium (quarter of the full image
resolution) and Low (sixth of the full image resolution). Full resolution matching
(Full) is only possible with a valid StereoPlus license. The lower the resolution,
the higher the frame rate of the disparity image. Please note that the frame rate of
the disparity, confidence, and error images will always be less than or equal to the
camera frame rate. In case the projector is in ExposureAlternateActive mode,
the frame rate of the images can be at most half of the camera frame rate.

If full resolution is selected, the depth range is internally limited due to limited on-
board memory resources. It is recommended to adjust mindepth and maxdepth to
the depth range that is required by the application.

Roboception GmbH
Manual: rc_reason_stack

55 Rev: 26.01.4
Status: Jan 30, 2026

6.2. 3D modules

Table 6.10: Depth image resolutions (pixel) depending on the cho-
sen quality

Connected Camera Full Quality High Quality Medium Quality Low Quality
rc_visard 1280 x 960 640 x 480 320 x 240 214 x 160
rc_visard_ng 1440 x 1080 720 x 540 360 x 270 240 x 180
rc_viscore 4112 x 3008 2056 x 1504 1028 x 752 686 x 502

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?
→˓quality=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?quality=<value>

double_shot (Double-Shot)

Enabling this option will lead to denser disparity images, but will increase processing time.

For scenes recorded with a projector in Single + Out1 acquisition mode, or in continuous
acquisition mode with the projector in ExposureAlternateActive mode, holes caused by re-
flections of the projector are filled with depth information computed from the images without
projector pattern. In this case, the double_shot parameter must only be enabled if the scene
does not change during the acquisition of the images.

For all other scenes, holes are filled with depth information computed from a downscaled
version of the same image.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?double_

→˓shot=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?double_shot=<value>

static_scene (Static)

This option averages 8 consecutive camera images before matching. This reduces noise,
which improves the stereo matching result. However, the latency increases significantly. The
timestamp of the first image is taken as timestamp of the disparity image. This option only
affects matching in full or high quality. It must only be enabled if the scene does not change
during the acquisition of the 8 images.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?static_

→˓scene=<value>

API version 1 (deprecated)

Roboception GmbH
Manual: rc_reason_stack

56 Rev: 26.01.4
Status: Jan 30, 2026

6.2. 3D modules

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?static_scene=<value>

mindepth (Minimum Distance)

The minimum distance is the smallest distance from the camera at which measurements
should be possible. Larger values implicitly reduce the disparity range, which also reduces
the computation time. The minimum distance is given in meters.

Depending on the capabilities of the sensor, the actual minimum distance can be higher than
the user setting. The actual minimum distance will be reported in the status values.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?
→˓mindepth=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?mindepth=<value>

maxdepth (Maximum Distance)

The maximum distance is the largest distance from the camera at which measurements
should be possible. Pixels with larger distance values are set to invalid in the disparity image.
Setting this value to its maximum permits values up to infinity. The maximum distance is
given in meters.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?
→˓maxdepth=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?maxdepth=<value>

smooth (Smoothing)

This option activates advanced smoothing of disparity values. It is only available with a valid
StereoPlus license.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?smooth=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?smooth=<value>

Roboception GmbH
Manual: rc_reason_stack

57 Rev: 26.01.4
Status: Jan 30, 2026

6.2. 3D modules

fill (Fill-in)

This option is used to fill holes in the disparity image by interpolation. The fill-in value is the
maximum allowed disparity step on the border of the hole. Larger fill-in values can decrease
the number of holes, but the interpolated values can have larger errors. At most 5% of pixels
are interpolated. Interpolation of small holes is preferred over interpolation of larger holes.
The confidence for the interpolated pixels is set to a low value of 0.5. A fill-in value of 0
switches hole filling off.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?fill=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?fill=<value>

seg (Segmentation)

The segmentation parameter is used to set the minimum number of pixels that a connected
disparity region in the disparity image must fill. Isolated regions that are smaller are set to
invalid in the disparity image. The value is related to the high quality disparity image with half
resolution and does not have to be scaled when a different quality is chosen. Segmentation
is useful for removing erroneous disparities. However, larger values may also remove real
objects.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?seg=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?seg=<value>

minconf (Minimum Confidence)

The minimum confidence can be set to filter potentially false disparity measurements. All
pixels with less confidence than the chosen value are set to invalid in the disparity image.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?
→˓minconf=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?minconf=<value>

Roboception GmbH
Manual: rc_reason_stack

58 Rev: 26.01.4
Status: Jan 30, 2026

6.2. 3D modules

maxdeptherr (Maximum Depth Error)

The maximum depth error is used to filter measurements that are too inaccurate. All pixels
with a larger depth error than the chosen value are set to invalid in the disparity image. The
maximum depth error is given in meters. The depth error generally grows quadratically with
an object’s distance from the camera (see Confidence and error images, Section 4.2.3).

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?
→˓maxdeptherr=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?maxdeptherr=<value>

6.2.2.2 Status values

This module reports the following status values:

Table 6.11: The rc_stereomatching module’s status values
Name Description
fps Actual frame rate of the disparity, error, and confidence images. This value

is shown in the Web GUI below the image preview as FPS (Hz).
latency Time in seconds between image acquisition and publishing of disparity

image. This value is shown in the Web GUI below the image preview as
Latency (s).

width Current width of the disparity, error, and confidence images in pixels. This
value is shown in the Web GUI below the image preview as the first
number of Resolution (px).

height Current height of the disparity, error, and confidence images in pixels. This
value is shown in the Web GUI below the image preview as the second
number of Resolution (px).

mindepth Actual minimum working distance in meters. This value is shown in the
Web GUI below the image preview as Minimum Distance (m).

maxdepth Actual maximum working distance in meters. This value is shown in the
Web GUI below the image preview as Maximum Distance (m).

time_matching Time in seconds for performing stereo matching using SGM on the GPU
time_postprocessing Time in seconds for postprocessing the matching result on the CPU
reduced_depth_range Indicates whether the depth range is reduced due to computation

resources

6.2.2.3 Services

The stereo matching module offers the following services.

acquisition_trigger

Signals the module to perform stereo matching of the next available images, if the parameter
acquisition_mode is set to SingleFrame or SingleFrameOut1.

Details

An error is returned if the acquisition_mode is set to Continuous.

Roboception GmbH
Manual: rc_reason_stack

59 Rev: 26.01.4
Status: Jan 30, 2026

6.2. 3D modules

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/services/
→˓acquisition_trigger

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/services/acquisition_trigger

Request

This service has no arguments.

Response

Possible return codes are shown below.

Table 6.12: Possible return codes of the acquisition_trigger
service call.

Code Description
0 Success
-8 Triggering is only possible in SingleFrame acquisition mode

101 Trigger is ignored, because there is a trigger call pending
102 Trigger is ignored, because there are no subscribers

The definition for the response with corresponding datatypes is:

{
"name": "acquisition_trigger",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

reset_defaults

Restores and applies the default values for this module’s parameters (“factory reset”).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/services/reset_

→˓defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/services/reset_defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

Roboception GmbH
Manual: rc_reason_stack

60 Rev: 26.01.4
Status: Jan 30, 2026

6.2. 3D modules

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.2.3 Zivid module

Note: The firmware version of the connected zivid camera has to match the version required by the
rc_reason_stack, otherwise the zivid cannot be used. To update the zivid to the required firmware
version, open the Web GUI (Section 7.1), navigate to System → Camera Pipelines and select the
zivid pipeline. Then click on Update zivid firmware and wait for the update process to finish.

The zivid module is a base module which is available on every rc_reason_stack and provides disparity,
confidence and error images of a connected zivid structured light camera. It only runs in camera
pipelines of type zivid.

6.2.3.1 User-defined presets

The zivid camera comes with multiple pre-configured settings for capturing images, so-called presets.

The 3D presets that come with the zivid camera include both 2D and 3D settings, enabling simultaneous
capture of color images and depth data. However, the 2D image settings are ignored and instead the
2D image is captured with the preset chosen in rc_camera (see User-defined presets, Section 6.1.6.1).
The 3D presets are categorized based on application needs, such as Consumer Goods, Manufacturing
etc.

Users can also create own 3D presets using the Zivid Studio software (https://www.zivid.com/
zivid-studio-software) and save them as .yml files. These preset files can be uploaded to the
rc_reason_stack on the Depth Image page of the Web GUI or using the REST-API as described in
Presets API. User-defined presets can then be selected for depth image acquisition in the same way
as the pre-defined presets via the preset_name run-time parameter. If the 2D preset included in the
user-defined 3D preset should be used, then this preset also has to be uploaded as 2D preset and
selected as the camera preset name.

6.2.3.2 Parameters

The zivid module is called rc_zivid in the REST-API and it is represented by the Depth Image page
in the desired pipeline in the Web GUI (Section 7.1), when a zivid camera is connected and running
in the corresponding pipeline. The user can change the zivid parameters there, or use the REST-API
(REST-API interface, Section 7.2).

Parameter overview

This module offers the following run-time parameters:

Roboception GmbH
Manual: rc_reason_stack

61 Rev: 26.01.4
Status: Jan 30, 2026

https://www.zivid.com/zivid-studio-software
https://www.zivid.com/zivid-studio-software

6.2. 3D modules

Table 6.13: The rc_zivid module’s run-time parameters
Name Type Min Max Default Description
acquisition_mode string - - SingleFrame Acquisition mode: [Continuous, Sin-

gleFrame]
maxdepth float64 0.3 100.0 100.0 Maximum depth in meters
mindepth float64 0.3 100.0 0.3 Minimum depth in meters
preset_name string - - - Name of preset configuration

Description of run-time parameters

Each run-time parameter is represented by a row on the Web GUI’s Depth Image page. The name in
the Web GUI is given in brackets behind the parameter name and the parameters are listed in the order
they appear in the Web GUI.

acquisition_mode (Acquisition Mode)

This parameter determines the acquisition mode for 3D data. The acquisition
mode can be set to Continuous or SingleFrame. The latter is the default, which
acquires a depth image upon each click of the Acquire button or when calling
the rc_zivid/acquisition_trigger service (see Services of the rc_zivid module,
Section 6.2.3.4). In Continuous mode, depth images are acquired continuously,
when the 2D image acquisition mode is also set to Continuous. Otherwise, depth
images are only acquired when a 2D images acquisition is triggered.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_zivid/parameters?acquisition_

→˓mode=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_zivid/parameters?acquisition_mode=<value>

preset_name (Preset Name)

This parameter allows to select a preset for 3D image acquisition. The preset can be any of
the zivid ’s pre-configured presets which depend on the zivid model and are read from the
connected device, or a user-defined preset that has been uploaded to the rc_reason_stack
(see User-defined presets, Section 6.2.3.1).

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_zivid/parameters?preset_name=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_zivid/parameters?preset_name=<value>

Roboception GmbH
Manual: rc_reason_stack

62 Rev: 26.01.4
Status: Jan 30, 2026

6.2. 3D modules

6.2.3.3 Status values

The rc_zivid module reports the following status values:

Table 6.14: The rc_zivid module’s status values
Name Description
fps Actual frame rate of the disparity, error, and confidence images. This

value is shown in the Web GUI below the image preview as FPS (Hz).
height Current height of the disparity, error, and confidence images in pixels.

This value is shown in the Web GUI below the image preview as the
second number of Resolution (px).

last_capture_ok 1 if the last image capture was successful
last_timestamp_grabbed Timestamp of the last depth data acquired
latency Time in seconds between image acquisition and publishing of disparity

image. This value is shown in the Web GUI below the image preview
as Latency (s).

width Current width of the disparity, error, and confidence images in pixels.
This value is shown in the Web GUI below the image preview as the
first number of Resolution (px).

6.2.3.4 Services of the rc_zivid module

The rc_zivid module offers the following services.

acquisition_trigger

Signals the module to acquire a depth image, if the parameter acquisition_mode is set to
SingleFrame.

Details

An error is returned if the acquisition_mode is set to Continuous.

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_zivid/services/acquisition_

→˓trigger

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_zivid/services/acquisition_trigger

Request

This service has no arguments.

Response

Possible return codes are shown below.

Table 6.15: Possible return codes of the acquisition_trigger
service call.

Code Description
0 Success
-8 Triggering is only possible in SingleFrame acquisition mode

101 Trigger is ignored, because there is a trigger call pending
102 Trigger is ignored, because there are no subscribers

Roboception GmbH
Manual: rc_reason_stack

63 Rev: 26.01.4
Status: Jan 30, 2026

6.2. 3D modules

The definition for the response with corresponding datatypes is:

{
"name": "acquisition_trigger",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

reset_defaults

Restores and applies the default values for this module’s parameters (“factory reset”).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_zivid/services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_zivid/services/reset_defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.2.3.5 Presets API

The 3D presets can be set, retrieved and deleted via the following REST-API endpoints.

GET /presets/rc_zivid/3d_presets
Get zivid 3D presets.

Template request

GET /api/v2/presets/rc_zivid/3d_presets HTTP/1.1

Response Headers

• Content-Type – application/json

Status Codes

Roboception GmbH
Manual: rc_reason_stack

64 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5

6.2. 3D modules

• 200 OK – successful operation

GET /presets/rc_zivid/3d_presets/{id}
Get zivid 3D preset yml file.

Template request

GET /api/v2/presets/rc_zivid/3d_presets/<id> HTTP/1.1

Parameters

• id (string) – ID/filename without extension (required)

Response Headers

• Content-Type – application/octet-stream

Status Codes

• 200 OK – successful operation

• 404 Not Found – yml file not found

PUT /presets/rc_zivid/3d_presets/{id}
Create or update a zivid 3D preset yml file.

Template request

PUT /api/v2/presets/rc_zivid/3d_presets/<id> HTTP/1.1
Accept: multipart/form-data application/json

Parameters

• id (string) – ID/filename without extension (required)

Form Parameters

• file – preset yml file (required)

Request Headers

• Accept – multipart/form-data application/json

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation

• 400 Bad Request – yml is not valid or max number of elements reached

• 413 Request Entity Too Large – File too large

DELETE /presets/rc_zivid/3d_presets/{id}
Remove a zivid 3D preset yml file.

Template request

DELETE /api/v2/presets/rc_zivid/3d_presets/<id> HTTP/1.1
Accept: application/json

Parameters

• id (string) – ID/filename without extension (required)

Request Headers

Roboception GmbH
Manual: rc_reason_stack

65 Rev: 26.01.4
Status: Jan 30, 2026

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14

6.2. 3D modules

• Accept – application/json

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation

• 404 Not Found – element not found

6.2.4 Orbbec module

Note: The firmware version of the connected Orbbec camera has to be at least 1.6.00, otherwise
the Orbbec cannot be used.

The orbbec module is a base module which is available on every rc_reason_stack and provides dispar-
ity, confidence and error images of a connected Orbbec stereo camera. It only runs in camera pipelines
of type orbbec.

6.2.4.1 Parameters

The orbbec module is called rc_orbbec in the REST-API and it is represented by the Depth Image page
in the desired pipeline in the Web GUI (Section 7.1), when an Orbbec camera is connected and running
in the corresponding pipeline. The user can change the orbbec parameters there, or use the REST-API
(REST-API interface, Section 7.2).

Parameter overview

This module offers the following run-time parameters:

Table 6.16: The rc_orbbec module’s run-time parameters
Name Type Min Max Default Description
fill int32 0 4 3 Disparity tolerance for hole filling in

pixels
maxdepth float64 0.1 100.0 100.0 Maximum depth in meters
mindepth float64 0.1 100.0 0.1 Minimum depth in meters
seg int32 0 4000 200 Minimum size of valid disparity seg-

ments in pixels
smooth bool false true true Smoothing of disparity image (re-

quires ‘stereo_plus’ license)

Description of run-time parameters

Each run-time parameter is represented by a row on the Web GUI’s Depth Image page. The name in
the Web GUI is given in brackets behind the parameter name and the parameters are listed in the order
they appear in the Web GUI.

mindepth (Minimum Distance)

The minimum distance is the smallest distance from the camera at which measurements
should be possible. The minimum distance is given in meters.

Via the REST-API, this parameter can be set as follows.

Roboception GmbH
Manual: rc_reason_stack

66 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.2. 3D modules

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_orbbec/parameters?mindepth=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_orbbec/parameters?mindepth=<value>

maxdepth (Maximum Distance)

The maximum distance is the largest distance from the camera at which measurements
should be possible. Pixels with larger distance values are set to invalid in the disparity image.
Setting this value to its maximum permits values up to infinity. The maximum distance is
given in meters.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_orbbec/parameters?maxdepth=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_orbbec/parameters?maxdepth=<value>

smooth (Smoothing)

This option activates advanced smoothing of disparity values.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_orbbec/parameters?smooth=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_orbbec/parameters?smooth=<value>

fill (Fill-in)

This option is used to fill holes in the disparity image by interpolation. The fill-in value is the
maximum allowed disparity step on the border of the hole. Larger fill-in values can decrease
the number of holes, but the interpolated values can have larger errors. At most 5% of pixels
are interpolated. Interpolation of small holes is preferred over interpolation of larger holes.
The confidence for the interpolated pixels is set to a low value of 0.5. A fill-in value of 0
switches hole filling off.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_orbbec/parameters?fill=<value>

API version 1 (deprecated)

Roboception GmbH
Manual: rc_reason_stack

67 Rev: 26.01.4
Status: Jan 30, 2026

6.2. 3D modules

PUT http://<host>/api/v1/nodes/rc_orbbec/parameters?fill=<value>

seg (Segmentation)

The segmentation parameter is used to set the minimum number of pixels that a connected
disparity region in the disparity image must fill. Isolated regions that are smaller are set to
invalid in the disparity image. The value is related to the high quality disparity image with half
resolution and does not have to be scaled when a different quality is chosen. Segmentation
is useful for removing erroneous disparities. However, larger values may also remove real
objects.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_orbbec/parameters?seg=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_orbbec/parameters?seg=<value>

6.2.4.2 Status values

The rc_orbbec module reports the following status values:

Table 6.17: The rc_orbbec module’s status values
Name Description
fps Actual frame rate of the disparity, error, and confidence images. This

value is shown in the Web GUI below the image preview as FPS (Hz).
height Current height of the disparity, error, and confidence images in pixels.

This value is shown in the Web GUI below the image preview as the
second number of Resolution (px).

last_capture_ok 1 if the last image capture was successful
last_timestamp_grabbed Timestamp of the last depth data acquired
latency Time in seconds between image acquisition and publishing of disparity

image. This value is shown in the Web GUI below the image preview
as Latency (s).

mindepth Actual minimum working distance in meters. This value is shown in the
Web GUI below the image preview as Minimum Distance (m).

maxdepth Actual maximum working distance in meters. This value is shown in the
Web GUI below the image preview as Maximum Distance (m).

width Current width of the disparity, error, and confidence images in pixels.
This value is shown in the Web GUI below the image preview as the
first number of Resolution (px).

6.2.4.3 Services of the rc_orbbec module

The rc_orbbec module offers the following services.

reset_defaults

Restores and applies the default values for this module’s parameters (“factory reset”).

Details

Roboception GmbH
Manual: rc_reason_stack

68 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_orbbec/services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_orbbec/services/reset_defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.3 Detection & Measure modules

The rc_reason_stack offers software modules for different detection and measuring applications:

• Measure (rc_measure, Section 6.3.1) provides measure functionalities, such as depth measure-
ments.

• LoadCarrier (rc_load_carrier, Section 6.3.2) allows detecting load carriers and their filling lev-
els.

• TagDetect (rc_april_tag_detect and rc_qr_code_detect, Section 6.3.3) allows the detection
of AprilTags and QR codes, as well as the estimation of their poses.

• ItemPick and ItemPickAI (rc_itempick, Section 6.3.4) provides an out-of-the-box perception
solution for robotic pick-and-place applications of objects of an object category or unknown
objects.

• BoxPick (rc_boxpick, Section 6.3.5) provides an out-of-the-box perception solution for robotic
pick-and-place applications of boxes or textured boxes.

• SilhouetteMatch and SilhouetteMatchAI (rc_silhouettematch, Section 6.3.6) provides an
object detection solution for objects placed on a plane or stacked planar objects.

• CADMatch (rc_cadmatch, Section 6.3.7) provides an object detection solution for 3D objects.

These modules are pipeline specific, which means that they run inside each camera pipeline. Changes
to their settings or parameters only affect the corresponding pipeline and have no influence on the other
camera pipelines running on the rc_reason_stack.

These modules are optional and can be activated by purchasing a separate license (Section 8.2).

Roboception GmbH
Manual: rc_reason_stack

69 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

6.3.1 Measure

6.3.1.1 Introduction

The Measure module allows measuring of depth values in a specific region of interest.

The Measure module is a base module which is available on every rc_reason_stack.

6.3.1.2 Measuring Depth

The Measure module provides functionality to measure depth values in the current scene in a 2D region
of interest. Optionally, the region of interest can be subdivided into up to 100 cells, for which separate
depth measurements are returned in addition to the overall depth measurements of the whole region.

A depth measurement consist of the average depth mean_z, the minimum depth min_z and the maximum
depth max_z, each containing 3D coordinates. The coordinates of the min_z and max_z measurements
correspond to the point in the cell or overall region with the minimum and maximum distance from the
camera, respectively. The x and y coordinates of the mean_z measurements define a point in the center
of the cell or the overall region and the z coordinate is determined by the average of all depth value
measurements (distances from the camera) in this region. Additionally, a coverage value is returned for
each cell and the overall region, which is a number between 0 and 1 that reflects the fraction of valid
depth values inside the respective region. A coverage value of 0 means that the cell is invalid and no
depth value could be computed.

When the external pose_frame is used for the depth measurements, all 3D coordinates are computed
as described above, but then transformed to the external frame. That means, the depth is always
measured along the line of sight of the camera, independently of the chosen pose frame.

6.3.1.3 Interaction with other modules

Internally, the Measure module depends on, and interacts with other on-board modules as listed below.

Note: All changes and configuration updates to these modules will affect the performance of the
Measure module.

Depth Images

The Measure module internally makes use of the following data:

• Disparity images from the Stereo matching module (rc_stereomatching, Section 6.2.2), in case
a stereo camera is used

• Disparity, error, and confidence images from the Orbbec module (rc_orbbec, Section 6.2.4), in
case an Orbbec camera is used

• Disparity images from the Zivid module (rc_zivid, Section 6.2.3), in case a zivid camera is used

Hand-eye calibration

In case the camera has been calibrated to a robot, the Measure module can automatically provide
points in the robot coordinate frame. For the Measure node’s Services (Section 6.3.1.6), the frame of
the output points can be controlled with the pose_frame argument.

Two different pose_frame values can be chosen:

Roboception GmbH
Manual: rc_reason_stack

70 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

1. Camera frame (camera). All points provided by the module are in the camera frame, and no prior
knowledge about the pose of the camera in the environment is required. It is the user’s respon-
sibility to update the configured points if the camera frame moves (e.g. with a robot-mounted
camera).

2. External frame (external). All points provided by the module are in the external frame, configured
by the user during the hand-eye calibration process. The module relies on the on-board Hand-eye
calibration module (Section 6.4.1) to retrieve the sensor mounting (static or robot mounted) and
the hand-eye transformation. If the mounting is static, no further information is needed. If the
sensor is robot-mounted, the robot_pose is required to transform poses to and from the external
frame.

Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.

All pose_frame values that are not camera or external are rejected.

6.3.1.4 Parameters

The Measure module is called rc_measure in the REST-API and is represented in the Web GUI (Section
7.1) in the desired pipeline under Modules → Measure.

Parameter overview

This module has no run-time parameters.

6.3.1.5 Status values

The Measure module reports the following status values:

Table 6.18: The rc_measure module’s status values
Name Description
data_acquisition_time Time in seconds required to acquire depth image
last_timestamp_processed The timestamp of the last processed depth image
processing_time Processing time of the last measurement in seconds

6.3.1.6 Services

The user can explore and call the Measure module’s services, e.g. for development and testing, using
the REST-API interface (Section 7.2) or the rc_reason_stack Web GUI (Section 7.1) on the Measure
page under Modules.

The Measure module offers the following services.

measure_depth

Computes the mean, minimum and maximum depth in a given region of interest, which can
optionally be subdivided into cells.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_measure/services/measure_depth

Roboception GmbH
Manual: rc_reason_stack

71 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_measure/services/measure_depth

Request

Required arguments:

pose_frame: see Hand-eye calibration (Section 6.3.1.3).

Optional arguments:

region_of_interest_2d_id is the ID of the 2D region of interest (see RoiDB, Sec-
tion 6.5.2) that will be used for the depth measurements.

region_of_interest_2d is an alternative on-the-fly definition of the region of in-
terest for the depth measurements. This region of interest will be ignored if a
region_of_interest_2d_id is given. The region of interest is always defined on
the camera image with full resolution, where offset_x and offset_y are the pixel
coordinates of the upper left corner of the rectangular region of interest, and width
and height are the width and height of it in pixels. Default is a region of interest
covering the whole image.

cell_count is the number of cells in x and y direction into which the region of
interest is divided. If not given, a cell count of 0, 0 is assumed and only the overall
values will be computed. The total cell count is computed as product of the x and
y values must not exceed 100.

data_acquisition_mode: if set to CAPTURE_NEW (default), a new image dataset will
be used for the measurement. If set to USE_LAST, the previous dataset will be used
for the measurement.

Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 6.3.1.3).

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"cell_count": {
"x": "uint32",
"y": "uint32"

},
"data_acquisition_mode": "string",
"pose_frame": "string",
"region_of_interest_2d": {
"height": "uint32",
"offset_x": "uint32",
"offset_y": "uint32",
"width": "uint32"

},
"region_of_interest_2d_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

72 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

}
}

}

Response

cells contains the depth measurements of all requested cells. The cells are always ordered
from left to right and top to bottom in image coordinates.

overall contains the depth measurements of the full region of interest.

coverage contains the valid pixel ratio as described in Measuring Depth (Section 6.3.1.2).

mean_z, min_z and max_z contains the measurement coordinates as described in Measuring
Depth (Section 6.3.1.2).

region_of_interest_2d returns the definition of the requested region of interest for the
depth measurement.

pose_frame contains the pose frame of the depth measurement coordinates.

The definition for the response with corresponding datatypes is:

{
"name": "measure_depth",
"response": {
"cell_count": {
"x": "uint32",
"y": "uint32"

},
"cells": [
{

"coverage": "float64",
"max_z": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"mean_z": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"min_z": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

],
"overall": {

"coverage": "float64",
"max_z": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"mean_z": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"min_z": {

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

73 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"region_of_interest_2d": {
"height": "uint32",
"offset_x": "uint32",
"offset_y": "uint32",
"width": "uint32"

},
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

trigger_dump

Triggers dumping of the measurement that corresponds to the given timestamp, or the latest
measurement, if no timestamp is given. The dumps are saved to the connected USB drive.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_measure/services/trigger_dump

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_measure/services/trigger_dump

Request

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"comment": "string",
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "trigger_dump",
"response": {

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

74 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.3.1.7 Return codes

Each service response contains a return_code, which consists of a value plus an optional message.
A successful service returns with a return_code value of 0. Negative return_code values indicate
that the service failed. Positive return_code values indicate that the service succeeded with additional
information. The smaller value is selected in case a service has multiple return_code values, but all
messages are appended in the return_code message.

The following table contains a list of common codes:

Table 6.19: Return codes of the Measure module’s services
Code Description

0 Success
-1 An invalid argument was provided

6.3.2 LoadCarrier

6.3.2.1 Introduction

The LoadCarrier module allows the detection of load carriers, which is usually the first step when objects
or grasp points inside a bin should be found. The models of the load carriers to be detected have to be
defined in the LoadCarrierDB (Section 6.5.1) module.

The LoadCarrier module is an optional on-board module of the rc_reason_stack and is licensed with
any of the modules ItemPick and ItemPickAI (Section 6.3.4) and BoxPick (Section 6.3.5) or CAD-
Match (Section 6.3.7) and SilhouetteMatch and SilhouetteMatchAI (Section 6.3.6). Otherwise it requires
a separate LoadCarrier license (Section 8.2) to be purchased.

Note: This module is pipeline specific. Changes to its settings or parameters only affect the respec-
tive camera pipeline and have no influence on other pipelines running on the rc_reason_stack.

6.3.2.2 Detection of load carriers

The load carrier detection algorithm detects load carriers that match a specific load carrier model, which
must be defined in the LoadCarrierDB (Section 6.5.1) module. The load carrier model is referenced by
its ID, which is passed to the load carrier detection. The detection of a load carrier is based on the
detection of its rectangular rim. For this, it uses lines detected in the left camera image and the depth
values of the load carrier rim. Thus, the rim should form a contrast to the background and the disparity
image must be dense on the rim.

If multiple load carriers of the specified load carrier ID are visible in the scene, all of them will be detected
and returned by the load carrier detection.

By default, when assume_gravity_aligned is true and gravity measurements are available, the algo-
rithm searches for load carriers whose rim planes are perpendicular to the measured gravity vector. To
detect tilted load carriers, assume_gravity_aligned must be set to false or the load carrier’s approxi-
mate orientation must be specified as pose and the pose_type should be set to ORIENTATION_PRIOR.

Roboception GmbH
Manual: rc_reason_stack

75 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

Load carriers can be detected at a distance of up to 3 meters from the camera.

When a 3D region of interest (see RoiDB, Section 6.5.2) is used to limit the volume in which load carriers
should be detected, only the load carriers’ rims must be fully included in the region of interest.

The detection algorithm returns the poses of the load carriers’ origins (see Load carrier definition, Sec-
tion 6.5.1.2) in the desired pose frame.

The detection functionality also determines if the detected load carriers are overfilled, which means,
that objects protrude from the plane defined by the load carrier’s outer part of the rim.

x
z

outer_dimensions.x
inner_dimensions.x

inn
er
_d
im
en
sio
ns
.y

ou
ter
_d
im
en
sio
ns
.y

inner_dim
ensions.z

outer_dim
ensions.z

y
z

rim
_th

ick
ne
ss
.y

rim_thickness.x

x
y

Fig. 6.4: Load carrier models and reference frames

6.3.2.3 Detection of filling level

The LoadCarrier module offers the detect_filling_level service to compute the filling level of all
detected load carriers.

The load carriers are subdivided into a configurable number of cells in a 2D grid. The maximum number
is 200x200 cells. For each cell, the following values are reported:

• level_in_percent: minimum, maximum and mean cell filling level in percent from the load carrier
floor. These values can be larger than 100% if the cell is overfilled.

• level_free_in_meters: minimum, maximum and mean cell free level in meters from the load
carrier rim. These values can be negative if the cell is overfilled.

• cell_size: dimensions of the 2D cell in meters.

• cell_position: position of the cell center in meters (either in camera or external frame, see
Hand-eye calibration, Section 6.3.2.4). The z-coordinate is on the level of the load carrier rim.

• coverage: represents the proportion of valid pixels in this cell. It varies between 0 and 1 with steps
of 0.1. A low coverage indicates that the cell contains several missing data (i.e. only a few points
were actually measured in this cell).

These values are also calculated for the whole load carrier itself. If no cell subdivision is specified, only
the overall filling level is computed.

Roboception GmbH
Manual: rc_reason_stack

76 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

Fig. 6.5: Visualizations of the load carrier filling level: overall filling level without grid (left), 4x3 grid
(center), 8x8 grid (right). The load carrier content is shown in a green gradient from white (on the load
carrier floor) to dark green. The overfilled regions are visualized in red. Numbers indicate cell IDs.

6.3.2.4 Interaction with other modules

Internally, the LoadCarrier module depends on, and interacts with other on-board modules as listed
below.

Note: All changes and configuration updates to these modules will affect the performance of the
LoadCarrier module.

Camera and depth data

The LoadCarrier module makes internally use of the following data:

• Rectified images from the Camera module (rc_camera, Section 6.1);

• Disparity, error, and confidence images from the Stereo matching module (rc_stereomatching,
Section 6.2.2), in case a stereo camera is used

• Disparity, error, and confidence images from the Orbbec module (rc_orbbec, Section 6.2.4), in
case an Orbbec camera is used

• Disparity, error, and confidence images from the Zivid module (rc_zivid, Section 6.2.3), in case
a zivid camera is used

All processed images are guaranteed to be captured after the module trigger time.

IO and Projector Control

In case the rc_reason_stack is used in conjunction with an external random dot projector and the IO and
Projector Control module (rc_iocontrol, Section 6.4.4), it is recommended to connect the projector to
GPIO Out 1 and set the stereo-camera module’s acquisition mode to SingleFrameOut1 (see Stereo
matching parameters, Section 6.2.2.1), so that on each image acquisition trigger an image with and
without projector pattern is acquired.

Alternatively, the output mode for the GPIO output in use should be set to ExposureAlternateActive
(see Description of run-time parameters, Section 6.4.4.1).

In either case, the Auto Exposure Mode exp_auto_mode should be set to AdaptiveOut1 to optimize the
exposure of both images.

No additional changes are required to use the LoadCarrier module in combination with a random dot
projector.

Roboception GmbH
Manual: rc_reason_stack

77 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

Hand-eye calibration

In case the camera has been calibrated to a robot, the LoadCarrier module can automatically provide
poses in the robot coordinate frame. For the LoadCarrier node’s Services (Section 6.3.2.7), the frame
of the output poses can be controlled with the pose_frame argument.

Two different pose_frame values can be chosen:

1. Camera frame (camera). All poses provided by the module are in the camera frame, and no
prior knowledge about the pose of the camera in the environment is required. This means that
the configured load carriers move with the camera. It is the user’s responsibility to update the
configured poses if the camera frame moves (e.g. with a robot-mounted camera).

2. External frame (external). All poses provided by the module are in the external frame, configured
by the user during the hand-eye calibration process. The module relies on the on-board Hand-eye
calibration module (Section 6.4.1) to retrieve the sensor mounting (static or robot mounted) and
the hand-eye transformation. If the mounting is static, no further information is needed. If the
sensor is robot-mounted, the robot_pose is required to transform poses to and from the external
frame.

Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.

All pose_frame values that are not camera or external are rejected.

6.3.2.5 Parameters

The LoadCarrier module is called rc_load_carrier in the REST-API and is represented in the Web
GUI (Section 7.1) in the desired pipeline under Modules → LoadCarrier. The user can explore and
configure the LoadCarrier module’s run-time parameters, e.g. for development and testing, using the
Web GUI or the REST-API interface (Section 7.2).

Parameter overview

Note: The default values in the parameter table below show the values of the rc_visard. The values
can be different for other sensors.

This module offers the following run-time parameters:

Table 6.20: The rc_load_carrier module’s run-time parameters
Name Type Min Max Default Description
assume_gravity_aligned bool false true true When true, only gravity-aligned load

carriers are detected, if gravity mea-
surement is available.

crop_distance float64 0.0 0.05 0.005 Safety margin in meters by which
the load carrier inner dimensions
are reduced to define the region of
interest for detection

min_plausibility float64 0.0 0.99 0.8 Indicates how much of the plane
surrounding the load carrier rim
must be free to count as valid de-
tection

model_tolerance float64 0.003 0.025 0.008 Indicates how much the estimated
load carrier dimensions are allowed
to differ from the load carrier model
dimensions in meters

Roboception GmbH
Manual: rc_reason_stack

78 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

Description of run-time parameters

Each run-time parameter is represented by a row on the LoadCarrier Settings section of the Web GUI’s
LoadCarrier page under Modules. The name in the Web GUI is given in brackets behind the parameter
name and the parameters are listed in the order they appear in the Web GUI. The parameters are
prefixed with load_carrier_ when they are used outside the rc_load_carrier module from another
detection module using the REST-API interface (Section 7.2).

assume_gravity_aligned (Assume Gravity Aligned)

If this parameter is set to true, then only load carriers without tilt will be detected. This
can speed up the detection. If this parameter is set to false, tilted load carriers will also be
detected.

This parameter is ignored for load carriers with an orientation prior.

Note: Gravity alignment is only available for pipelines of type rc_visard. The gravity vector is
estimated from linear acceleration readings from the on-board IMU.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_load_carrier/parameters?assume_gravity_

→˓aligned=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_load_carrier/parameters?assume_gravity_aligned=<value>

model_tolerance (Model Tolerance)

indicates how much the estimated load carrier dimensions are allowed to differ from the load
carrier model dimensions in meters.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_load_carrier/parameters?model_

→˓tolerance=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_load_carrier/parameters?model_tolerance=<value>

crop_distance (Crop Distance)

sets the safety margin in meters by which the load carrier’s inner dimensions are reduced to
define the region of interest for detection (ref. Fig. 6.37).

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_load_carrier/parameters?crop_

→˓distance=<value>

Roboception GmbH
Manual: rc_reason_stack

79 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_load_carrier/parameters?crop_distance=<value>

min_plausibility (Minimum Plausibility):

The minimum plausibility defines how much of the plane around the load carrier rim must
at least be free to count as valid detection. Increase the minimal plausibility to reject false
positive detections and decrease the value in case a clearly visible load carrier cannot be
detected.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_load_carrier/parameters?min_

→˓plausibility=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_load_carrier/parameters?min_plausibility=<value>

6.3.2.6 Status values

The LoadCarrier module reports the following status values:

Table 6.21: The rc_load_carrier module’s status values
Name Description
data_acquisition_time Time in seconds required to acquire image pair
last_timestamp_processed The timestamp of the last processed image pair
load_carrier_detection_time Processing time of the last detection in seconds

6.3.2.7 Services

The user can explore and call the LoadCarrier module’s services, e.g. for development and testing,
using the REST-API interface (Section 7.2) or the rc_reason_stack Web GUI (Section 7.1) on the Load-
Carrier page under Modules.

The LoadCarrier module offers the following services.

detect_load_carriers

Triggers a load carrier detection as described in Detection of load carriers (Section 6.3.2.2).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_load_carrier/services/detect_

→˓load_carriers

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/detect_load_carriers

Roboception GmbH
Manual: rc_reason_stack

80 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

Request

Required arguments:

pose_frame: see Hand-eye calibration (Section 6.3.2.4).

load_carrier_ids: IDs of the load carriers which should be detected. Currently
only one ID can be specified.

Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 6.3.2.4).

Optional arguments:

region_of_interest_id: ID of the 3D region of interest where to search for the
load carriers.

region_of_interest_2d_id: ID of the 2D region of interest where to search for
the load carriers.

Note: Only one type of region of interest can be set.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"load_carrier_ids": [
"string"

],
"pose_frame": "string",
"region_of_interest_2d_id": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

load_carriers: list of detected load carriers.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

{
"name": "detect_load_carriers",
"response": {
"load_carriers": [
{

"height_open_side": "float64",
"id": "string",

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

81 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"inner_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

detect_filling_level

Triggers a load carrier filling level detection as described in Detection of filling level (Section
6.3.2.3).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_load_carrier/services/detect_

→˓filling_level

Roboception GmbH
Manual: rc_reason_stack

82 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/detect_filling_level

Request

Required arguments:

pose_frame: see Hand-eye calibration (Section 6.3.2.4).

load_carrier_ids: IDs of the load carriers which should be detected. Currently
only one ID can be specified.

Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 6.3.2.4).

Optional arguments:

filling_level_cell_count: Number of cells in the filling level grid.

region_of_interest_id: ID of the 3D region of interest where to search for the
load carriers.

region_of_interest_2d_id: ID of the 2D region of interest where to search for
the load carriers.

Note: Only one type of region of interest can be set.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"filling_level_cell_count": {
"x": "uint32",
"y": "uint32"

},
"load_carrier_ids": [

"string"
],
"pose_frame": "string",
"region_of_interest_2d_id": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

load_carriers: list of detected load carriers and their filling levels.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

Roboception GmbH
Manual: rc_reason_stack

83 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

The definition for the response with corresponding datatypes is:

{
"name": "detect_filling_level",
"response": {

"load_carriers": [
{

"cells_filling_levels": [
{
"cell_position": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"cell_size": {
"x": "float64",
"y": "float64"

},
"coverage": "float64",
"level_free_in_meters": {
"max": "float64",
"mean": "float64",
"min": "float64"

},
"level_in_percent": {
"max": "float64",
"mean": "float64",
"min": "float64"

}
}

],
"filling_level_cell_count": {

"x": "uint32",
"y": "uint32"

},
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overall_filling_level": {

"cell_position": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"cell_size": {
"x": "float64",
"y": "float64"

},
"coverage": "float64",
"level_free_in_meters": {

"max": "float64",
"mean": "float64",
"min": "float64"

},
(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

84 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"level_in_percent": {
"max": "float64",
"mean": "float64",
"min": "float64"

}
},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

reset_defaults

Restores and applies the default values for this module’s parameters (“factory reset”).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_load_carrier/services/reset_

→˓defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/reset_defaults

Roboception GmbH
Manual: rc_reason_stack

85 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

trigger_dump

Triggers dumping of the detection that corresponds to the given timestamp, or the latest
detection, if no timestamp is given. The dumps are saved to the connected USB drive.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_load_carrier/services/trigger_

→˓dump

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/trigger_dump

Request

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"comment": "string",
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "trigger_dump",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

Roboception GmbH
Manual: rc_reason_stack

86 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

set_load_carrier (deprecated)

Persistently stores a load carrier on the rc_reason_stack.

API version 2

This service is not available in API version 2. Use set_load_carrier (Section 6.5.1.5) in
rc_load_carrier_db instead.

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/set_load_carrier

The definitions of the request and response are the same as described in
set_load_carrier (Section 6.5.1.5) in rc_load_carrier_db.

get_load_carriers (deprecated)

Returns the configured load carriers with the requested load_carrier_ids.

API version 2

This service is not available in API version 2. Use get_load_carriers (Section 6.5.1.5) in
rc_load_carrier_db instead.

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/get_load_carriers

The definitions of the request and response are the same as described in
get_load_carriers (Section 6.5.1.5) in rc_load_carrier_db.

delete_load_carriers (deprecated)

Deletes the configured load carriers with the requested load_carrier_ids.

API version 2

This service is not available in API version 2. Use delete_load_carriers (Section 6.5.1.5) in
rc_load_carrier_db instead.

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/delete_load_carriers

The definitions of the request and response are the same as described in
delete_load_carriers (Section 6.5.1.5) in rc_load_carrier_db.

set_region_of_interest (deprecated)

Persistently stores a 3D region of interest on the rc_reason_stack.

API version 2

This service is not available in API version 2. Use set_region_of_interest (Section 6.5.2.4)
in rc_roi_db instead.

Roboception GmbH
Manual: rc_reason_stack

87 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/set_region_of_interest

The definitions of the request and response are the same as described in
set_region_of_interest (Section 6.5.2.4) in rc_roi_db.

get_regions_of_interest (deprecated)

Returns the configured 3D regions of interest with the requested region_of_interest_ids.

API version 2

This service is not available in API version 2. Use get_regions_of_interest (Section 6.5.2.4)
in rc_roi_db instead.

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/get_regions_of_interest

The definitions of the request and response are the same as described in
get_regions_of_interest (Section 6.5.2.4) in rc_roi_db.

delete_regions_of_interest (deprecated)

Deletes the configured 3D regions of interest with the requested region_of_interest_ids.

API version 2

This service is not available in API version 2. Use delete_regions_of_interest (Section
6.5.2.4) in rc_roi_db instead.

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/delete_regions_of_interest

The definitions of the request and response are the same as described in
delete_regions_of_interest (Section 6.5.2.4) in rc_roi_db.

set_region_of_interest_2d (deprecated)

Persistently stores a 2D region of interest on the rc_reason_stack.

API version 2

This service is not available in API version 2. Use set_region_of_interest_2d (Section
6.5.2.4) in rc_roi_db instead.

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/set_region_of_interest_2d

The definitions of the request and response are the same as described in
set_region_of_interest_2d (Section 6.5.2.4) in rc_roi_db.

Roboception GmbH
Manual: rc_reason_stack

88 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

get_regions_of_interest_2d (deprecated)

Returns the configured 2D regions of interest with the requested
region_of_interest_2d_ids.

API version 2

This service is not available in API version 2. Use get_regions_of_interest_2d (Section
6.5.2.4) in rc_roi_db instead.

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/get_region_of_interest_2d

The definitions of the request and response are the same as described in
get_regions_of_interest_2d (Section 6.5.2.4) in rc_roi_db.

delete_regions_of_interest_2d (deprecated)

Deletes the configured 2D regions of interest with the requested
region_of_interest_2d_ids.

API version 2

This service is not available in API version 2. Use delete_regions_of_interest_2d (Section
6.5.2.4) in rc_roi_db instead.

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/delete_regions_of_interest_2d

The definitions of the request and response are the same as described in
delete_regions_of_interest_2d (Section 6.5.2.4) in rc_roi_db.

6.3.2.8 Return codes

Each service response contains a return_code, which consists of a value plus an optional message.
A successful service returns with a return_code value of 0. Negative return_code values indicate
that the service failed. Positive return_code values indicate that the service succeeded with additional
information. The smaller value is selected in case a service has multiple return_code values, but all
messages are appended in the return_code message.

The following table contains a list of common codes:

Roboception GmbH
Manual: rc_reason_stack

89 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

Table 6.22: Return codes of the LoadCarrier module’s services
Code Description

0 Success
-1 An invalid argument was provided
-4 Data acquisition took longer than allowed
-10 New element could not be added as the maximum storage capacity of load carriers has

been exceeded
-11 Sensor not connected, not supported or not ready
-12 Resource busy, e.g. when trigger_dump is called too frequently

-302 More than one load carrier provided to the detect_load_carriers or
detect_filling_level services, but only one is supported

3 The detection timeout during load carrier detection has been reached. Consider reducing
the model tolerance.

10 The maximum storage capacity of load carriers has been reached
11 An existent persistent model was overwritten by the call to set_load_carrier

100 The requested load carriers were not detected in the scene
102 The detected load carrier has no points inside
300 A valid robot_pose was provided as argument but it is not required

6.3.3 TagDetect

6.3.3.1 Introduction

The TagDetect modules are optional on-board modules of the rc_reason_stack and require separate
licenses (Section 8.2) to be purchased. The licenses are included in every rc_reason_stack purchased
after 01.07.2020.

The TagDetect modules run on board the rc_reason_stack and allow the detection of 2D matrix codes
and tags. Currently, there are TagDetect modules for QR codes and AprilTags. The modules, further-
more, compute the position and orientation of each tag in the 3D camera coordinate system, making it
simple to manipulate a tag with a robot or to localize the camera with respect to a tag.

Note: These modules are not available in camera pipelines of type zivid or orbbec.

Note: These modules are pipeline specific. Changes to their settings or parameters only af-
fect the respective camera pipeline and have no influence on other pipelines running on the
rc_reason_stack.

Tag detection is made up of three steps:

1. Tag reading on the 2D image pair (see Tag reading, Section 6.3.3.2).

2. Estimation of the pose of each tag (see Pose estimation, Section 6.3.3.3).

3. Re-identification of previously seen tags (see Tag re-identification, Section 6.3.3.4).

In the following, the two supported tag types are described, followed by a comparison.

Roboception GmbH
Manual: rc_reason_stack

90 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

QR code

Fig. 6.6: Sample QR code

QR codes are two-dimensional matrix codes that contain arbitrary user-defined data. There is wide
support for decoding of QR codes on commodity hardware such as smartphones. Also, many online
and offline tools are available for the generation of such codes.

The “pixels” of a QR code are called modules. Appearance and resolution of QR codes change with
the amount of data they contain. While the special patterns in the three corners are always 7 modules
wide, the number of modules between them increases the more data is stored. The lowest-resolution
QR code is of size 21x21 modules and can contain up to 152 bits.

Even though many QR code generation tools support generation of specially designed QR codes (e.g.,
containing a logo, having round corners, or having dots as modules), a reliable detection of these tags
by the rc_reason_stack ’s TagDetect module is not guaranteed. The same holds for QR codes which
contain characters that are not part of regular ASCII.

AprilTag

Fig. 6.7: A 16h5 tag (left), a 36h11 tag (center) and a 41h12 tag (right). AprilTags consist of a mandatory
white (a) and black (b) border and a variable amount of data bits (c).

AprilTags are similar to QR codes. However, they are specifically designed for robust identification at
large distances. As for QR codes, we will call the tag pixels modules. Fig. 6.7 shows how AprilTags are
structured. They have a mandatory white and black border, each one module wide. The tag families
16h5, 25h9, 36h10 and 36h11 are surrounded by this border and carry a variable amount of data
modules in the center. For tag family 41h12, the black and white border is shifted towards the inside

Roboception GmbH
Manual: rc_reason_stack

91 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

and the data modules are in the center and also at the border of the tags. Other than QR codes,
AprilTags do not contain any user-defined information but are identified by a predefined family and ID.
The tags in Fig. 6.7 for example are of family 16h5, 36h11 and 41h12 have id 0, 11 and 0, respectively.
All supported families are shown in Table 6.23.

Table 6.23: AprilTag families
Family Number of tag IDs Recommended
16h5 30 -
25h9 35 o
36h10 2320 o
36h11 587 +
41h12 2115 +

For each family, the number before the “h” states the number of data modules contained in the tag: While
a 16h5 tag contains 16 (4x4) data modules ((c) in Fig. 6.7), a 36h11 tag contains 36 (6x6) modules and
a 41h12 tag contains 41 (3x3 inner + 4x8 outer) modules. The number behind the “h” refers to the
Hamming distance between two tags of the same family. The higher, the more robust is the detection,
but the fewer individual tag IDs are available for the same number of data modules (see Table 6.23).

The advantage of fewer modules (as for 16h5 compared to 36h11) is the lower resolution of the tag.
Hence, each tag module is larger and the tag therefore can be detected from a larger distance. This,
however, comes at a price: Firstly, fewer data modules lead to fewer individual tag IDs. Secondly, and
more importantly, detection robustness is significantly reduced due to a higher false positive rate; i.e,
tags are mixed up or nonexistent tags are detected in random image texture or noise. The 41h12 family
has its border shifted towards the inside, which gives it more data modules at a lower number of total
modules compared to the 36h11 family.

For these reasons we recommend using the 41h12 and 36h11 families and highly discourage the use of
the 16h5 family. The latter family should only be used if a large detection distance really is necessary for
an application. However, the maximum detection distance increases only by approximately 25% when
using a 16h5 tag instead of a 36h11 tag.

Pre-generated AprilTags can be downloaded from the website https://github.com/AprilRobotics/
apriltag-imgs. There, each family consists of multiple PNGs containing single tags. Each pixel in the
PNGs corresponds to one AprilTag module. When printing the tags of the families 36h11, 36h10, 25h9
and 16h5 special care must be taken to also include the white border around the tag that is contained
in the PNG (see (a) in Fig. 6.7). Moreover, all tags should be scaled to the desired printing size without
any interpolation, so that the sharp edges are preserved.

Comparison

Both QR codes and AprilTags have their up and down sides. While QR codes allow arbitrary user-
defined data to be stored, AprilTags have a pre-defined and limited set of tags. On the other hand,
AprilTags have a lower resolution and can therefore be detected at larger distances. Moreover, the
continuous white to black border in AprilTags allow for more precise pose estimation.

Note: If user-defined data is not required, AprilTags should be preferred over QR codes.

6.3.3.2 Tag reading

The first step in the tag detection pipeline is reading the tags on the 2D image pair. This step takes
most of the processing time and its precision is crucial for the precision of the resulting tag pose. To
control the speed of this step, the quality parameter can be set by the user. It results in a downscaling
of the image pair before reading the tags. High yields the largest maximum detection distance and
highest precision, but also the highest processing time. Low results in the smallest maximum detection
distance and lowest precision, but processing requires less than half of the time. Medium lies in between.

Roboception GmbH
Manual: rc_reason_stack

92 Rev: 26.01.4
Status: Jan 30, 2026

https://github.com/AprilRobotics/apriltag-imgs
https://github.com/AprilRobotics/apriltag-imgs

6.3. Detection & Measure modules

Please note that this quality parameter has no relation to the quality parameter of Stereo matching
module (Section 6.2.2).

Fig. 6.8: Visualization of module size 𝑠, size of a tag in modules 𝑟, and size of a tag in meters 𝑡 for
AprilTags (left and center) and QR codes (right)

The maximum detection distance 𝑧 at quality High can be approximated by using the following formulae,

𝑧 =
𝑓𝑠

𝑝
,

𝑠 =
𝑡

𝑟
,

where 𝑓 is the focal length (Section 6.1.1) in pixels and 𝑠 is the size of a module in meters. 𝑠 can easily
be calculated by the latter formula, where 𝑡 is the size of the tag in meters and 𝑟 is the width of the code
in modules (for AprilTags without the white border). Fig. 6.8 visualizes these variables. 𝑝 denotes the
number of image pixels per module required for detection. It is different for QR codes and AprilTags.
Moreover, it varies with the tag’s angle to the camera and illumination. Approximate values for robust
detection are:

• AprilTag: 𝑝 = 5 pixels/module

• QR code: 𝑝 = 6 pixels/module

The following tables give sample maximum distances for different situations, assuming a focal length of
1075 pixels and the parameter quality to be set to High.

Table 6.24: Maximum detection distance examples for AprilTags
with a width of 𝑡 = 4 cm

AprilTag family Tag width Maximum distance
36h11 (recommended) 8 modules 1.1 m
16h5 6 modules 1.4 m
41h12 (recommended) 5 modules 1.7 m

Table 6.25: Maximum detection distance examples for QR codes
with a width of 𝑡 = 8 cm

Tag width Maximum distance
29 modules 0.49 m
21 modules 0.70 m

Roboception GmbH
Manual: rc_reason_stack

93 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

6.3.3.3 Pose estimation

For each detected tag, the pose of this tag in the camera coordinate frame is estimated. A requirement
for pose estimation is that a tag is fully visible in the left and right camera image. The coordinate frame
of the tag is aligned as shown below.

Fig. 6.9: Coordinate frames of AprilTags (left and center) and QR codes (right)

The z-axis is pointing “into” the tag. Please note that for AprilTags, although having the white border
included in their definition, the coordinate system’s origin is placed exactly at the transition from the
white to the black border. Since AprilTags do not have an obvious orientation, the origin is defined as
the upper left corner in the orientation they are pre-generated in.

During pose estimation, the tag’s size is also estimated, while assuming the tag to be square. For QR
codes, the size covers the full tag. For AprilTags, the size covers only the part inside the border defined
by the transition from the black to the white border modules, hence ignoring the outermost white border
for the tag families 16h5, 25h9, 36h10 and 36h11.

The user can also specify the approximate size (±10%) of tags. All tags not matching this size constraint
are automatically filtered out. This information is further used to resolve ambiguities in pose estimation
that may arise if multiple tags with the same ID are visible in the left and right image and these tags are
aligned in parallel to the image rows.

Note: For best pose estimation results one should make sure to accurately print the tag and to attach
it to a rigid and as planar as possible surface. Any distortion of the tag or bump in the surface will
degrade the estimated pose.

Note: It is highly recommended to set the approximate size of a tag. Otherwise, if multiple tags with
the same ID are visible in the left or right image, pose estimation may compute a wrong pose if these
tags have the same orientation and are approximately aligned in parallel to the image rows. However,
even if the approximate size is not given, the TagDetect modules try to detect such situations and
filter out affected tags.

Below tables give approximate precisions of the estimated poses of AprilTags. We distinguish between
lateral precision (i.e., in x and y direction) and precision in z direction. It is assumed that quality is set
to High, that the camera’s viewing direction is parallel to the tag’s normal and that the images are well
exposed and do not suffer from motion blur. The size of a tag does not have a significant effect on the
lateral or z precision; however, in general, larger tags improve precision. With respect to precision of
the orientation especially around the x and y axes, larger tags clearly outperform smaller ones.

Roboception GmbH
Manual: rc_reason_stack

94 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

Table 6.26: Approximate orientation precision for AprilTag detec-
tions with High quality in an ideal scenario for different tag sizes

Distance 60 x 60 mm 120 x 120 mm
0.5 m 0.2° –
1.0 m 0.8° 0.3°
2.0 m 2.0° 0.8°
3.0 m – 1.8°

6.3.3.4 Tag re-identification

Each tag has an ID; for AprilTags it is the family plus tag ID, for QR codes it is the contained data.
However, these IDs are not unique, since the same tag may appear multiple times in a scene.

For distinction of these tags, the TagDetect modules also assign each detected tag a unique identifier.
To help the user identifying an identical tag over multiple detections, tag detection tries to re-identify
tags; if successful, a tag is assigned the same unique identifier again.

Tag re-identification compares the positions of the corners of the tags in the camera coordinate frame
to find identical tags. Tags are assumed identical if they did not or only slightly move in that frame.

By setting the max_corner_distance threshold, the user can specify how much a tag is allowed move in
the static coordinate frame between two detections to be considered identical. This parameter defines
the maximum distance between the corners of two tags, which is shown in Fig. 6.10. The Euclidean
distances of all four corresponding tag corners are computed in 3D. If none of these distances exceeds
the threshold, the tags are considered identical.

Fig. 6.10: Simplified visualization of tag re-identification. Euclidean distances between associated tag
corners in 3D are compared (red arrows).

After a number of tag detection runs, previously detected tag instances will be discarded if they are not
detected in the meantime. This can be configured by the parameter forget_after_n_detections.

6.3.3.5 Hand-eye calibration

In case the camera has been calibrated to a robot, the TagDetect module can automatically provide
poses in the robot coordinate frame. For the TagDetect node’s Services (Section 6.3.3.8), the frame of
the output poses can be controlled with the pose_frame argument.

Two different pose_frame values can be chosen:

1. Camera frame (camera). All poses provided by the module are in the camera frame.

2. External frame (external). All poses provided by the module are in the external frame, configured
by the user during the hand-eye calibration process. The module relies on the on-board Hand-eye

Roboception GmbH
Manual: rc_reason_stack

95 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

calibration module (Section 6.4.1) to retrieve the sensor mounting (static or robot mounted) and
the hand-eye transformation. If the sensor mounting is static, no further information is needed.
If the sensor is robot-mounted, the robot_pose is required to transform poses to and from the
external frame.

All pose_frame values that are not camera or external are rejected.

6.3.3.6 Parameters

There are two separate modules available for tag detection, one for detecting AprilTags and one for
QR codes, named rc_april_tag_detect and rc_qr_code_detect, respectively. Apart from the module
names they share the same interface definition.

In addition to the REST-API interface (Section 7.2), the TagDetect modules provide pages on the Web
GUI in the desired pipeline under Modules → AprilTag and Modules → QR Code, on which they can be
tried out and configured manually.

In the following, the parameters are listed based on the example of rc_qr_code_detect. They are the
same for rc_april_tag_detect.

This module offers the following run-time parameters:

Table 6.27: The rc_qr_code_detect module’s run-time parame-
ters

Name Type Min Max Default Description
detect_inverted_tags bool false true false Detect tags with black and white ex-

changed
forget_after_n_detections int32 1 1000 30 Number of detection runs after

which to forget about a previous tag
during tag re-identification

max_corner_distance float64 0.001 0.01 0.005 Maximum distance of correspond-
ing tag corners in meters during tag
re-identification

quality string - - High Quality of tag detection: [Low,
Medium, High]

use_cached_images bool false true false Use most recently received image
pair instead of waiting for a new pair

Via the REST-API, these parameters can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/<rc_qr_code_detect|rc_april_tag_

→˓detect>/parameters?<parameter-name>=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/parameters?
→˓<parameter-name>=<value>

6.3.3.7 Status values

The TagDetect modules reports the following status values:

Roboception GmbH
Manual: rc_reason_stack

96 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

Table 6.28: The rc_qr_code_detect and rc_april_tag_detect
module’s status values

Name Description
data_acquisition_time Time in seconds required to acquire image pair
last_timestamp_processed The timestamp of the last processed image pair
processing_time Processing time of the last detection in seconds
state The current state of the node

The reported state can take one of the following values.

Table 6.29: Possible states of the TagDetect modules
State name Description
IDLE The module is idle.
RUNNING The module is running and ready for tag detection.
FATAL A fatal error has occurred.

6.3.3.8 Services

The TagDetect modules implement a state machine for starting and stopping. The actual tag detection
can be triggered via detect.

The user can explore and call the rc_qr_code_detect and rc_april_tag_detect modules’ services,
e.g. for development and testing, using the REST-API interface (Section 7.2) or the rc_reason_stack
Web GUI (Section 7.1).

detect

Triggers a tag detection.

Details

Depending on the use_cached_images parameter, the module will use the latest
received image pair (if set to true) or wait for a new pair that is captured after the
service call was triggered (if set to false, this is the default). Even if set to true, tag
detection will never use one image pair twice.

It is recommended to call detect in state RUNNING only. It is also possible to be
called in state IDLE, resulting in an auto-start and stop of the module. This, how-
ever, has some drawbacks: First, the call will take considerably longer; second,
tag re-identification will not work. It is therefore highly recommended to manually
start the module before calling detect.

Tags might be omitted from the detect response due to several reasons, e.g., if
a tag is visible in only one of the cameras or if pose estimation did not succeed.
These filtered-out tags are noted in the log, which can be accessed as described
in Downloading log files (Section 8.3).

A visualization of the latest detection is shown on the Web GUI tabs of the TagDe-
tect modules. Please note that this visualization will only be shown after calling
the detection service at least once. On the Web GUI, one can also manually try
the detection by clicking the Detect button.

Due to changes in system time on the rc_reason_stack there might occur jumps of
timestamps, forward as well as backward. Forward jumps do not have an effect on
the TagDetect module. Backward jumps, however, invalidate already received im-
ages. Therefore, in case a backwards time jump is detected, an error of value -102
will be issued on the next detect call, also to inform the user that the timestamps
included in the response will jump back. This service can be called as follows.

Roboception GmbH
Manual: rc_reason_stack

97 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/<rc_qr_code_detect|rc_

→˓april_tag_detect>/services/detect

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/
→˓services/detect

Request

Optional arguments:

tags is the list of tag IDs that the TagDetect module should detect. For QR
codes, the ID is the contained data. For AprilTags, it is “<family>_<id>”,
so, e.g., for a tag of family 36h11 and ID 5, it is “36h11_5”. Naturally,
the AprilTag module can only be triggered for AprilTags, and the QR code
module only for QR codes.

The tags list can also be left empty. In that case, all detected tags will
be returned. This feature should be used only during development and
debugging of an application. Whenever possible, the concrete tag IDs
should be listed, on the one hand avoiding some false positives, on the
other hand speeding up tag detection by filtering tags not of interest.

For AprilTags, the user can not only specify concrete tags but also a com-
plete family by setting the ID to “<family>”, so, e.g., “36h11”. All tags of
this family will then be detected. It is further possible to specify multiple
complete tag families or a combination of concrete tags and complete tag
families; for instance, triggering for “36h11”, “25h9_3”, and “36h10” at the
same time.

In addition to the ID, the approximate size (±10%) of a tag can be set with
the size parameter. As described in Pose estimation (Section 6.3.3.3),
this information helps to resolve ambiguities in pose estimation that may
arise in certain situations and can be used to filter out tags not fulfilling
the given size constraint.

The tags list is OR-connected. All tags will be returned that match any of
id-size pair elements in the tags list.

pose_frame controls whether the poses of the detected tags are re-
turned in the camera or external frame, as detailed in Hand-eye calibra-
tion (Section 6.3.3.5). The default is camera.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"pose_frame": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

98 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

},
"tags": [
{

"id": "string",
"size": "float64"

}
]

}
}

Response

timestamp is set to the timestamp of the image pair the tag detection ran on.

tags contains all detected tags.

id is the ID of the tag, similar to id in the request.

instance_id is the random unique identifier of the tag assigned by tag re-
identification.

pose contains position and orientation. The orientation is in quaternion format.

pose_frame is set to the coordinate frame above pose refers to. It will either be
“camera” or “external”.

size will be set to the estimated tag size in meters.

return_code holds possible warnings or error codes.

The definition for the response with corresponding datatypes is:

{
"name": "detect",
"response": {
"return_code": {
"message": "string",
"value": "int16"

},
"tags": [

{
"id": "string",
"instance_id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"size": "float64",
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

],

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

99 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

start

Starts the module by transitioning from IDLE to RUNNING.

Details

When running, the module receives images from the stereo camera and is ready to perform
tag detections. To save computing resources, the module should only be running when
necessary.

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/<rc_qr_code_detect|rc_april_tag_

→˓detect>/services/start

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/services/start

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "start",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

stop

Stops the module by transitioning to IDLE.

Details

This transition can be performed from state RUNNING and FATAL. All tag re-
identification information is cleared during stopping.

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/<rc_qr_code_detect|rc_

→˓april_tag_detect>/services/stop

API version 1 (deprecated)

Roboception GmbH
Manual: rc_reason_stack

100 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/
→˓services/stop

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "stop",
"response": {
"accepted": "bool",
"current_state": "string"

}
}

restart

Restarts the module.

Details

If in RUNNING or FATAL, the module will be stopped and then started. If in IDLE, the
module will be started.

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/<rc_qr_code_detect|rc_

→˓april_tag_detect>/services/restart

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/
→˓services/restart

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "restart",
"response": {
"accepted": "bool",
"current_state": "string"

}
}

trigger_dump

Triggers dumping of the detection that corresponds to the given timestamp, or the latest
detection, if no timestamp is given. The dumps are saved to the connected USB drive.

Details

Roboception GmbH
Manual: rc_reason_stack

101 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/<rc_qr_code_detect|rc_april_tag_

→˓detect>/services/trigger_dump

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/services/
→˓trigger_dump

Request

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"comment": "string",
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "trigger_dump",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

reset_defaults

Resets all parameters of the module to its default values, as listed in above table.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/<rc_qr_code_detect|rc_april_tag_

→˓detect>/services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/services/reset_

→˓defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

Roboception GmbH
Manual: rc_reason_stack

102 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.3.3.9 Return codes

Each service response contains a return_code, which consists of a value plus an optional message.
A successful service returns with a return_code value of 0. Negative return_code values indicate
that the service failed. Positive return_code values indicate that the service succeeded with additional
information. The smaller value is selected in case a service has multiple return_code values, but all
messages are appended in the return_code message.

The following table contains a list of common return codes:

Code Description
0 Success
-1 An invalid argument was provided
-4 A timeout occurred while waiting for the image pair
-9 The license is not valid
-11 Sensor not connected, not supported or not ready
-12 Resource busy, e.g. when trigger_dump is called too frequently
-101 Internal error during tag detection
-102 There was a backwards jump of system time
-103 Internal error during tag pose estimation
-200 A fatal internal error occurred
200 Multiple warnings occurred; see list in message

201 The module was not in state RUNNING

6.3.4 ItemPick and ItemPickAI

6.3.4.1 Introduction

The ItemPick and ItemPickAI module provides an out-of-the-box perception solution for robotic pick-
and-place applications. ItemPick targets the detection of flat surfaces on unknown objects for picking
with a suction gripper. ItemPickAI uses neural networks to segment objects of a given object category
and computes oriented and object-centered grasp points for suction grippers.

In addition, the module offers:

• A dedicated page on the rc_reason_stack Web GUI (Section 7.1) for easy setup, configuration,
testing, and application tuning.

• The definition of regions of interest to select relevant volumes in the scene (see RoiDB, Section
6.5.2).

• A load carrier detection functionality for bin-picking applications (see LoadCarrier , Section 6.3.2),
to provide grasps for items inside a bin only.

• The definition of compartments inside a load carrier to provide grasps for specific volumes of the
bin only.

• Collision checking between the gripper and the load carrier and/or the point cloud.

Roboception GmbH
Manual: rc_reason_stack

103 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

• Support for static and robot-mounted cameras and optional integration with the Hand-eye calibra-
tion (Section 6.4.1) module, to provide grasps in the user-configured external reference frame.

• A quality value associated to each suggested grasp and related to the flatness of the grasping
surface.

• Selection of a sorting strategy to sort the returned grasps.

• 3D visualization of the detection results with grasp points and gripper animations in the Web GUI.

Note: This module is pipeline specific. Changes to its settings or parameters only affect the respec-
tive camera pipeline and have no influence on other pipelines running on the rc_reason_stack.

Note: In this chapter, cluster and surface are used as synonyms and identify a set of points (or
pixels) with defined geometrical properties.

The module is an optional on-board module of the rc_reason_stack and requires a separate ItemPick
or ItemPickAI license (Section 8.2) to be purchased.

6.3.4.2 Computation of grasps

The ItemPick and ItemPickAI module offers a service for computing grasps for suction grippers. The
gripper is defined by its suction surface length and width.

The ItemPick module identifies flat surfaces in the scene and supports flexible and/or deformable items.
The type of these item_models is called UNKNOWN since they don’t need to have a standard geometrical
shape. Optionally, the user can also specify the minimum and maximum size of the item.

For ItemPickAI, the grasps are computed in the center of the top surface of the segmented objects
(items) of the given object category. The object category is chosen by setting the type of item_models.
Currently the types BAG, CONSUMER_GOODS and SHEET_METAL are supported. BAG refers to deformable
and flexible bag-like objects with various filling levels, such as pouch packs, packets, bulk bags, ship-
ping bags, paper bags and sacks. CONSUMER_GOODS includes general packaged consumer products,
such as packaged food, beverages, toiletries, cleaning supplies, and other affordable household goods.
SHEET_METAL segments flat planar metal parts, e.g. laser-cut sheet metal.

Note: The first detection call with the BAG, CONSUMER_GOODS or SHEET_METAL item model takes longer
than the following detection calls, because the model has to be loaded into the ItemPickAI module
first.

Optionally, further information can be given to the modules in a grasp computation request:

• The ID of the load carrier which contains the items to be grasped.

• A compartment inside the load carrier where to compute grasps (see Load carrier compartments,
Section 6.5.1.3).

• The ID of the 3D region of interest where to search for the load carriers if a load carrier is set.
Otherwise, the ID of the 3D region of interest where to compute grasps.

• Collision detection information: The ID of the gripper to enable collision checking and optionally
a pre-grasp offset to define a pre-grasp position. Details on collision checking are given below in
CollisionCheck (Section 6.3.4.4).

A grasp provided by the ItemPick and ItemPickAI module represents the recommended pose of the
TCP (Tool Center Point) of the suction gripper. The grasp type is always set to SUCTION.

For ItemPick with an UNKNOWN item model, the computed grasp pose is the center of the biggest ellipse
that can be inscribed in each surface.

For ItemPickAI with the BAG, CONSUMER_GOODS or SHEET_METAL item model, the grasp position corre-
sponds to the center of the top surface of the segmented objects.

Roboception GmbH
Manual: rc_reason_stack

104 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

The grasp orientation is a right-handed coordinate system and is defined such that its z axis is normal to
the surface pointing inside the object at the grasp position and its x axis is directed along the maximum
elongation of the ellipse. Since the x axis can have two possible directions, the one that better fits
to the preferred TCP orientation (see Setting the preferred orientation of the TCP, Section 6.3.4.3) is
selected. If the run-time parameter allow_any_grasp_z_rotation is set to true, the x axis will not be
forced to be aligned with the maximum elongation of the graspable ellipse, but can have any rotation
around the z axis. In this case, the returned grasp will have the orientation that best fits to the preferred
TCP orientation and is collision free, if collision checking.

Fig. 6.11: Illustration of a suction grasp with coordinate system and ellipse representing the maximum
suction surface

Each grasp includes the dimensions of the maximum suction surface available, modelled as an el-
lipse of axes max_suction_surface_length and max_suction_surface_width. The user is enabled
to filter grasps by specifying the minimum suction surface required by the suction device in use. If
the run-time parameter allow_any_grasp_z_rotation is set to true, max_suction_surface_length and
max_suction_surface_width will be equal and correspond to the shortest axis of the largest graspable
ellipse.

Each grasp also includes a quality value, which gives an indication of the flatness of the grasping
surface. The quality value varies between 0 and 1, where higher numbers correspond to a flatter
reconstructed surface.

The grasp definition is complemented by a uuid (Universally Unique Identifier) and the timestamp of the
oldest image that was used to compute the grasp.

Grasp sorting is performed based on the selected sorting strategy. The following sorting strategies are
available and can be set in the Web GUI (Section 7.1) or using the set_sorting_strategies service
call:

• gravity: highest grasp points along the gravity direction are returned first,

• surface_area: grasp points with the largest surface area are returned first,

• direction: grasp points with the shortest distance along a defined direction vector in a given
pose_frame are returned first.

• distance_to_point: grasp points with the shortest or farthest (if farthest_first is true) distance
from a point in a given pose_frame are returned first.

If no sorting strategy is set or default sorting is chosen in the Web GUI, sorting is done based on a
combination of gravity and surface_area.

6.3.4.3 Setting the preferred orientation of the TCP

The ItemPick and ItemPickAI module determines the reachability of grasp points based on the preferred
orientation of the TCP. The preferred orientation can be set via the set_preferred_orientation service
or on the ItemPick or ItemPickAI page in the Web GUI. The resulting direction of the TCP’s z axis is
used to reject grasps which cannot be reached by the gripper. Furthermore, the preferred orientation is
used to select one grasp of several possible symmetries that is best reachable for the robot.

Roboception GmbH
Manual: rc_reason_stack

105 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

The preferred orientation can be set in the camera coordinate frame or in the external coordinate frame,
in case a hand-eye calibration is available. If the preferred orientation is specified in the external coor-
dinate frame and the sensor is robot mounted, the current robot pose has to be given to each object
detection call. If no preferred orientation is set, the orientation of the left camera (see Coordinate frames
in the rc_visard manual) will be used as the preferred orientation of the TCP.

6.3.4.4 Interaction with other modules

Internally, the ItemPick and ItemPickAI module depends on, and interacts with other on-board modules
as listed below.

Note: All changes and configuration updates to these modules will affect the performance of the
ItemPick and ItemPickAI module.

Camera and depth data

The ItemPick and ItemPickAI module makes internally use of the following data:

• Rectified images from the Camera module (rc_camera, Section 6.1);

• Disparity, error, and confidence images from the Stereo matching module (rc_stereomatching,
Section 6.2.2), in case a stereo camera is used

• Disparity, error, and confidence images from the Orbbec module (rc_orbbec, Section 6.2.4), in
case an Orbbec camera is used

• Disparity, error, and confidence images from the Zivid module (rc_zivid, Section 6.2.3), in case
a zivid camera is used

All processed images are guaranteed to be captured after the module trigger time.

IO and Projector Control

In case the rc_reason_stack is used in conjunction with an external random dot projector and the IO and
Projector Control module (rc_iocontrol, Section 6.4.4), it is recommended to connect the projector to
GPIO Out 1 and set the stereo-camera module’s acquisition mode to SingleFrameOut1 (see Stereo
matching parameters, Section 6.2.2.1), so that on each image acquisition trigger an image with and
without projector pattern is acquired.

Alternatively, the output mode for the GPIO output in use should be set to ExposureAlternateActive
(see Description of run-time parameters, Section 6.4.4.1).

In either case, the Auto Exposure Mode exp_auto_mode should be set to AdaptiveOut1 to optimize the
exposure of both images.

Hand-eye calibration

In case the camera has been calibrated to a robot, the ItemPick and ItemPickAI module can auto-
matically provide poses in the robot coordinate frame. For the ItemPick and ItemPickAI node’s Ser-
vices (Section 6.3.4.7), the frame of the output poses can be controlled with the pose_frame argument.

Two different pose_frame values can be chosen:

1. Camera frame (camera). All poses provided by the modules are in the camera frame, and no
prior knowledge about the pose of the camera in the environment is required. This means that the
configured regions of interest and load carriers move with the camera. It is the user’s responsibility
to update the configured poses if the camera frame moves (e.g. with a robot-mounted camera).

Roboception GmbH
Manual: rc_reason_stack

106 Rev: 26.01.4
Status: Jan 30, 2026

https://doc.rc-visard.com/latest/en/hardware_spec.html#sect-coordinate-frames

6.3. Detection & Measure modules

2. External frame (external). All poses provided by the modules are in the external frame, con-
figured by the user during the hand-eye calibration process. The module relies on the on-
board Hand-eye calibration module (Section 6.4.1) to retrieve the sensor mounting (static or robot
mounted) and the hand-eye transformation. If the mounting is static, no further information is
needed. If the sensor is robot-mounted, the robot_pose is required to transform poses to and
from the external frame.

Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.

All pose_frame values that are not camera or external are rejected.

If the sensor is robot-mounted, the current robot_pose has to be provided depending on the value of
pose_frame and the definition of the sorting direction or sorting point:

• If pose_frame is set to external, providing the robot pose is obligatory.

• If the sorting direction is defined in external, providing the robot pose is obligatory.

• If the distance-to-point sorting strategy is defined in external, providing the robot pose is obliga-
tory.

• In all other cases, providing the robot pose is optional.

LoadCarrier

The ItemPick and ItemPickAI module uses the load carrier detection functionality provided by the Load-
Carrier module (rc_load_carrier, Section 6.3.2), with the run-time parameters specified for this mod-
ule. However, only one load carrier will be returned and used in case multiple matching load carriers
could be found in the scene. In case multiple load carriers of the same type are visible, a 3D region of in-
terest should be set to ensure that always the same load carrier is used for the ItemPick and ItemPickAI
module.

CollisionCheck

Collision checking can be easily enabled for grasp computation of the ItemPick and ItemPickAI mod-
ule by passing the ID of the used gripper and optionally a pre-grasp offset to the compute_grasps or
compute_grasps_extended service call. The gripper has to be defined in the GripperDB module (see
Setting a gripper , Section 6.5.3.2) and details about collision checking are given in Collision checking
within other modules (Section 6.4.2.2).

If collision checking is enabled, only grasps which are collision free will be returned. However, the
visualization images on the ItemPick or ItemPickAI page of the Web GUI also show colliding grasp
points as black ellipses.

The CollisionCheck module’s run-time parameters affect the collision detection as described in Colli-
sionCheck Parameters (Section 6.4.2.3).

6.3.4.5 Parameters

ItemPick and ItemPickAI is represented by the rc_itempick node in the REST-API and are reached in
the Web GUI (Section 7.1) in the desired pipeline under Modules → ItemPick and Modules → Item-
PickAI. If both licenses, ItemPick and ItemPickAI, are present on a device, the ItemPick functionality
will be integrated into the ItemPickAI page of the Web GUI. The user can explore and configure the
rc_itempick module’s run-time parameters, e.g. for development and testing, using the Web GUI or
the REST-API interface
:(Section 7.2).

The user can explore and configure the rc_itempick module’s run-time parameters, e.g. for develop-
ment and testing, using the Web GUI or the REST-API interface (Section 7.2).

Roboception GmbH
Manual: rc_reason_stack

107 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

Parameter overview

This module offers the following run-time parameters:

Table 6.30: The rc_itempick module’s run-time parameters
Name Type Min Max Default Description
allow_any_grasp_pose bool false true false Whether the grasps are allowed to

be placed anywhere on the objects
where planar surfaces are detected

allow_any_grasp_z_-
rotation

bool false true false Whether the grasps are allowed to
have arbitrary rotation instead be-
ing aligned with the major axis of the
graspable ellipse

check_collisions_with_-
point_cloud

bool false true false Whether to check for collisions be-
tween gripper and the point cloud

cluster_max_curvature float64 0.005 0.5 0.11 Maximum curvature allowed within
one cluster. The smaller this value,
the more clusters will be split apart.

cluster_max_dimension float64 0.05 2.0 0.3 Maximum allowed diameter for a
cluster in meters. Clusters with a di-
ameter larger than this value are not
used for grasp computation.

clustering_discontinuity_-
factor

float64 0.1 5.0 1.0 Factor used to discriminate depth
discontinuities within a patch. The
smaller this value, the more clusters
will be split apart.

clustering_max_surface_-
rmse

float64 0.0005 0.01 0.004 Maximum root-mean-square error
(RMSE) in meters of points belong-
ing to a surface

clustering_patch_size int32 3 10 4 Size in pixels of the square patches
the depth map is subdivided into
during the first clustering step

grasp_filter_orientation_-
threshold

float64 0.0 180.0 45.0 Maximum allowed orientation
change between grasp and pre-
ferred orientation in degrees

max_grasps int32 1 100 5 Maximum number of provided
grasps

Description of run-time parameters

Each run-time parameter is represented by a row on the Web GUI’s ItemPick or ItemPickAI page. The
name in the Web GUI is given in brackets behind the parameter name and the parameters are listed in
the order they appear in the Web GUI:

max_grasps (Maximum Grasps)

sets the maximum number of provided grasps.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/parameters?max_grasps=
→˓<value>

API version 1 (deprecated)

Roboception GmbH
Manual: rc_reason_stack

108 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?max_grasps=<value>

cluster_max_dimension (Cluster Maximum Dimension, Only for ItemPick)

is the maximum allowed diameter for a cluster in meters. Clusters with a diameter
larger than this value are not used for grasp computation.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/parameters?cluster_max_

→˓dimension=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?cluster_max_dimension=<value>

cluster_max_curvature (Cluster Maximum Curvature, Only for ItemPick)

is the maximum curvature allowed within one cluster. The smaller this value, the
more clusters will be split apart.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/parameters?cluster_max_

→˓curvature=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?cluster_max_curvature=<value>

clustering_patch_size (Patch Size, Only for ItemPick)

is the size of the square patches the depth map is subdivided into during the first
clustering step in pixels.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/parameters?clustering_

→˓patch_size=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?clustering_patch_size=<value>

clustering_discontinuity_factor (Discontinuity Factor, Only for ItemPick)

is the factor used to discriminate depth discontinuities within a patch. The smaller
this value, the more clusters will be split apart.

Via the REST-API, this parameter can be set as follows.

API version 2

Roboception GmbH
Manual: rc_reason_stack

109 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/parameters?clustering_

→˓discontinuity_factor=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?clustering_discontinuity_factor=
→˓<value>

clustering_max_surface_rmse (Maximum Surface RMSE, Only for ItemPick)

is the maximum root-mean-square error (RMSE) in meters of points belonging to
a surface.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/parameters?clustering_

→˓max_surface_rmse=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?clustering_max_surface_rmse=
→˓<value>

grasp_filter_orientation_threshold (Grasp Orientation Threshold)

is the maximum deviation of the TCP’s z axis at the grasp point from the z axis of
the TCP’s preferred orientation in degrees. Only grasp points which are within this
threshold are returned. When set to zero, any deviations are valid.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/parameters?grasp_filter_

→˓orientation_threshold=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?grasp_filter_orientation_

→˓threshold=<value>

allow_any_grasp_z_rotation (Allow Any Grasp Z Rotation)

If set to true, the returned grasps are no longer forced to have their x axes
aligned with the maximum elongation of the graspable ellipse, but can have
any rotation around the z axis. The returned max_suction_surface_length and
max_suction_surface_width will be equal and correspond to the shortest diame-
ter of the largest graspable ellipse. This parameter enables the robot to get more
options for grasping objects, especially in scenes where collisions can occur. How-
ever, in case of UNKNOWN item models, since the grasp is no longer aligned with the
graspable ellipse, the correct orientation for placing the object must be determined
by other means. In case of ItemPickAI, the corresponding item’s pose can be used
to determine the correct grasp orientation for placement.

Via the REST-API, this parameter can be set as follows.

Roboception GmbH
Manual: rc_reason_stack

110 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/parameters?allow_any_

→˓grasp_z_rotation=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?allow_any_grasp_z_rotation=
→˓<value>

allow_any_grasp_pose (Allow Any Grasp Pose)

If set to true, the grasps are no longer forced to be centered on the object and aligned with
the major axis of the object, but may be located anywhere on the object where graspable
surfaces are found. For this, the segmented object surfaces are clustered using the clus-
tering parameters to find the graspable surfaces of an object. This parameter enables the
robot to get more options for grasping objects, especially on concave objects or objects with
surface discontinuities. This parameter has no effect when the UNKNOWN item model type is
used.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/parameters?allow_any_

→˓grasp_pose=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?allow_any_grasp_pose=<value>

check_collisions_with_point_cloud (Check Collisions with Point Cloud)

This parameter is only used when collision checking is enabled by passing
a gripper to the compute_grasps or compute_grasps_extended service call. If
check_collisions_with_point_cloud is set to true, all grasp points will be
checked for collisions between the gripper and a watertight version of the point
cloud, and only grasp points at which the gripper would not collide with this point
cloud will be returned.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/parameters?check_

→˓collisions_with_point_cloud=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?check_collisions_with_point_

→˓cloud=<value>

6.3.4.6 Status values

The rc_itempick node reports the following status values:

Roboception GmbH
Manual: rc_reason_stack

111 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

Table 6.31: The rc_itempick node’s status values
Name Description
data_acquisition_time Time in seconds required by the last active service to acquire

images
grasp_computation_time Processing time of the last grasp computation in seconds
last_timestamp_processed The timestamp of the last processed dataset
load_carrier_detection_time Processing time of the last load carrier detection in seconds
processing_time Processing time of the last detection (including load carrier

detection) in seconds
state The current state of the rc_itempick node

The reported state can take one of the following values.

Table 6.32: Possible states of the ItemPick and ItemPickAI module
State name Description
IDLE The module is idle.
RUNNING The module is running and ready for load carrier detection and grasp computation.
FATAL A fatal error has occurred.

6.3.4.7 Services

The user can explore and call the rc_itempick node’s services, e.g. for development and testing, using
the REST-API interface (Section 7.2) or the rc_reason_stack Web GUI (Section 7.1).

The ItemPick and ItemPickAI module offers the following services.

compute_grasps

Triggers the computation of grasping poses for a suction device as described in Computation
of grasps (Section 6.3.4.2).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/services/compute_grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/services/compute_grasps

Request

Required arguments:

pose_frame: see Hand-eye calibration (Section 6.3.4.4).

suction_surface_length: length of the suction device grasping surface.

suction_surface_width: width of the suction device grasping surface.

Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 6.3.4.4).

Optional arguments:

Roboception GmbH
Manual: rc_reason_stack

112 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

load_carrier_id: ID of the load carrier which contains the items to be grasped.

load_carrier_compartment: compartment inside the load carrier where to com-
pute grasps (see Load carrier compartments, Section 6.5.1.3).

region_of_interest_id: if load_carrier_id is set, ID of the 3D region of interest
where to search for the load carriers. Otherwise, ID of the 3D region of interest
where to compute grasps.

item_models: list of items to be detected. In case of ItemPick, currently only a
single item model of type UNKNOWN with minimum and maximum dimensions is
supported, with the minimum dimensions strictly smaller than the maximum di-
mensions.

In case of ItemPickAI, currently the item model types BAG, CONSUMER_GOODS and
SHEET_METAL are supported.

collision_detection: see Collision checking within other modules (Section
6.4.2.2).

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"item_models": [
{

"type": "string",
"unknown": {
"max_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"min_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
],
"load_carrier_compartment": {

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

113 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"suction_surface_length": "float64",
"suction_surface_width": "float64"

}
}

Response

load_carriers: list of detected load carriers.

grasps: sorted list of suction grasps.

items: sorted list of items corresponding to the returned grasps. In case of ItemPick, this list
is always empty.

In case of ItemPickAI, items contains the segmented items of type BAG, CONSUMER_GOODS or
SHEET_METAL with their poses corresponding to the center of the bounding box of the object’s
visible part and the dimensions of this bounding_box.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

{
"name": "compute_grasps",
"response": {
"grasps": [

{
"item_uuid": "string",
"max_suction_surface_length": "float64",
"max_suction_surface_width": "float64",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

114 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"z": "float64"
}

},
"pose_frame": "string",
"quality": "float64",
"timestamp": {
"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string"

}
],
"items": [
{

"bounding_box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"grasp_uuids": [
"string"

],
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"timestamp": {
"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string"

}
],
"load_carriers": [

{
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

115 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

compute_grasps_extended

Triggers the computation of grasping poses for a suction device in the same way as
compute_grasps, but returns the item information for each grasp directly instead of as a
separate list. This allows for easier parsing when item information is required for the grasps.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/services/compute_grasps_

→˓extended

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/services/compute_grasps_extended

Request

See compute_grasps service.

The definition for the request arguments with corresponding datatypes is:

Roboception GmbH
Manual: rc_reason_stack

116 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

{
"args": {

"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"item_models": [
{

"type": "string",
"unknown": {
"max_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"min_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
],
"load_carrier_compartment": {

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

117 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

},
"suction_surface_length": "float64",
"suction_surface_width": "float64"

}
}

Response

load_carriers: list of detected load carriers.

grasps: sorted list of suction grasps. Each grasp also contains the item information, if
available.

In case of ItemPickAI, each item contains the segmented item of type BAG, CONSUMER_GOODS
or SHEET_METAL with its pose corresponding to the center of the bounding box of the object’s
visible part and the dimensions of this bounding_box.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

{
"name": "compute_grasps_extended",
"response": {

"grasps": [
{

"item": {
"bounding_box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"type": "string",
"uuid": "string"

},
"max_suction_surface_length": "float64",
"max_suction_surface_width": "float64",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

118 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"z": "float64"
}

},
"pose_frame": "string",
"quality": "float64",
"timestamp": {
"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string"

}
],
"load_carriers": [

{
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

119 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

}
}

}

set_preferred_orientation

Persistently stores the preferred orientation of the TCP to compute the reachability of the
grasps, which is used for filtering and the grasps returned by the compute_grasps and
compute_grasps_extended service (see Setting the preferred orientation of the TCP, Section
6.3.4.3).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/services/set_preferred_

→˓orientation

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/services/set_preferred_orientation

Request

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string"

}
}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_preferred_orientation",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_preferred_orientation

Returns the preferred orientation of the TCP to compute the reachability of the
grasps, which is used for filtering the grasps returned by the compute_grasps and

Roboception GmbH
Manual: rc_reason_stack

120 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

compute_grasps_extended service (see Setting the preferred orientation of the TCP, Section
6.3.4.3).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/services/get_preferred_

→˓orientation

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/services/get_preferred_orientation

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_preferred_orientation",
"response": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_sorting_strategies

Persistently stores the sorting strategy for sorting the grasps returned by the compute_grasps
and compute_grasps_extended service (see Computation of grasps, Section 6.3.4.2).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/services/set_sorting_

→˓strategies

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/services/set_sorting_strategies

Request

Only one strategy may have a weight greater than 0. If all weight values are set to 0, the
module will use the default sorting strategy.

Roboception GmbH
Manual: rc_reason_stack

121 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

If the weight for direction is set, the vector must contain the direction vector and
pose_frame must be either camera or external.

If the weight for distance_to_point is set, point must contain the sorting point and
pose_frame must be either camera or external.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"direction": {
"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"distance_to_point": {
"farthest_first": "bool",
"point": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"weight": "float64"

},
"gravity": {
"weight": "float64"

},
"surface_area": {
"weight": "float64"

}
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_sorting_strategies",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_sorting_strategies

Returns the sorting strategy for sorting the grasps returned by the compute-grasps service
(see Computation of grasps, Section 6.3.4.2).

Details

This service can be called as follows.

API version 2

Roboception GmbH
Manual: rc_reason_stack

122 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/services/get_sorting_

→˓strategies

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/services/get_sorting_strategies

Request

This service has no arguments.

Response

All weight values are 0 when the module uses the default sorting strategy.

The definition for the response with corresponding datatypes is:

{
"name": "get_sorting_strategies",
"response": {
"direction": {

"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"distance_to_point": {
"farthest_first": "bool",
"point": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"weight": "float64"

},
"gravity": {
"weight": "float64"

},
"return_code": {
"message": "string",
"value": "int16"

},
"surface_area": {
"weight": "float64"

}
}

}

start

Starts the module. If the command is accepted, the module moves to state RUNNING.

Details

This service can be called as follows.

API version 2

Roboception GmbH
Manual: rc_reason_stack

123 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/services/start

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/services/start

Request

This service has no arguments.

Response

The current_state value in the service response may differ from RUNNING if the state tran-
sition is still in process when the service returns.

The definition for the response with corresponding datatypes is:

{
"name": "start",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

stop

Stops the module. If the command is accepted, the module moves to state IDLE.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/services/stop

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/services/stop

Request

This service has no arguments.

Response

The current_state value in the service response may differ from IDLE if the state transition
is still in process when the service returns.

The definition for the response with corresponding datatypes is:

{
"name": "stop",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

Roboception GmbH
Manual: rc_reason_stack

124 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

trigger_dump

Triggers dumping of the detection that corresponds to the given timestamp, or the latest
detection, if no timestamp is given. The dumps are saved to the connected USB drive.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/services/trigger_dump

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/services/trigger_dump

Request

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"comment": "string",
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "trigger_dump",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

reset_defaults

Resets all parameters of the module to its default values, as listed in above table. Also resets
sorting strategies.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/services/reset_defaults

Roboception GmbH
Manual: rc_reason_stack

125 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.3.4.8 Return codes

Each service response contains a return_code, which consists of a value plus an optional message.
A successful service returns with a return_code value of 0. Negative return_code values indicate
that the service failed. Positive return_code values indicate that the service succeeded with additional
information. The smaller value is selected in case a service has multiple return_code values, but all
messages are appended in the return_code message.

The following table contains a list of common codes:

Table 6.33: Return codes of the ItemPick and ItemPickAI services
Code Description

0 Success
-1 An invalid argument was provided
-3 An internal timeout occurred, e.g. during box detection if the given dimension range is too

large
-4 Data acquisition took longer than allowed
-8 The template has been deleted during detection

-10 New element could not be added as the maximum storage capacity of load carriers, regions
of interest or template has been exceeded

-11 Sensor not connected, not supported or not ready
-12 Resource busy, e.g. when trigger_dump is called too frequently
-200 Fatal internal error
-301 More than one item model provided to the compute_grasps or compute_grasps_extended

service
10 The maximum storage capacity of load carriers, regions of interest or templates has been

reached
11 An existent persistent model was overwritten by the call to set_load_carrier or

set_region_of_interest

100 The requested load carriers were not detected in the scene
101 No valid surfaces or grasps were found in the scene
102 The detected load carrier is empty
103 All computed grasps are in collision
112 Rejected detections of one or more clusters, because min_cluster_coverage was not

reached
300 A valid robot_pose was provided as argument but it is not required
999 Additional hints for application development

Roboception GmbH
Manual: rc_reason_stack

126 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

6.3.5 BoxPick

6.3.5.1 Introduction

The BoxPick module provides an out-of-the-box perception solution for robotic pick-and-place applica-
tions. It detects rectangular surfaces and determines their position, orientation and size for grasping.
With the +Match extension, BoxPick can be used to detect textured rectangles with consistent orienta-
tions, such as printed product packaging, labels, brochures or books.

In addition, the module offers:

• A dedicated page on the rc_reason_stack Web GUI (Section 7.1) for easy setup, configuration,
testing, and application tuning.

• The definition of regions of interest to select relevant volumes in the scene (see RoiDB, Section
6.5.2).

• A load carrier detection functionality for bin-picking applications (see LoadCarrier , Section 6.3.2),
to provide grasps for items inside a bin only.

• The definition of compartments inside a load carrier to provide grasps for specific volumes of the
bin only.

• Collision checking between the gripper and the load carrier and/or the point cloud.

• Support for static and robot-mounted cameras and optional integration with the Hand-eye calibra-
tion (Section 6.4.1) module, to provide grasps in the user-configured external reference frame.

• A quality value associated to each suggested grasp and related to the flatness of the grasping
surface.

• Selection of a sorting strategy to sort the returned grasps.

• 3D visualization of the detection results with grasp points and gripper animations in the Web GUI.

Note: This module is pipeline specific. Changes to its settings or parameters only affect the respec-
tive camera pipeline and have no influence on other pipelines running on the rc_reason_stack.

Note: In this chapter, cluster and surface are used as synonyms and identify a set of points (or
pixels) with defined geometrical properties.

The module is an optional on-board module of the rc_reason_stack and requires a separate BoxPick
license (Section 8.2) to be purchased. The +Match extension requires an extra license.

6.3.5.2 Detection of items

There are two different types of models for the rectangles to be detected by the BoxPick module.

Per default, BoxPick only supports item_models of type RECTANGLE. With the +Match extension, also
item models of type TEXTURED_BOX can be detected. The detection of the different item model types is
described below.

Optionally, further information can be given to the BoxPick module:

• The ID of the load carrier which contains the items to be detected.

• A compartment inside the load carrier where to detect items.

• The ID of the region of interest where to search for the load carriers if a load carrier is set. Other-
wise, the ID of the region of interest where to search for the items.

• The current robot pose in case the camera is mounted on the robot and the chosen coordinate
frame for the poses is external or the chosen region of interest is defined in the external frame.

Roboception GmbH
Manual: rc_reason_stack

127 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

The returned pose of a detected item is the pose of the center of the detected rectangle in the desired
reference frame (pose_frame), with its z axis pointing towards the camera and the x axis aligned with the
long side of the item. This pose has a 180° rotation ambiguity around the z axis, which can be resolved
by using the +Match extension with a TEXTURED_BOX item model. Each detected item includes a uuid
(Universally Unique Identifier) and the timestamp of the oldest image that was used to detect it.

Detection of items of type RECTANGLE

BoxPick supports multiple item_models of type RECTANGLE. Each item model is defined by its minimum
and maximum size, with the minimum dimensions strictly smaller than the maximum dimensions. The
dimensions should be given fairly accurately to avoid misdetections, while still considering a certain
tolerance to account for possible production variations and measurement inaccuracies.

The detection of the rectangles runs in several steps. First, the point cloud is segmented into preferably
plane clusters. Then, straight line segments are detected in the 2D images and projected onto the
corresponding clusters. The clusters and the detected lines are visualized in the “Intermediate Result”
visualization on the Web GUI’s BoxPick page. Finally, for each cluster, the set of rectangles best fitting
to the detected line segments is extracted.

Detection of items of type TEXTURED_BOX (BoxPick+Match)

With the +Match extension, BoxPick additionally supports item_models of type TEXTURED_BOX. When
this item model type is used, only one item model can be given for each request.

The TEXTURED_BOX item model type should be used to detect multiple rectangles that have the same
texture, i.e. the same look or print, such as printed product packaging, labels, brochures or books. It
is required that for all objects the texture is at the same position with respect to the object geometry.
Furthermore, the texture should not be repetitive.

A TEXTURED_BOX item is defined by the item’s exact dimensions x, y and z (only z is allowed to be
0) with a tolerance dimensions_tolerance_m that indicates, how much the detected dimensions are
allowed to deviate from the given dimensions. By default, a tolerance of 0.01 m is assumed. Fur-
thermore, a template_id must be given, which will be used to refer to the specified dimensions and
the textures of the detected rectangles. Additionally, the maximum possible deformation of the items
max_deformation_m can be given in meters (default 0.004 m), to account for rigid or more flexible ob-
jects.

If a template_id is used for the first time, BoxPick will run the detection of rectangles as for the item
model type RECTANGLE, and use the given dimensions and tolerance to specify the dimensions range.
If the z dimension is given in addition to x and y, rectangles with all possible combinations of the three
dimensions will be detected. From the detected rectangles, so-called views are created, which contain
the shape and the image intensity values of the rectangles, and are stored in a newly created template
with the given template_id. The views are created iteratively: Starting from the detected rectangle with
the highest score, a view is created and then used to detect more rectangles with the same texture.
Then, all remaining clusters are used to detect further rectangles by the given dimensions range and
again a view is created from the best rectangle and used for further detections. Each template can store
up to 10 different views, for example corresponding to different types of the same product packaging.
Each view will be assigned a unique ID (view_uuid) and all rectangle items with a matching texture
will be assigned the same view_uuid. That also means that all items with the same view_uuid will
have consistent orientations, because the orientation of each item is aligned with its texture. The views
can be displayed, deleted and the orientation of each view can be set via the Web GUI (Section 7.1)
by clicking on the template or its edit symbol in the template list. Each detected item contains a field
view_pose_set indicating whether the orientation of the item’s view was explicitly set or is still unset at
its original random state, which has a 180° ambiguity. Additionally, a user-defined name can be set for
each view, that is returned along with the view_uuid for all items and allows an easier identification of a
specific view. The type of a returned item with a view_uuid will be TEXTURED_RECTANGLE.

If the template with the given template_id already exists, the existing views will be used to detect
rectangles based on their texture. If additional rectangles are found with matching dimensions, but

Roboception GmbH
Manual: rc_reason_stack

128 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

different texture, new views will be generated and added to the template. When the maximum number
of views is reached, views that are matched only rarely will be deleted so that newly generated views can
be added to the template and the template is kept up-to-date. To prevent a template from being updated,
automatic view updating can be disabled and enabled for each template in the Web GUI by clicking
on the template or the edit symbol in the template list. The dimension tolerance and the maximum
deformation can also be changed there for each template. The maximum deformation determines
the tolerance for the texture matching, representing possible shifts within the texture, e.g. caused by
deformations of the object surface. For rigid objects the max_deformation_m should be set to a low value
in meters to ensure accurate matching.

The template’s dimensions can only be specified when creating a new template. Once the template is
generated, the dimensions cannot be changed and do not need to be given in the detect request. If
the dimensions are still given in the request, they must match the existing dimensions in the template.
However, the dimensions_tolerance_m and max_deformation_m can be set differently in every detect
request and their values will also be updated in the stored template.

6.3.5.3 Computation of grasps

The BoxPick module offers a service for computing grasps for suction grippers. The gripper is defined
by its suction surface length and width.

The grasps are computed on the detected rectangular items (see Detection of items, Section 6.3.5.2).

Optionally, further information can be given to the module in a grasp computation request:

• The ID of the load carrier which contains the items to be grasped.

• A compartment inside the load carrier where to compute grasps (see Load carrier compartments,
Section 6.5.1.3).

• The ID of the 3D region of interest where to search for the load carriers if a load carrier is set.
Otherwise, the ID of the 3D region of interest where to compute grasps.

• Collision detection information: The ID of the gripper to enable collision checking and optionally
a pre-grasp offset to define a pre-grasp position. Details on collision checking are given below in
CollisionCheck (Section 6.3.5.5).

A grasp provided by the BoxPick module represents the recommended pose of the TCP (Tool Center
Point) of the suction gripper. The grasp type is always set to SUCTION. The computed grasp pose
is the center of the biggest ellipse that can be inscribed in each surface. The grasp orientation is a
right-handed coordinate system and is defined such that its z axis is normal to the surface pointing
inside the object at the grasp position and its x axis is directed along the maximum elongation of the
ellipse. Since the x axis can have two possible directions, the one that better fits to the preferred TCP
orientation (see Setting the preferred orientation of the TCP, Section 6.3.5.4) is selected. If the run-time
parameter allow_any_grasp_z_rotation is set to true, the x axis will not be forced to be aligned with
the maximum elongation of the graspable ellipse, but can have any rotation around the z axis. In this
case, the returned grasp will have the orientation that best fits to the preferred TCP orientation and is
collision free, if collision checking is enabled.

Roboception GmbH
Manual: rc_reason_stack

129 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

Fig. 6.12: Illustration of a suction grasp with coordinate system and ellipse representing the maximum
suction surface

Each grasp includes the dimensions of the maximum suction surface available, modelled as an el-
lipse of axes max_suction_surface_length and max_suction_surface_width. The user is enabled
to filter grasps by specifying the minimum suction surface required by the suction device in use. If
the run-time parameter allow_any_grasp_z_rotation is set to true, max_suction_surface_length and
max_suction_surface_width will be equal and correspond to the shortest axis of the largest graspable
ellipse.

In the BoxPick module, the grasp position corresponds to the center of the detected rectangle. When
BoxPick is called with item models of type RECTANGLE, the dimensions of the maximum suction surface
available matches the estimated rectangle dimensions. In this case, detected rectangles with missing
data or occlusions by other objects for more than 15% of their surface do not get an associated grasp.

When BoxPick is called with item models of type TEXTURED_BOX, grasps can also be computed on partly
occluded boxes. The maximum suction surface available matches the free surface that is not occluded
by other clusters.

Each grasp also includes a quality value, which gives an indication of the flatness of the grasping
surface. The quality value varies between 0 and 1, where higher numbers correspond to a flatter
reconstructed surface.

The grasp definition is complemented by a uuid (Universally Unique Identifier) and the timestamp of the
oldest image that was used to compute the grasp.

Grasp sorting is performed based on the selected sorting strategy. The following sorting strategies are
available and can be set in the Web GUI (Section 7.1) or using the set_sorting_strategies service
call:

• gravity: highest grasp points along the gravity direction are returned first,

• surface_area: grasp points with the largest surface area are returned first,

• direction: grasp points with the shortest distance along a defined direction vector in a given
pose_frame are returned first.

• distance_to_point: grasp points with the shortest or farthest (if farthest_first is true) distance
from a point in a given pose_frame are returned first.

If no sorting strategy is set or default sorting is chosen in the Web GUI, sorting is done based on a
combination of gravity and surface_area.

6.3.5.4 Setting the preferred orientation of the TCP

The BoxPick module determines the reachability of grasp points based on the preferred orientation of
the TCP. The preferred orientation can be set via the set_preferred_orientation service or on the
BoxPick page in the Web GUI. The resulting direction of the TCP’s z axis is used to reject grasps which
cannot be reached by the gripper. Furthermore, the preferred orientation is used to select one grasp of
several possible symmetries that is best reachable for the robot.

Roboception GmbH
Manual: rc_reason_stack

130 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

The preferred orientation can be set in the camera coordinate frame or in the external coordinate frame,
in case a hand-eye calibration is available. If the preferred orientation is specified in the external coor-
dinate frame and the sensor is robot mounted, the current robot pose has to be given to each object
detection call. If no preferred orientation is set, the orientation of the left camera (see Coordinate frames
in the rc_visard manual) will be used as the preferred orientation of the TCP.used.

6.3.5.5 Interaction with other modules

Internally, the BoxPick module depends on, and interacts with other on-board modules as listed below.

Note: All changes and configuration updates to these modules will affect the performance of the
BoxPick module.

Camera and depth data

The BoxPick module makes internally use of the following data:

• Rectified images from the Camera module (rc_camera, Section 6.1)

• Disparity, error, and confidence images from the Stereo matching module (rc_stereomatching,
Section 6.2.2), in case a stereo camera is used

• Disparity, error, and confidence images from the Orbbec module (rc_orbbec, Section 6.2.4), in
case an Orbbec camera is used

• Disparity, error, and confidence images from the Zivid module (rc_zivid, Section 6.2.3), in case
a zivid camera is used

All processed images are guaranteed to be captured after the module trigger time.

IO and Projector Control

In case the rc_reason_stack is used in conjunction with an external random dot projector and the IO and
Projector Control module (rc_iocontrol, Section 6.4.4), it is recommended to connect the projector to
GPIO Out 1 and set the stereo-camera module’s acquisition mode to SingleFrameOut1 (see Stereo
matching parameters, Section 6.2.2.1), so that on each image acquisition trigger an image with and
without projector pattern is acquired.

Alternatively, the output mode for the GPIO output in use should be set to ExposureAlternateActive
(see Description of run-time parameters, Section 6.4.4.1).

In either case, the Auto Exposure Mode exp_auto_mode should be set to AdaptiveOut1 to optimize the
exposure of both images.

Hand-eye calibration

In case the camera has been calibrated to a robot, the BoxPick module can automatically provide poses
in the robot coordinate frame. For the BoxPick node’s Services (Section 6.3.5.8), the frame of the output
poses can be controlled with the pose_frame argument.

Two different pose_frame values can be chosen:

1. Camera frame (camera). All poses provided by the modules are in the camera frame, and no
prior knowledge about the pose of the camera in the environment is required. This means that the
configured regions of interest and load carriers move with the camera. It is the user’s responsibility
to update the configured poses if the camera frame moves (e.g. with a robot-mounted camera).

Roboception GmbH
Manual: rc_reason_stack

131 Rev: 26.01.4
Status: Jan 30, 2026

https://doc.rc-visard.com/latest/en/hardware_spec.html#sect-coordinate-frames

6.3. Detection & Measure modules

2. External frame (external). All poses provided by the modules are in the external frame, con-
figured by the user during the hand-eye calibration process. The module relies on the on-
board Hand-eye calibration module (Section 6.4.1) to retrieve the sensor mounting (static or robot
mounted) and the hand-eye transformation. If the mounting is static, no further information is
needed. If the sensor is robot-mounted, the robot_pose is required to transform poses to and
from the external frame.

Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.

All pose_frame values that are not camera or external are rejected.

If the sensor is robot-mounted, the current robot_pose has to be provided depending on the value of
pose_frame and the definition of the sorting direction or sorting point:

• If pose_frame is set to external, providing the robot pose is obligatory.

• If the sorting direction is defined in external, providing the robot pose is obligatory.

• If the distance-to-point sorting strategy is defined in external, providing the robot pose is obliga-
tory.

• In all other cases, providing the robot pose is optional.

LoadCarrier

The BoxPick module uses the load carrier detection functionality provided by the LoadCarrier module
(rc_load_carrier, Section 6.3.2), with the run-time parameters specified for this module. However,
only one load carrier will be returned and used in case multiple matching load carriers could be found
in the scene. In case multiple load carriers of the same type are visible, a 3D region of interest should
be set to ensure that always the same load carrier is used for the BoxPick module.

The load carrier is used to filter false detections when BoxPick is triggered with an item model of type
TEXTURED_BOX and all three dimensions x, y, z are given. In this case, 3D boxes are created internally by
adding the missing dimensions to the detected rectangles and only detections corresponding to boxes
which are fully inside the detected load carrier are returned.

CollisionCheck

Collision checking can be easily enabled for grasp computation of the BoxPick module by pass-
ing the ID of the used gripper and optionally a pre-grasp offset to the compute_grasps or
compute_grasps_extended service call. The gripper has to be defined in the GripperDB module (see
Setting a gripper , Section 6.5.3.2) and details about collision checking are given in Collision checking
within other modules (Section 6.4.2.2).

If collision checking is enabled, only grasps which are collision free will be returned. However, the
visualization images on the BoxPick page of the Web GUI also show colliding grasp points as black
ellipses.

The CollisionCheck module’s run-time parameters affect the collision detection as described in Colli-
sionCheck Parameters (Section 6.4.2.3).

6.3.5.6 Parameters

The BoxPick module is called rc_boxpick in the REST-API and is represented in the Web GUI (Section
7.1) in the desired pipeline under Modules → BoxPick. The user can explore and configure the
rc_boxpick module’s run-time parameters, e.g. for development and testing, using the Web GUI or
the REST-API interface (Section 7.2).

Roboception GmbH
Manual: rc_reason_stack

132 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

Parameter overview

Note: The default values in the parameter table below show the values of the rc_visard. The values
can be different for other sensors.

This module offers the following run-time parameters:

Table 6.34: The rc_boxpick module’s run-time parameters
Name Type Min Max Default Description
allow_any_grasp_z_-
rotation

bool false true false Whether the grasps are allowed to
have arbitrary rotation instead be-
ing aligned with the major axis of the
graspable ellipse

allow_untextured_-
detections

bool false true false Whether to return also untextured
detections in case a textured box
was given

check_collisions_with_-
point_cloud

bool false true false Whether to check for collisions be-
tween gripper and the point cloud

cluster_max_curvature float64 0.005 0.5 0.11 Maximum curvature allowed within
one cluster. The smaller this value,
the more clusters will be split apart.

clustering_discontinuity_-
factor

float64 0.1 5.0 1.0 Factor used to discriminate depth
discontinuities within a patch. The
smaller this value, the more clusters
will be split apart.

clustering_max_surface_-
rmse

float64 0.0005 0.01 0.004 Maximum root-mean-square error
(RMSE) in meters of points belong-
ing to a surface

grasp_filter_orientation_-
threshold

float64 0.0 180.0 45.0 Maximum allowed orientation
change between grasp and pre-
ferred orientation in degrees

line_sensitivity float64 0.1 1.0 0.1 Sensitivity of the line detector
manual_line_sensitivity bool false true false Indicates whether the user-defined

line sensitivity should be used or the
automatic one

max_grasps int32 1 100 5 Maximum number of provided
grasps

min_cluster_coverage float64 0.0 0.99 0.0 Gives the minimal ratio of points per
cluster that must be covered with
detected items.

mode string - - Unconstrained Mode of the rectangle detection:
[Unconstrained, PackedGridLayout,
PackedLayers]

prefer_splits bool false true false Indicates whether rectangles are
split into smaller ones when possi-
ble

Description of run-time parameters

Each run-time parameter is represented by a row on the Web GUI’s BoxPick page. The name in the
Web GUI is given in brackets behind the parameter name and the parameters are listed in the order
they appear in the Web GUI:

Roboception GmbH
Manual: rc_reason_stack

133 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

max_grasps (Maximum Grasps)

sets the maximum number of provided grasps.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?max_grasps=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?max_grasps=<value>

cluster_max_curvature (Cluster Maximum Curvature)

is the maximum curvature allowed within one cluster. The smaller this value, the
more clusters will be split apart.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?cluster_max_

→˓curvature=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?cluster_max_curvature=<value>

clustering_discontinuity_factor (Discontinuity Factor)

is the factor used to discriminate depth discontinuities within a patch. The smaller
this value, the more clusters will be split apart.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?clustering_

→˓discontinuity_factor=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?clustering_discontinuity_factor=
→˓<value>

clustering_max_surface_rmse (Maximum Surface RMSE)

is the maximum root-mean-square error (RMSE) in meters of points belonging to
a surface.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?clustering_

→˓max_surface_rmse=<value>

Roboception GmbH
Manual: rc_reason_stack

134 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?clustering_max_surface_rmse=
→˓<value>

mode (Mode)

determines the mode of the rectangle detection. Possible values are
Unconstrained, PackedGridLayout and PackedLayers. In PackedGridLayout
mode, rectangles of a cluster are detected in a dense grid pattern. In
PackedLayers mode, boxes are assumed to form layers and box detection will
start searching for items at the cluster corners. Use this mode in de-palletizing ap-
plications. In Unconstrained mode (default), rectangles are detected without pos-
ing any constraints on their relative locations or their positions in the segmented
cluster. Fig. 6.13 illustrates the modes for different scenarios.

Fig. 6.13: Illustration of appropriate BoxPick modes for different scenes. Modes marked with yellow are
applicable but not recommended for the corresponding scene. The gray areas indicate the rectangles
to be detected.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?mode=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?mode=<value>

Roboception GmbH
Manual: rc_reason_stack

135 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

manual_line_sensitivity (Manual Line Sensitivity)

determines whether the user-defined line sensitivity should be used to extract the
lines for rectangle detection. If this parameter is set to true, the user-defined
line_sensitivity value will be used. If this parameter is set to false, automatic
line sensitivity will be used. This parameter should be set to true when automatic
line sensitivity does not give enough lines at the box boundaries so that boxes can-
not be detected. The detected line segments are visualized in the “Intermediate
Result” visualization on the Web GUI’s BoxPick page.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?manual_line_

→˓sensitivity=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?manual_line_sensitivity=<value>

line_sensitivity (Line Sensitivity)

determines the line sensitivity for extracting the lines for rectangle detection, if
the parameter manual_line_sensitivity is set to true. Otherwise, the value of
this parameter has no effect on the rectangle detection. Higher values give more
line segments, but also increase the runtime of the box detection. This parame-
ter should be increased when boxes cannot be detected because their boundary
edges are not detected. The detected line segments are visualized in the “Inter-
mediate Result” visualization on the Web GUI’s BoxPick page.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?line_

→˓sensitivity=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?line_sensitivity=<value>

prefer_splits (Prefer Splits)

determines whether rectangles should be split into smaller ones if the smaller ones
also match the given item models. This parameter should be set to true for packed
box layouts in which the given item models would also match a rectangle of the
size of two adjoining boxes. If this parameter is set to false, the larger rectangles
will be preferred in these cases.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?prefer_splits=
→˓<value>

API version 1 (deprecated)

Roboception GmbH
Manual: rc_reason_stack

136 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?prefer_splits=<value>

min_cluster_coverage (Minimum Cluster Coverage)

determines which ratio of each segmented cluster must be covered with rectangle
detections to consider the detections to be valid. If the minimum cluster coverage
is not reached for a cluster, no rectangle detections will be returned for this cluster
and a warning will be given. This parameter should be used to verify that all items
on a layer in a de-palletizing scenario are detected.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?min_cluster_

→˓coverage=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?min_cluster_coverage=<value>

allow_untextured_detections (Only for BoxPick+Match, Allow Untextured Detections)

enables returning all rectangles matching the given template dimensions, even
when they cannot be matched to an existing view or when they do not have enough
texture to create a new view from them. This parameter is only used when item
models of type TEXTURED_BOX are detected. Disabling this parameter leads to
faster detections when used with a template for which the automatic view updating
is disabled.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?allow_

→˓untextured_detections=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?allow_untextured_detections=
→˓<value>

grasp_filter_orientation_threshold (Grasp Orientation Threshold)

is the maximum deviation of the TCP’s z axis at the grasp point from the z axis of
the TCP’s preferred orientation in degrees. Only grasp points which are within this
threshold are returned. When set to zero, any deviations are valid.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?grasp_filter_

→˓orientation_threshold=<value>

API version 1 (deprecated)

Roboception GmbH
Manual: rc_reason_stack

137 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?grasp_filter_orientation_

→˓threshold=<value>

allow_any_grasp_z_rotation (Allow Any Grasp Z Rotation)

If set to true, the returned grasps are no longer forced to have their x axes
aligned with the maximum elongation of the graspable ellipse, but can have
any rotation around the z axis. The returned max_suction_surface_length and
max_suction_surface_width will be equal and correspond to the shortest diam-
eter of the largest graspable ellipse. This parameter enables the robot to get
more options for grasping objects, especially in scenes where collisions can oc-
cur. However, since the grasp is no longer aligned with the graspable ellipse, the
correct orientation for placing the object must be determined from the correspond-
ing item’s pose.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?allow_any_

→˓grasp_z_rotation=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?allow_any_grasp_z_rotation=<value>

check_collisions_with_point_cloud (Check Collisions with Point Cloud)

This parameter is only used when collision checking is enabled by passing
a gripper to the compute_grasps or compute_grasps_extended service call. If
check_collisions_with_point_cloud is set to true, all grasp points will be
checked for collisions between the gripper and a watertight version of the point
cloud, and only grasp points at which the gripper would not collide with this point
cloud will be returned.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?check_

→˓collisions_with_point_cloud=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?check_collisions_with_point_cloud=
→˓<value>

6.3.5.7 Status values

The rc_boxpick module reports the following status values:

Roboception GmbH
Manual: rc_reason_stack

138 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

Table 6.35: The rc_boxpick module’s status values
Name Description
data_acquisition_time Time in seconds required by the last active service to acquire

images
grasp_computation_time Processing time of the last grasp computation in seconds
last_timestamp_processed The timestamp of the last processed dataset
load_carrier_detection_time Processing time of the last load carrier detection in seconds
processing_time Processing time of the last detection (including load carrier

detection) in seconds
state The current state of the rc_boxpick node

The reported state can take one of the following values.

Table 6.36: Possible states of the BoxPick module
State name Description
IDLE The module is idle.
RUNNING The module is running and ready for load carrier detection and grasp computation.
FATAL A fatal error has occurred.

6.3.5.8 Services

The user can explore and call the rc_boxpick module’s services, e.g. for development and testing,
using the REST-API interface (Section 7.2) or the rc_reason_stack Web GUI (Section 7.1).

The BoxPick module offers the following services.

detect_items

Triggers the detection of rectangles as described in Detection of items (Section 6.3.5.2).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/services/detect_items

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/detect_items

Request

Required arguments:

pose_frame: see Hand-eye calibration (Section 6.3.5.5).

item_models: list of item models to be detected. The type of the item model
must be RECTANGLE or TEXTURED_BOX. For type RECTANGLE, rectangle must be
filled, while for TEXTURED_BOX, textured_box must be filled. See Detection of
items (Section 6.3.5.2) for a detailed description of the item model types.

Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 6.3.5.5).

Optional arguments:

Roboception GmbH
Manual: rc_reason_stack

139 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

load_carrier_id: ID of the load carrier which contains the items to be detected.

load_carrier_compartment: compartment inside the load carrier where to detect
items (see Load carrier compartments, Section 6.5.1.3).

region_of_interest_id: if load_carrier_id is set, ID of the 3D region of interest
where to search for the load carriers. Otherwise, ID of the 3D region of interest
where to search for the items.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"item_models": [
{

"rectangle": {
"max_dimensions": {
"x": "float64",
"y": "float64"

},
"min_dimensions": {
"x": "float64",
"y": "float64"

}
},
"textured_box": {
"dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"dimensions_tolerance_m": "float64",
"max_deformation_m": "float64",
"template_id": "string"

},
"type": "string"

}
],
"load_carrier_compartment": {

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

140 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

load_carriers: list of detected load carriers.

items: list of detected rectangles.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

{
"name": "detect_items",
"response": {
"items": [

{
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rectangle": {
"x": "float64",
"y": "float64"

},
"template_id": "string",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string",
"view_name": "string",
"view_pose_set": "bool",
"view_uuid": "string"

}
],
"load_carriers": [

{

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

141 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"height_open_side": "float64",
"id": "string",
"inner_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

compute_grasps

Triggers the detection of rectangles and the computation of grasping poses for the detected
rectangles as described in Computation of grasps (Section 6.3.5.3).

Details

This service can be called as follows.

API version 2

Roboception GmbH
Manual: rc_reason_stack

142 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/services/compute_grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/compute_grasps

Request

Required arguments:

pose_frame: see Hand-eye calibration (Section 6.3.5.5).

item_models: list of item models to be detected. The type of the item model
must be RECTANGLE or TEXTURED_BOX. For type RECTANGLE, rectangle must be
filled, while for TEXTURED_BOX, textured_box must be filled. See Detection of
items (Section 6.3.5.2) for a detailed description of the item model types.

suction_surface_length: length of the suction device grasping surface.

suction_surface_width: width of the suction device grasping surface.

Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 6.3.5.5).

Optional arguments:

load_carrier_id: ID of the load carrier which contains the items to be grasped.

load_carrier_compartment: compartment inside the load carrier where to com-
pute grasps (see Load carrier compartments, Section 6.5.1.3).

region_of_interest_id: if load_carrier_id is set, ID of the 3D region of interest
where to search for the load carriers. Otherwise, ID of the 3D region of interest
where to compute grasps.

collision_detection: see Collision checking within other modules (Section
6.4.2.2).

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"item_models": [
{

"rectangle": {
"max_dimensions": {
"x": "float64",
"y": "float64"

},
"min_dimensions": {
"x": "float64",
"y": "float64"

}
},
"textured_box": {
"dimensions": {
"x": "float64",

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

143 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"y": "float64",
"z": "float64"

},
"dimensions_tolerance_m": "float64",
"max_deformation_m": "float64",
"template_id": "string"

},
"type": "string"

}
],
"load_carrier_compartment": {

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"suction_surface_length": "float64",
"suction_surface_width": "float64"

}
}

Response

load_carriers: list of detected load carriers.

grasps: sorted list of suction grasps.

items: list of detected rectangles corresponding to the returned grasps.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

Roboception GmbH
Manual: rc_reason_stack

144 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

{
"name": "compute_grasps",
"response": {
"grasps": [

{
"item_uuid": "string",
"max_suction_surface_length": "float64",
"max_suction_surface_width": "float64",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"quality": "float64",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string"

}
],
"items": [
{

"grasp_uuids": [
"string"

],
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rectangle": {

"x": "float64",
"y": "float64"

},
"template_id": "string",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string",
"view_name": "string",

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

145 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"view_pose_set": "bool",
"view_uuid": "string"

}
],
"load_carriers": [

{
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {

"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {
"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

compute_grasps_extended

Triggers the detection of rectangles and the computation of grasping poses for for detected
rectangles in the same way as compute_grasps, but returns the item information for each

Roboception GmbH
Manual: rc_reason_stack

146 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

grasp directly instead of as a separate list. This allows for easier parsing when item infor-
mation is required for the grasps.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/services/compute_grasps_

→˓extended

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/compute_grasps_extended

Request

See compute_grasps service.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"item_models": [
{

"rectangle": {
"max_dimensions": {
"x": "float64",
"y": "float64"

},
"min_dimensions": {
"x": "float64",
"y": "float64"

}
},
"textured_box": {
"dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"dimensions_tolerance_m": "float64",
"max_deformation_m": "float64",
"template_id": "string"

},
"type": "string"

}
],
"load_carrier_compartment": {

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

147 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"suction_surface_length": "float64",
"suction_surface_width": "float64"

}
}

Response

load_carriers: list of detected load carriers.

grasps: sorted list of suction grasps. Each grasp also contains the item information of the
corresponding detected rectangle.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

{
"name": "compute_grasps_extended",
"response": {

"grasps": [
{

"item": {
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

148 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"z": "float64"
}

},
"pose_frame": "string",
"rectangle": {
"x": "float64",
"y": "float64"

},
"template_id": "string",
"type": "string",
"uuid": "string",
"view_name": "string",
"view_pose_set": "bool",
"view_uuid": "string"

},
"max_suction_surface_length": "float64",
"max_suction_surface_width": "float64",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"quality": "float64",
"timestamp": {
"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string"

}
],
"load_carriers": [

{
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

149 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

set_preferred_orientation

Persistently stores the preferred orientation of the TCP to compute the reachability of
the grasps, which is used for filtering and the grasps returned by the compute_grasps or
compute_grasps_extended service (see Setting the preferred orientation of the TCP, Sec-
tion 6.3.5.4).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/services/set_preferred_

→˓orientation

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/set_preferred_orientation

Request

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"orientation": {
"w": "float64",
"x": "float64",

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

150 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"y": "float64",
"z": "float64"

},
"pose_frame": "string"

}
}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_preferred_orientation",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_preferred_orientation

Returns the preferred orientation of the TCP to compute the reachability of the
grasps, which is used for filtering the grasps returned by the compute_grasps and
compute_grasps_extended service (see Setting the preferred orientation of the TCP, Section
6.3.5.4).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/services/get_preferred_

→˓orientation

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/get_preferred_orientation

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_preferred_orientation",
"response": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"return_code": {
"message": "string",

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

151 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"value": "int16"
}

}
}

set_sorting_strategies

Persistently stores the sorting strategy for sorting the grasps returned by the compute_grasps
and compute_grasps_extended service (see Computation of grasps, Section 6.3.5.3).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/services/set_sorting_

→˓strategies

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/set_sorting_strategies

Request

Only one strategy may have a weight greater than 0. If all weight values are set to 0, the
module will use the default sorting strategy.

If the weight for direction is set, the vector must contain the direction vector and
pose_frame must be either camera or external.

If the weight for distance_to_point is set, point must contain the sorting point and
pose_frame must be either camera or external.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"direction": {
"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"distance_to_point": {
"farthest_first": "bool",
"point": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"weight": "float64"

},
"gravity": {
"weight": "float64"

},
"surface_area": {

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

152 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"weight": "float64"
}

}
}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_sorting_strategies",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_sorting_strategies

Returns the sorting strategy for sorting the grasps returned by the compute-grasps service
(see Computation of grasps, Section 6.3.5.3).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/services/get_sorting_

→˓strategies

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/get_sorting_strategies

Request

This service has no arguments.

Response

All weight values are 0 when the module uses the default sorting strategy.

The definition for the response with corresponding datatypes is:

{
"name": "get_sorting_strategies",
"response": {
"direction": {

"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"distance_to_point": {
"farthest_first": "bool",
"point": {

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

153 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"weight": "float64"

},
"gravity": {
"weight": "float64"

},
"return_code": {
"message": "string",
"value": "int16"

},
"surface_area": {
"weight": "float64"

}
}

}

start

Starts the module. If the command is accepted, the module moves to state RUNNING.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/services/start

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/start

Request

This service has no arguments.

Response

The current_state value in the service response may differ from RUNNING if the state tran-
sition is still in process when the service returns.

The definition for the response with corresponding datatypes is:

{
"name": "start",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

stop

Stops the module. If the command is accepted, the module moves to state IDLE.

Details

Roboception GmbH
Manual: rc_reason_stack

154 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/services/stop

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/stop

Request

This service has no arguments.

Response

The current_state value in the service response may differ from IDLE if the state transition
is still in process when the service returns.

The definition for the response with corresponding datatypes is:

{
"name": "stop",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

trigger_dump

Triggers dumping of the detection that corresponds to the given timestamp, or the latest
detection, if no timestamp is given. The dumps are saved to the connected USB drive.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/services/trigger_dump

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/trigger_dump

Request

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"comment": "string",
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

Response

The definition for the response with corresponding datatypes is:

Roboception GmbH
Manual: rc_reason_stack

155 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

{
"name": "trigger_dump",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

reset_defaults

Resets all parameters of the module to its default values, as listed in above table. Also resets
sorting strategies.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/reset_defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.3.5.9 Return codes

Each service response contains a return_code, which consists of a value plus an optional message.
A successful service returns with a return_code value of 0. Negative return_code values indicate
that the service failed. Positive return_code values indicate that the service succeeded with additional
information. The smaller value is selected in case a service has multiple return_code values, but all
messages are appended in the return_code message.

The following table contains a list of common codes:

Roboception GmbH
Manual: rc_reason_stack

156 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

Table 6.37: Return codes of the BoxPick services
Code Description

0 Success
-1 An invalid argument was provided
-3 An internal timeout occurred, e.g. during box detection if the given dimension range is too

large
-4 Data acquisition took longer than allowed
-8 The template has been deleted during detection

-10 New element could not be added as the maximum storage capacity of load carriers, regions
of interest or template has been exceeded

-11 Sensor not connected, not supported or not ready
-12 Resource busy, e.g. when trigger_dump is called too frequently
-200 Fatal internal error
-301 More than one item model provided to the compute_grasps or compute_grasps_extended

service
10 The maximum storage capacity of load carriers, regions of interest or templates has been

reached
11 An existent persistent model was overwritten by the call to set_load_carrier or

set_region_of_interest

100 The requested load carriers were not detected in the scene
101 No valid surfaces or grasps were found in the scene
102 The detected load carrier is empty
103 All computed grasps are in collision
112 Rejected detections of one or more clusters, because min_cluster_coverage was not

reached
300 A valid robot_pose was provided as argument but it is not required
999 Additional hints for application development

6.3.5.10 BoxPick Template API

BoxPick templates are only available with the +Match extension of BoxPick. For template upload, down-
load, listing and removal, special REST-API endpoints are provided. Templates can also be uploaded,
downloaded and removed via the Web GUI. The templates include the dimensions, the views and their
poses, if set. Up to 100 templates can be stored persistently on the rc_reason_stack.

GET /templates/rc_boxpick
Get list of all rc_boxpick templates.

Template request

GET /api/v2/templates/rc_boxpick HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": "string"
}

]

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

Roboception GmbH
Manual: rc_reason_stack

157 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5

6.3. Detection & Measure modules

• 200 OK – successful operation (returns array of Template)

• 404 Not Found – node not found

Referenced Data Models

• Template (Section 7.2.3)

GET /templates/rc_boxpick/{id}
Get a rc_boxpick template. If the requested content-type is application/octet-stream, the template
is returned as file.

Template request

GET /api/v2/templates/rc_boxpick/<id> HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters

• id (string) – id of the template (required)

Response Headers

• Content-Type – application/json application/ubjson application/octet-stream

Status Codes

• 200 OK – successful operation (returns Template)

• 404 Not Found – node or template not found

Referenced Data Models

• Template (Section 7.2.3)

PUT /templates/rc_boxpick/{id}
Create or update a rc_boxpick template.

Template request

PUT /api/v2/templates/rc_boxpick/<id> HTTP/1.1
Accept: multipart/form-data application/json

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters

• id (string) – id of the template (required)

Form Parameters

• file – template file (required)

Roboception GmbH
Manual: rc_reason_stack

158 Rev: 26.01.4
Status: Jan 30, 2026

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.3. Detection & Measure modules

Request Headers

• Accept – multipart/form-data application/json

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns Template)

• 400 Bad Request – Template is not valid or max number of templates reached

• 403 Forbidden – forbidden, e.g. because there is no valid license for this mod-
ule.

• 404 Not Found – node or template not found

• 413 Request Entity Too Large – Template too large

Referenced Data Models

• Template (Section 7.2.3)

DELETE /templates/rc_boxpick/{id}
Remove a rc_boxpick template.

Template request

DELETE /api/v2/templates/rc_boxpick/<id> HTTP/1.1
Accept: application/json application/ubjson

Parameters

• id (string) – id of the template (required)

Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

• 403 Forbidden – forbidden, e.g. because there is no valid license for this mod-
ule.

• 404 Not Found – node or template not found

6.3.6 SilhouetteMatch and SilhouetteMatchAI

6.3.6.1 Introduction

The SilhouetteMatch and SilhouetteMatchAI module is an optional on-board module of the
rc_reason_stack and requires a separate SilhouetteMatch and SilhouetteMatchAI license (Section 8.2)
to be purchased.

Note: This module is not available in camera pipelines of type blaze.

The module detects objects by matching a predefined silhouette (“template”) to edges in the image.

The SilhouetteMatch and SilhouetteMatchAI module can detect objects in two different scenarios:

Roboception GmbH
Manual: rc_reason_stack

159 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.3. Detection & Measure modules

With calibrated base plane: The objects are placed on a common base plane, which must
be calibrated before the detection, and the objects have significant edges on a common
plane that is parallel to the base plane.

With object plane detection: The objects can be placed at different, previously unknown
heights, if the objects have a planar surface and their outer contours are well visible in the
images (e.g. stacked flat objects).

With object plane detection and AI-based segmentation: With SilhouetteMatchAI an
AI-based object segmentation model can be chosen that finds objects in the scene for ex-
tracting possible planes for object detection. The AI-based segmentation results also allow
to compute object overlaps and filter objects by their overlap ratio.

Templates for object detection can be created by uploading a DXF file and specifying the object height.
The correct scale and unit of the contours are extracted from the DXF file. If no units are present in the
DXF file, the user has to specify which units should be used. When the outer contour of the object in the
DXF file is closed, a 3D collision model is created automatically by extruding the contour by the given
object height. This model will then be used for collision checking and in 3D visualizations. Uploading a
DXF file can be done in the Web GUI via the + Create a new Template button in the SilhouetteMatch
Templates and Grasps section on the Modules → SilhouetteMatch or Database → Templates pages.

Roboception also offers a template generation service on their website (https://roboception.com/en/
template-request/), where the user can upload CAD files or recorded data of the objects and request
object templates for the SilhouetteMatch and SilhouetteMatchAI module.

The object templates consist of significant edges of each object. These template edges are matched to
the edges detected in the left and right camera images, considering the actual size of the objects and
their distance from the camera. The poses of the detected objects are returned and can be used for
grasping, for example.

Note: On camera pipelines of type zivid or orbbec only the left camera image will be used for
matching the template edges.

The SilhouetteMatch and SilhouetteMatchAI module offers:

• A dedicated page on the rc_reason_stack Web GUI (Section 7.1) for easy setup, configuration,
testing, and application tuning.

• A REST-API interface (Section 7.2) and a KUKA Ethernet KRL Interface (Section 7.5).

• The definition of 2D regions of interest to select relevant parts of the camera image (see Setting a
region of interest , Section 6.3.6.3).

• A load carrier detection functionality for bin-picking applications (see LoadCarrier , Section 6.3.2),
to provide grasps for objects inside a bin only.

• Storing of up to 50 templates.

• The definition of up to 50 grasp points for each template via an interactive visualization in the Web
GUI.

• Collision checking between the gripper and the load carrier, the calibrated base plane, other de-
tected objects and/or the point cloud.

• Support for static and robot-mounted cameras and optional integration with the Hand-eye calibra-
tion (Section 6.4.1) module, to provide grasps in the user-configured external reference frame.

• Selection of a sorting strategy to sort the detected objects and returned grasps.

• 3D visualization of the detection results with grasp points and gripper animations in the Web GUI.

Note: This module is pipeline specific. Changes to its settings or parameters only affect the respec-
tive camera pipeline and have no influence on other pipelines running on the rc_reason_stack.
However, the object templates and grasp points are stored globally. Setting, changing or deleting an
object template or its grasps affects all camera pipelines.

Roboception GmbH
Manual: rc_reason_stack

160 Rev: 26.01.4
Status: Jan 30, 2026

https://roboception.com/en/template-request/
https://roboception.com/en/template-request/
https://roboception.com/en/template-request/

6.3. Detection & Measure modules

Suitable objects

The SilhouetteMatch and SilhouetteMatchAI module is intended for objects which have significant edges
on a common plane that is parallel to the plane on which the objects are placed. This applies to flat,
nontransparent objects, such as routed, laser-cut or water-cut 2D parts and flat-machined parts. More
complex parts can also be detected if there are significant edges on a common plane, e.g. a special
pattern printed on a flat surface. The detection works best for objects on a texture-free plane. The color
of the base plane should be chosen such that a clear contrast between the objects and the base plane
appears in the intensity image.

In case the objects are not placed on a common base plane or the base plane cannot be calibrated
beforehand, the objects need to have a planar surface and their outer contour must be well visible in the
left and right images. Furthermore, the template for these objects must have a closed outer contour.

Suitable scene

The scene must meet the following conditions to be suitable for the SilhouetteMatch and SilhouetteM-
atchAI module:

• The objects to be detected must be suitable for the SilhouetteMatch and SilhouetteMatchAI mod-
ule as described above.

• Only objects belonging to one specific template are visible at a time (unmixed scenario). In case
other objects are visible as well, a proper region of interest (ROI) must be set.

• In case a calibrated base plane is used: The offset between the base plane normal and the
camera’s line of sight does not exceed 10 degrees.

• In case the object planes are detected automatically: The offset between the object’s planar
surface normal and the camera’s line of sight does not exceed 25 degrees.

• The objects are not partially or fully occluded. With SilhouetteMatchAI slight overlaps are tolerated
and can be used for overlap filtering.

• All visible objects are right side up (no flipped objects).

• The object edges to be matched are visible in both, left and right camera images.

6.3.6.2 Base-plane calibration

In case all objects are placed on a common plane that is known beforehand, a base-plane calibration
should be performed before triggering a detection. Thereby, the distance and angle of the plane on
which the objects are placed is measured and stored persistently on the rc_reason_stack.

Separating the detection of the base plane from the actual object detection renders scenarios possible
in which the base plane is temporarily occluded. Moreover, it increases performance of the object
detection for scenarios where the base plane is fixed for a certain time; thus, it is not necessary to
continuously re-detect the base plane.

The base-plane calibration can be performed in three different ways, which will be explained in more
detail further down:

• AprilTag based

• Stereo based

• Manual

The base-plane calibration is successful if the normal vector of the estimated base plane is at most 10
degrees offset to the camera’s line of sight. If the base-plane calibration is successful, it will be stored
persistently on the rc_reason_stack until it is removed or a new base-plane calibration is performed.

Roboception GmbH
Manual: rc_reason_stack

161 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

Note: To avoid privacy issues, the image of the persistently stored base-plane calibration will appear
blurred after rebooting the rc_reason_stack.

In scenarios where the base plane is not accessible for calibration, a plane parallel to the base plane
can be calibrated. Then an offset parameter can be used to shift the estimated plane onto the actual
base plane where the objects are placed. The offset parameter gives the distance in meters by which
the estimated plane is shifted towards the camera.

In the REST-API, a plane is defined by a normal and a distance. normal is a normalized 3-vector,
specifying the normal of the plane. The normal points away from the camera. distance represents the
distance of the plane from the camera along the normal. Normal and distance can also be interpreted
as 𝑎, 𝑏, 𝑐, and 𝑑 components of the plane equation, respectively:

𝑎𝑥+ 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0

AprilTag based base-plane calibration

Note: On camera pipelines of type zivid or orbbec the ArilTag-based base plane calibration is not
available.

AprilTag detection (ref. TagDetect , Section 6.3.3) is used to find AprilTags in the scene and fit a plane
through them. At least three AprilTags must be placed on the base plane so that they are visible in the
left and right camera images. The tags should be placed such that they are spanning a triangle that is
as large as possible. The larger the triangle, the more accurate is the resulting base-plane estimate.
Use this method if the base plane is untextured and no external random dot projector is available. This
calibration mode is available via the REST-API interface (Section 7.2) and the rc_reason_stack Web
GUI.

Stereo based base-plane calibration

The 3D point cloud computed by the stereo matching module is used to fit a plane through its 3D points.
Therefore, the region of interest (ROI) for this method must be set such that only the relevant base
plane is included. The plane_preference parameter allows to select whether the plane closest to or
farthest from the camera should be used as base plane. Selecting the closest plane can be used in
scenarios where the base plane is completely occluded by objects or not accessible for calibration. Use
this method if the base plane is well textured or you can make use of a random dot projector to project
texture on the base plane. This calibration mode is available via the REST-API interface (Section 7.2)
and the rc_reason_stack Web GUI.

Manual base-plane calibration

The base plane can be set manually if its parameters are known, e.g. from previous calibrations. This
calibration mode is only available via the REST-API interface (Section 7.2) and not the rc_reason_stack
Web GUI.

6.3.6.3 Setting a region of interest

If objects are to be detected only in part of the camera’s field of view, a 2D region of interest (ROI) can
be set accordingly as described in Region of interest (Section 6.5.2.2).

Roboception GmbH
Manual: rc_reason_stack

162 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

6.3.6.4 Setting of grasp points

To use SilhouetteMatch and SilhouetteMatchAI directly in a robot application, up to 50 grasp points can
be defined for each template. A grasp point represents the desired position and orientation of the robot’s
TCP (Tool Center Point) to grasp an object as shown in Fig. 6.14.

y

z

x
PgraspTCP y

z

x

Fig. 6.14: Definition of grasp points with respect to the robot’s TCP

Each grasp consists of an id which must be unique within all grasps for an object template, the
template_id representing the template to which the grasp should be attached, and the pose in the
coordinate frame of the object template. Grasp points can be set via the REST-API interface (Section
7.2), or by using the interactive visualization in the Web GUI. Furthermore, a priority (spanning -2
for very low to 2 for very high) can be assigned to a grasp. Priorities can facilitate robot applications
and shorten response times when the run-time parameter only_highest_priority_grasps is set to
true. In this case collision checking concludes when grasps with the highest possible priority have been
found. Finally, different grasps can be associated with different grippers by specifying a gripper_id.
These individual grippers are then used for collision checking of the corresponding grasps instead of
the gripper defined in the detect_object or detect_object_extended request. If no gripper_id is
given, the gripper defined in the detect_object or detect_object_extended request will be used for
collision checking.

If a gripper_id is given for a grasp and the corresponding gripper has elements of
function_type FINGER, each grasp can also specify values for stroke_per_finger_approach_mm and
stroke_per_finger_grasp_mm. These values give the amount of translation of a finger in millimeters
by which the finger element and all its child elements are moved from the zero_pose towards the pose
of the finger element. The stroke_per_finger_approach_mm value is applied during collision check-
ing when the grasp is approached. The stroke_per_finger_grasp_mm is not used for collision check-
ing, but holds information about the gripper opening while grasping, so that this field implicitly defines
the finger’s motion direction for performing the grasp. If neither stroke_per_finger_approach_mm nor
stroke_per_finger_grasp_mm are given, the gripper will be used for collision checking with the fingers
in their default poses.

When a grasp is defined on a symmetric object, all grasps symmetric to the defined one will auto-
matically be considered in the SilhouetteMatch and SilhouetteMatchAI module’s detect_object and
detect_object_extended service calls. Symmetric grasps for a given grasp point can be retrieved us-
ing the get_symmetric_grasps service call and visualized in the Web GUI.

Users can also define replications of grasps around a custom axis. These replications spawn multiple
grasps and free users from setting too many grasps manually. The replication origin is defined as a
coordinate frame in the object’s coordinate frame and the x axis of the replication origin frame corre-
sponds to the replication axis. The grasp is replicated by rotating it around this x axis starting from its
original pose. The replication is done in steps of size step_x_deg degrees. The range is defined by the
minimal and maximal boundaries min_x_deg and max_x_deg. The minimal (maximal) boundary must be
a non-positive (non-negative) number up to (minus) 180 degrees.

Setting grasp points in the Web GUI

The rc_reason_stack Web GUI provides an intuitive and interactive way of defining grasp points for
object templates. In a first step, the object template has to be uploaded to the rc_reason_stack. This

Roboception GmbH
Manual: rc_reason_stack

163 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

can be done in the Web GUI in any pipeline under Modules → SilhouetteMatch by clicking on + Add a
new Template in the Templates and Grasps section, or in Database → Templates in the SilhouetteMatch
Templates and Grasps section. Once the template upload is complete, a dialog with a 3D visualization
of the object template is shown for adding or editing grasp points. The same dialog appears when
editing an existing template. If the template contains a collision model or a visualization model, this 3D
model is visualized as well.

This dialog provides two ways for setting grasp points:

1. Adding grasps manually: By clicking on the + symbol, a new grasp is placed in the object origin.
The grasp can be given a unique name which corresponds to its ID. The desired pose of the grasp
can be entered in the fields for Position and Roll/Pitch/Yaw which are given in the coordinate frame
of the object template represented by the long x, y and z axes in the visualization. The grasp point
can be placed freely with respect to the object template - inside, outside or on the surface. The
grasp point and its orientation are visualized in 3D for verification.

2. Adding grasps interactively: Grasp points can be added interactively by first clicking on the Add
Grasp button in the upper right corner of the visualization and then clicking on the desired point
on the object template visualization. If the 3D model is displayed, the grasps will be attached to
the surface of the 3D model. Otherwise, the grasp is attached to the template surface. The grasp
orientation is a right-handed coordinate system and is chosen such that its z axis is perpendicular
to the surface pointing inside the template at the grasp position. The position and orientation in the
object coordinate frame is displayed on the right. The position and orientation of the grasp can also
be changed interactively. In case Snap to surface is disabled (default), the grasp can be translated
and rotated freely in all three dimensions by clicking on Move Grasp in the visualization menu and
then dragging the grasp along the appropriate axis to the desired position. The orientation of the
grasp can also be changed by rotating the axis with the mouse. In case Snap to surface is enabled
in the visualization, the grasp can only be moved along the model surface.

Users can also specify a grasp priority by changing the Priority slider. A dedicated gripper can be
selected in the Gripper drop down field.

By activating the Replication check box, users can replicate the grasp around a custom axis. The
replication axis and the resulting replicated grasps are visualized. The position and orientation of the
replication axis relative to the object coordinate frame can be adjusted interactively by clicking on Move
Replication Axis in the visualization menu and then dragging the axis to the desired position and orien-
tation. The grasps are replicated within the specified rotation range at the selected rotation step size.
Users can cycle through a visualization of the replicated grasps by dragging the bar below Cycle through
n replicated grasps in the View Options section of the visualization menu. If a gripper is selected for the
grasp or a gripper has been chosen in the visualization menu, the gripper is also shown at the currently
selected grasp.

If the object template has symmetries, the grasps which are symmetric to the defined grasps can be
displayed along with their replications (if defined) by enabling . . . symmetries in the View Options
section of the visualization menu. The user can also cycle through a visualization of the symmetric
grasps by dragging the bar below Cycle through n symmetric grasps.

Setting grasp points via the REST-API

Grasp points can be set via the REST-API interface (Section 7.2) using the set_grasp or
set_all_grasps services (see Internal services, Section 6.3.6.12). A grasp consists of the template_id
of the template to which the grasp should be attached, an id uniquely identifying the grasp point and
the pose. The pose is given in the coordinate frame of the object template and consists of a position
in meters and an orientation as quaternion. A dedicated gripper can be specified through setting the
gripper_id field. The priority is specified by an integer value, ranging from -2 for very low, to 2 for
very high with a step size of 1. The replication origin is defined as a transformation in the object’s co-
ordinate frame and the x axis of the transformation corresponds to the replication axis. The replication
range is controlled by the min_x_deg and max_x_deg fields and the step size step_x_deg.

Roboception GmbH
Manual: rc_reason_stack

164 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

6.3.6.5 Setting the preferred orientation of the TCP

The SilhouetteMatch and SilhouetteMatchAI module determines the reachability of grasp points
based on the preferred orientation of the TCP. The preferred orientation can be set via the
set_preferred_orientation service or on the SilhouetteMatch page in the Web GUI. The resulting
direction of the TCP’s z axis is used to reject grasps which cannot be reached by the gripper. Further-
more, the preferred orientation can be used to sort the reachable grasps by setting the corresponding
sorting strategy.

The preferred orientation can be set in the camera coordinate frame or in the external coordinate frame,
in case a hand-eye calibration is available. If the preferred orientation is specified in the external coor-
dinate frame and the sensor is robot mounted, the current robot pose has to be given to each object
detection call. If no preferred orientation is set, the orientation of the left camera (see Coordinate frames
in the rc_visard manual) will be used as the preferred orientation of the TCP.

6.3.6.6 Setting the sorting strategies

The objects and grasps returned by the detect_object and detect_object_extended service call are
sorted according to a sorting strategy which can be chosen by the user. The following sorting strategies
are available and can be set in the Web GUI (Section 7.1) or using the set_sorting_strategies service
call:

• preferred_orientation: matches and grasp points with minimal rotation difference of a chosen
axis (or all axes, when axis is empty) with respect to the preferred TCP orientation are returned
first,

• direction: objects and grasp points with the shortest distance along a defined direction vector
in a given pose_frame are returned first.

• distance_to_point: objects and grasp points with the shortest or farthest (if farthest_first is
true) distance from a point in a given pose_frame are returned first.

If no sorting strategy is set or default sorting is chosen in the Web GUI, sorting is done based on a
combination of preferred_orientation and the minimal distance from the camera along the z axis of
the preferred orientation of the TCP.

6.3.6.7 Detection of objects

For triggering the object detection, in general, the following information must be provided to the Silhou-
etteMatch and SilhouetteMatchAI module:

• The template of the object to be detected in the scene.

• The coordinate frame in which the poses of the detected objects shall be returned (ref. Hand-eye
calibration, Section 6.3.6.8).

Optionally, further information can be given to the SilhouetteMatch and SilhouetteMatchAI module:

• A flag object_plane_detection determining whether the surface plane of the objects should be
used for the detection instead of the calibrated base plane.

• An offset, in case the calibrated base plane should be used but the objects are not lying on
this plane but on a plane parallel to it. The offset is the distance between both planes given in
the direction towards the camera. If omitted, an offset of 0 is assumed. It must not be set if
object_plane_detection is true.

• The ID of the load carrier which contains the objects to be detected.

• The ID of the region of interest where to search for the load carrier if a load carrier is set. Other-
wise, the ID of the region of interest where the objects should be detected. If omitted, objects are
matched in the whole image.

Roboception GmbH
Manual: rc_reason_stack

165 Rev: 26.01.4
Status: Jan 30, 2026

https://doc.rc-visard.com/latest/en/hardware_spec.html#sect-coordinate-frames

6.3. Detection & Measure modules

• The current robot pose in case the camera is mounted on the robot and the chosen coordinate
frame for the poses is external or the preferred orientation is given in the external frame.

• Collision detection information: The ID of the gripper to enable collision checking and optionally
a pre-grasp offset to define a pre-grasp position. Details on collision checking are given below in
CollisionCheck (Section 6.3.6.8).

In case the object_plane_detection flag is not true, objects can only be detected after a successful
base-plane calibration. It must be ensured that the position and orientation of the base plane does not
change before the detection of objects. Otherwise, the base-plane calibration must be renewed.

When object_plane_detection is set to true, a base-plane calibration is not required and an existing
base-plane calibration will be ignored. During detection, the scene is clustered into planar surfaces and
template matching is performed on each plane whose tilt with respect to the camera’s line of sight is
less than 25° and whose size is large enough to contain the selected template. When a match is found,
its position and orientation are refined using the image edges and the point cloud inside the template’s
outer contour. For this, it is required that the outer contour of the template is closed and that the object’s
surface is planar.

If SilhouetteMatchAI is available and object_plane_detection is set to true, an
object_segmentation_model can be given, that will be used for AI-based segmentation of ob-
jects instead of clustering the scene into planar surfaces. The resulting object masks will be used
to extract surface planes for template matching and also allow the computation of object overlaps,
which are used for filtering in case max_object_overlap is set to a value smaller than 1. The currently
supported object segmentation model is SHEET_METAL.

On the Web GUI the detection can be tested in the Try Out section of the SilhouetteMatch and Silhou-
etteMatchAI page. Different image streams can be selected to show intermediate results and the final
matches.

The “Template” image stream shows the template to be matched in green with the de-
fined grasp points in green (see Setting of grasp points, Section 6.3.6.4). The template
is warped to the size and tilt matching objects on the calibrated base plane or, in case
object_plane_detection was used, the highest segmented plane, would have. The corre-
sponding plane is shown in dark blue.

The “Intermediate Result” image stream shows the edges of the left image that were used
to search for matches in light blue. The chosen region of interest is shown as bold petrol
rectangle. A shaded blue area on the left visualizes the region of the left camera image
which does not overlap with the right image, and in which no objects can be detected.
If object_plane_detection was used, this image stream also shows the detected planar
clusters in the scene. Clusters that were not used for matching, because they were too
small or too tilted, are visualized with a stripe pattern.

The “Intermediate Result Right” image stream shows the edges of the right image that
were used to search for matches in light blue. The chosen region of interest is shown as
bold petrol rectangle. A shaded blue area on the right visualizes the region of the right
camera image which does not overlap with the left image, and in which no objects can be
detected.

Note: On camera pipelines of type zivid or orbbec the “Intermediate Result Right” is not avail-
able.

The “Result” image shows the detection result. The image edges that were used to refine the match
poses are shown in light blue and the matches (instances) with the template edges are shown in green.
The blue circles are the origins of the detected objects as defined in the template and the green circles
are the collision-free grasp points. Colliding grasp points are visualized as red dots and grasp points
that were not checked for collisions are drawn in yellow.

The poses of the object origins in the chosen coordinate frame are returned as results in a list of
instances. In case the calibrated base plane was used for the detection (object_plane_detection not
set or false), the orientations of the detected objects are aligned with the normal of the base plane.

Roboception GmbH
Manual: rc_reason_stack

166 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

Otherwise, the orientations of the detected objects are aligned with the normal of a plane fitted to the
object points in the 3D point cloud.

If the chosen template also has grasp points attached, a list of grasps for all objects is returned in
addition to the list of detected objects. The grasp poses are given in the desired coordinate frame and
the grasps are sorted according to the selected sorting strategy (see Setting the sorting strategies,
Section 6.3.6.6). There are references between the detected object instances and the grasps via their
uuids.

In case the templates have a continuous rotational symmetry (e.g. cylindrical objects), all returned
object poses will have the same orientation. Furthermore, all grasps symmetric to each grasp point
on an object are checked for reachability and collisions, and only the best one according to the given
sorting strategy is returned.

For objects with a discrete symmetry (e.g. prismatic objects), all collision-free symmetries of each grasp
point which are reachable according to the given preferred TCP orientation are returned, ordered by the
given sorting strategy.

The detection results and run times are affected by several run-time parameters which are listed and
explained further down. Improper parameters can lead to timeouts of the SilhouetteMatch and Silhou-
etteMatchAI module’s detection process.

6.3.6.8 Interaction with other modules

Internally, the SilhouetteMatch and SilhouetteMatchAI module depends on, and interacts with other
on-board modules as listed below.

Note: All changes and configuration updates to these modules will affect the performance of the
SilhouetteMatch and SilhouetteMatchAI module.

Camera and depth data

The SilhouetteMatch and SilhouetteMatchAI module makes internally use of the rectified images from
the Camera module (rc_camera, Section 6.1). Thus, the exposure time should be set properly to achieve
the optimal performance of the module.

For base-plane calibration in stereo mode, for load carrier detection, for automatic object plane detection
and for collision checking with the point cloud, the disparity images from the Stereo matching module
(rc_stereomatching, Section 6.2.2) are used.

For detecting objects with a calibrated base plane, without load carrier and without collision checking
with the point cloud, the stereo-matching module should not be run in parallel to the SilhouetteMatch
and SilhouetteMatchAI module, because the detection runtime increases.

For best results it is recommended to enable smoothing (Section 6.2.2.1) for Stereo matching module.

IO and Projector Control

In case the rc_reason_stack is used in conjunction with an external random dot projector and the IO and
Projector Control module (rc_iocontrol, Section 6.4.4), the projector should be used for the stereo-
based base-plane calibration, for automatic object plane detection and for collision checking with the
point cloud.

The projected pattern must not be visible in the left and right camera images during object detection
as it interferes with the matching process. Therefore, it is recommended to connect the projector to
GPIO Out 1 and set the stereo-camera module’s acquisition mode to SingleFrameOut1 (see Stereo
matching parameters, Section 6.2.2.1), so that on each image acquisition trigger an image with and
without projector pattern is acquired.

Roboception GmbH
Manual: rc_reason_stack

167 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

Alternatively, the output mode for the GPIO output in use should be set to ExposureAlternateActive
(see Description of run-time parameters, Section 6.4.4.1).

In either case, the Auto Exposure Mode exp_auto_mode should be set to AdaptiveOut1 to optimize the
exposure of both images.

Hand-eye calibration

In case the camera has been calibrated to a robot, the SilhouetteMatch and SilhouetteMatchAI module
can automatically provide poses in the robot coordinate frame. For the SilhouetteMatch and Silhou-
etteMatchAI node’s Services (Section 6.3.6.11), the frame of the input and output poses and plane
coordinates can be controlled with the pose_frame argument.

Two different pose_frame values can be chosen:

1. Camera frame (camera). All poses and plane coordinates provided to and by the module are in
the camera frame.

2. External frame (external). All poses and plane coordinates provided to and by the module
are in the external frame, configured by the user during the hand-eye calibration process. The
module relies on the on-board Hand-eye calibration module (Section 6.4.1) to retrieve the camera
mounting (static or robot mounted) and the hand-eye transformation. If the sensor mounting is
static, no further information is needed. If the sensor is robot-mounted, the robot_pose is required
to transform poses to and from the external frame.

All pose_frame values that are not camera or external are rejected.

Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.

Note: If the hand-eye calibration has changed after base-plane calibration, the base-plane calibration
will be marked as invalid and must be renewed.

If the sensor is robot-mounted, the current robot_pose has to be provided depending on the value of
pose_frame, the definition of the preferred TCP orientation and the sorting direction or sorting point:

• If pose_frame is set to external, providing the robot pose is obligatory.

• If the preferred TCP orientation is defined in external, providing the robot pose is obligatory.

• If the sorting direction is defined in external, providing the robot pose is obligatory.

• If the distance-to-point sorting strategy is defined in external, providing the robot pose is obliga-
tory.

• In all other cases, providing the robot pose is optional.

If the current robot pose is provided during calibration, it is stored persistently on the rc_reason_stack.
If the updated robot pose is later provided during get_base_plane_calibration, detect_object or
detect_object_extended as well, the base-plane calibration will be transformed automatically to this
new robot pose. This enables the user to change the robot pose (and thus camera position) between
base-plane calibration and object detection.

Note: Object detection can only be performed if the limit of 10 degrees angle offset between the
base plane normal and the camera’s line of sight is not exceeded.

LoadCarrier

The SilhouetteMatch and SilhouetteMatchAI module uses the load carrier detection functionality pro-
vided by the LoadCarrier module (rc_load_carrier, Section 6.3.2), with the run-time parameters spec-
ified for this module. However, only one load carrier will be returned and used in case multiple matching

Roboception GmbH
Manual: rc_reason_stack

168 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

load carriers could be found in the scene. In case multiple load carriers of the same type are visible, a
region of interest should be set to ensure that always the same load carrier is used for the SilhouetteM-
atch and SilhouetteMatchAI module.

CollisionCheck

Collision checking can be easily enabled for grasp computation of the SilhouetteMatch and Silhouet-
teMatchAI module by passing a collision_detection argument to the detect_object service call. It
contains the ID of the used gripper and optionally a pre-grasp offset. The gripper has to be defined in
the GripperDB module (see Setting a gripper , Section 6.5.3.2) and details about collision checking are
given in Collision checking within other modules (Section 6.4.2.2).

Alternatively, grasp points can be assigned individual gripper IDs, and collision checking can be enabled
for all grasp points with gripper IDs by enabling the run-time parameter check_collisions.

In addition to collision checking between the gripper and the detected load carrier, collisions
between the gripper and the calibrated base plane will be checked, if the run-time parameter
check_collisions_with_base_plane is true. If the selected SilhouetteMatch and SilhouetteMatchAI
template contains a collision model and the run-time parameter check_collisions_with_matches
is true, also collisions between the gripper and all other detected objects (not limited to
max_number_of_detected_objects) will be checked. The object on which the grasp point to be checked
is located, is excluded from the collision check.

If the run-time parameter check_collisions_with_point_cloud is true, also collisions between the
gripper and a watertight version of the point cloud are checked. If this feature is used with suctions
grippers, it should be ensured that the TCP is defined to be outside the gripper geometry, or that
the grasp points are defined above the object surface. Otherwise every grasp will result in a collision
between the gripper and the point cloud.

If the run-time parameter check_collisions_during_retraction is true and a load carrier and a pre-
grasp offset are given, each grasp point will be checked for collisions between the object in the gripper
and the load carrier walls during retraction. This collision check is performed along the full linear trajec-
tory from the grasp point back to the pre-grasp position.

If collision checking is enabled, only grasps which are collision free or could not be checked for collisions
(e.g. because no gripper was given) will be returned. The visualization images on the SilhouetteMatch
page of the Web GUI shows collision-free grasps in green, unchecked grasps in yellow and colliding
grasp points in red. The detected objects which are considered in the collision check are also visualized
with their edges in green.

The CollisionCheck module’s run-time parameters affect the collision detection as described in Colli-
sionCheck Parameters (Section 6.4.2.3).

6.3.6.9 Parameters

The SilhouetteMatch and SilhouetteMatchAI software module is called rc_silhouettematch in the
REST-API and is represented in the Web GUI (Section 7.1)in the desired pipeline under Modules →
SilhouetteMatch. The user can explore and configure the rc_silhouettematch module’s run-time pa-
rameters, e.g. for development and testing, using the Web GUI or the REST-API interface (Section
7.2).

Parameter overview

This module offers the following run-time parameters:

Roboception GmbH
Manual: rc_reason_stack

169 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

Table 6.38: The rc_silhouettematch module’s run-time parame-
ters

Name Type Min Max Default Description
check_collisions bool false true false Whether to check for collisions

when a gripper is defined for a grasp
check_collisions_during_-
retraction

bool false true false Whether to check for collisions be-
tween the object in the gripper and
the load carrier during retraction

check_collisions_with_-
base_plane

bool false true true Whether to check for collisions be-
tween gripper and base plane

check_collisions_with_-
matches

bool false true true Whether to check for collisions
between gripper and detected
matches

check_collisions_with_-
point_cloud

bool false true false Whether to check for collisions be-
tween gripper and the point cloud

edge_sensitivity float64 0.1 1.0 0.7 Sensitivity of the edge detector
match_max_distance float64 0.1 10.0 3.0 Maximum allowed distance in pixels

between the template and the de-
tected edges in the image

match_percentile float64 0.7 1.0 0.8 Percentage of template pixels that
must be within the maximum dis-
tance to successfully match the
template

max_number_of_detected_-
objects

int32 1 20 10 Maximum number of detected ob-
jects

max_object_overlap float64 0.0 1.0 0.05 Maximum fraction of object surface
that is allowed to be overlapped by
other segmented objects

only_highest_priority_-
grasps

bool false true false Whether to return only the highest
priority level grasps

point_cloud_enhancement string - - Off Type of enhancement of the point
cloud using the base plane: [Off,
ReplaceBright]

quality string - - High Quality: [Low, Medium, High]

Description of run-time parameters

Each run-time parameter is represented by a row on the Web GUI’s SilhouetteMatch and Silhouet-
teMatchAI page. The name in the Web GUI is given in brackets behind the parameter name and the
parameters are listed in the order they appear in the Web GUI:

max_number_of_detected_objects (Maximum Object Number)

This parameter gives the maximum number of objects to detect in the scene. If
more than the given number of objects can be detected in the scene, only the
objects matching best to the given sorting strategy are returned.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?max_

→˓number_of_detected_objects=<value>

API version 1 (deprecated)

Roboception GmbH
Manual: rc_reason_stack

170 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?max_number_of_detected_

→˓objects=<value>

quality (Quality)

Object detection can be performed on images with different resolutions: High (full
image resolution), Medium (half image resolution) and Low (quarter image resolu-
tion). The lower the resolution, the lower the detection time, but the fewer details
of the objects are visible.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?
→˓quality=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?quality=<value>

match_max_distance (Maximum Matching Distance)

This parameter gives the maximum allowed pixel distance of an image edge pixel
from the object edge pixel in the template to be still considered as matching. If the
object is not perfectly represented in the template, it might not be detected when
this parameter is low. High values, however, might lead to false detections in case
of a cluttered scene or the presence of similar objects, and also increase runtime.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?match_

→˓max_distance=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?match_max_distance=<value>

match_percentile (Matching Percentile)

This parameter indicates how strict the matching process should be. The matching
percentile is the ratio of template pixels that must be within the Maximum Matching
Distance to successfully match the template. The higher this number, the more
accurate the match must be to be considered as valid.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?match_

→˓percentile=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?match_percentile=<value>

Roboception GmbH
Manual: rc_reason_stack

171 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

edge_sensitivity (Edge Sensitivity)

This parameter influences how many edges are detected in the left and right cam-
era images. The higher this number, the more edges are found in the intensity
images. That means, for lower numbers, only the most significant edges are con-
sidered for template matching. A large number of edges in the image might in-
crease the detection time. It must be ensured that the edges of the objects to be
detected are detected in both, the left and the right camera images.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?edge_

→˓sensitivity=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?edge_sensitivity=<value>

max_object_overlap (Maximum Object Overlap)

This parameter is only available on SilhouetteMatchAI and determines the maximum fraction
by which an object is allowed to be overlapped by other objects. Objects with higher overlap
are discarded and visualized in red. A value of 1 disables the overlap check. Overlaps are
only checked when an object segmentation model is chosen.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?max_

→˓object_overlap=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?max_object_overlap=<value>

only_highest_priority_grasps (Only Highest Priority Grasps)

If set to true, only grasps with the highest priority will be returned. If collision checking is
enabled, only the collision-free grasps among the group of grasps with the highest priority
are returned. This can save computation time and reduce the number of grasps to be parsed
on the application side.

Without collision checking, only grasps of highest priority are returned.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?only_

→˓highest_priority_grasps=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?only_highest_priority_

→˓grasps=<value>

Roboception GmbH
Manual: rc_reason_stack

172 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

check_collisions (Check Collisions)

If this parameter is enabled, collision checking will be performed for all grasps
which have a gripper ID assigned, even when no default gripper is given in the
detect_object service call. If a load carrier is used, the collision check will always
be performed between the gripper and the load carrier. Collision checking with the
point cloud and other matches is only performed when the corresponding runtime
parameters are enabled.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?check_

→˓collisions=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?check_collisions=<value>

check_collisions_with_base_plane (Check Collisions with Base Plane)

This parameter is only used when collision checking is enabled by passing a grip-
per to the detect_object service call or by enabling the check_collisions run-
time parameter. If check_collisions_with_base_plane is set to true, all grasp
points will be checked for collisions between the gripper and the calibrated base
plane, and only grasp points at which the gripper would not collide with the base
plane will be returned.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?check_

→˓collisions_with_base_plane=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?check_collisions_with_

→˓base_plane=<value>

check_collisions_with_matches (Check Collisions with Matches)

This parameter is only used when collision checking is enabled by passing a grip-
per to the detect_object service call or by enabling the check_collisions run-
time parameter. If check_collisions_with_matches is set to true, all grasp points
will be checked for collisions between the gripper and all other detected objects
(not limited to max_number_of_detected_objects), and only grasp points at which
the gripper would not collide with any other detected object will be returned.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?check_

→˓collisions_with_matches=<value>

API version 1 (deprecated)

Roboception GmbH
Manual: rc_reason_stack

173 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?check_collisions_with_

→˓matches=<value>

check_collisions_with_point_cloud (Check Collisions with Point Cloud)

This parameter is only used when collision checking is enabled by passing a
gripper to the detect_object service call or by enabling the check_collisions
runtime parameter. If check_collisions_with_point_cloud set to true, all grasp
points will be checked for collisions between the gripper and a watertight version
of the point cloud, and only grasp points at which the gripper would not collide with
this point cloud will be returned.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?check_

→˓collisions_with_point_cloud=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?check_collisions_with_

→˓point_cloud=<value>

point_cloud_enhancement (Enhance with Base Plane)

This parameter is only considered when check_collisions_with_point_cloud
is true and the object detection was triggered without object_plane_detection.
By default, point_cloud_enhancement is set to Off (Off). If
point_cloud_enhancement is set to ReplaceBright (Replace Bright Image
Pixels), the calibrated base plane will be used to enhance the point cloud that is
used for collision checking. For this, the depth values of all bright image pixels
inside the image or, if set, the 2D region of interest will be set to the depth of the
calibrated base plane. This parameter should be used when dark objects are
placed on an untextured bright background, e.g. on a light table.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?point_

→˓cloud_enhancement=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?point_cloud_enhancement=
→˓<value>

check_collisions_during_retraction (Check Collisions during Retraction)

This parameter is only used when collision checking is enabled by passing a grip-
per to the detect_object service call or by enabling the check_collisions run-
time parameter. When check_collisions_during_retraction is enabled and a
load carrier and a pre-grasp offset are given, each grasp point will be checked
for collisions between the object in the gripper and the load carrier walls during
retraction. This collision checking is performed along the full linear trajectory from

Roboception GmbH
Manual: rc_reason_stack

174 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

the grasp point back to the pre-grasp position. Only collision-free grasp points will
be returned.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?check_

→˓collisions_during_retraction=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?check_collisions_during_

→˓retraction=<value>

6.3.6.10 Status values

This module reports the following status values:

Table 6.39: The rc_silhouettematch module’s status values
Name Description
data_acquisition_time Time in seconds required by the last active service to acquire

images
last_timestamp_processed The timestamp of the last processed dataset
load_carrier_detection_time Processing time of the last load carrier detection in seconds
processing_time Processing time of the last detection (including load carrier

detection) in seconds

6.3.6.11 Services

The user can explore and call the rc_silhouettematch module’s services, e.g. for development and
testing, using the REST-API interface (Section 7.2) or the rc_reason_stack Web GUI (Section 7.1).

The SilhouetteMatch and SilhouetteMatchAI module offers the following services.

detect_object

Triggers an object detection as described in Detection of objects (Section 6.3.6.7) and re-
turns the pose of all found object instances.

Details

All images used by the service are guaranteed to be newer than the service trigger time.

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/detect_

→˓object

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/detect_object

Request

Required arguments:

Roboception GmbH
Manual: rc_reason_stack

175 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

object_id in object_to_detect: ID of the template which should be detected.

pose_frame: see Hand-eye calibration (Section 6.3.6.8).

Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 6.3.6.8).

Optional arguments:

object_plane_detection: false if the objects are placed on a calibrated base
plane, true if the objects’ surfaces are planar and the base plane is unknown or
the objects are located on multiple different planes, e.g. stacks.

offset: offset in meters by which the base-plane calibration will be shifted towards
the camera.

load_carrier_id: ID of the load carrier which contains the items to be detected.

collision_detection: see Collision checking within other modules (Section
6.4.2.2).

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"load_carrier_id": "string",
"object_plane_detection": "bool",
"object_segmentation_model": "string",
"object_to_detect": {
"object_id": "string",
"region_of_interest_2d_id": "string"

},
"offset": "float64",
"pose_frame": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

The maximum number of returned instances can be controlled with the
max_number_of_detected_objects parameter.

object_id: ID of the detected template.

Roboception GmbH
Manual: rc_reason_stack

176 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

instances: list of detected object instances, ordered according to the chosen sorting strat-
egy.

grasps: list of grasps on the detected objects, ordered according to the chosen sorting
strategy. The instance_uuid gives the reference to the detected object in instances this
grasp belongs to. The list of returned grasps will be trimmed to the 100 best grasps if
more reachable grasps are found. Each grasp contains a flag collision_checked and a
gripper_id (see Collision checking within other modules, Section 6.4.2.2).

load_carriers: list of detected load carriers.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

{
"name": "detect_object",
"response": {
"grasps": [

{
"collision_checked": "bool",
"gripper_id": "string",
"id": "string",
"instance_uuid": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"priority": "int8",
"stroke_per_finger_approach_mm": "float64",
"stroke_per_finger_grasp_mm": "float64",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"uuid": "string"

}
],
"instances": [

{
"grasp_uuids": [

"string"
],
"id": "string",
"object_id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

177 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"timestamp": {
"nsec": "int32",
"sec": "int32"

},
"uuid": "string"

}
],
"load_carriers": [

{
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"object_id": "string",
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

178 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"nsec": "int32",
"sec": "int32"

}
}

}

detect_object_extended

Triggers an object detection in the same way as detect_object, but returns the instance in-
formation for each grasp directly instead of as a separate list. This allows for easier parsing,
e.g. when the instance pose for each grasp is required for placing the object.

Details

All images used by the service are guaranteed to be newer than the service trigger time.

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/detect_

→˓object_extended

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/detect_object_extended

Request

See detect_object service.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"load_carrier_id": "string",
"object_plane_detection": "bool",
"object_segmentation_model": "string",
"object_to_detect": {
"object_id": "string",
"region_of_interest_2d_id": "string"

},
"offset": "float64",
"pose_frame": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

179 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"y": "float64",
"z": "float64"

}
}

}
}

Response

The maximum number of returned instances can be controlled with the
max_number_of_detected_objects parameter.

object_id: ID of the detected template.

grasps: list of grasps on the detected objects, ordered according to the chosen sorting strat-
egy. Each grasp contains an instance field with information about the detected object, e.g.
its pose. The list of returned grasps will be trimmed to the 100 best grasps if more reachable
grasps are found. Each grasp contains a flag collision_checked and a gripper_id (see
Collision checking within other modules, Section 6.4.2.2).

load_carriers: list of detected load carriers.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

{
"name": "detect_object_extended",
"response": {

"grasps": [
{

"collision_checked": "bool",
"gripper_id": "string",
"id": "string",
"instance": {
"object_id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"uuid": "string"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

180 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"priority": "int8",
"stroke_per_finger_approach_mm": "float64",
"stroke_per_finger_grasp_mm": "float64",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"uuid": "string"

}
],
"load_carriers": [

{
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"object_id": "string",
"return_code": {
"message": "string",
"value": "int16"

},

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

181 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

calibrate_base_plane

Triggers the calibration of the base plane, as described in Base-plane calibration (Section
6.3.6.2).

Details

A successful base-plane calibration is stored persistently on the rc_reason_stack and re-
turned by this service. The base-plane calibration is persistent over firmware updates and
rollbacks.

All images used by the service are guaranteed to be newer than the service trigger time.

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/
→˓calibrate_base_plane

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/calibrate_base_plane

Request

Required arguments:

plane_estimation_method: method to use for base-plane calibration. Valid values
are STEREO, APRILTAG, MANUAL.

pose_frame: see Hand-eye calibration (Section 6.3.6.8).

Potentially required arguments:

plane if plane_estimation_method is MANUAL: plane that will be set as base-plane
calibration.

robot_pose: see Hand-eye calibration (Section 6.3.6.8).

region_of_interest_2d_id: ID of the region of interest for base-plane calibration.

Optional arguments:

offset: offset in meters by which the estimated plane will be shifted towards the
camera.

plane_preference in stereo: whether the plane closest to or farthest from
the camera should be used as base plane. This option can be set only if
plane_estimation_method is STEREO. Valid values are CLOSEST and FARTHEST. If
not set, the default is FARTHEST.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"offset": "float64",

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

182 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"plane": {
"distance": "float64",
"normal": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"plane_estimation_method": "string",
"pose_frame": "string",
"region_of_interest_2d_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"stereo": {

"plane_preference": "string"
}

}
}

Response

plane: calibrated base plane.

timestamp: timestamp of the image set the calibration ran on.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

{
"name": "calibrate_base_plane",
"response": {

"plane": {
"distance": "float64",
"normal": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string"

},
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

Roboception GmbH
Manual: rc_reason_stack

183 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

get_base_plane_calibration

Returns the configured base-plane calibration.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/get_

→˓base_plane_calibration

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_base_plane_calibration

Request

Required arguments:

pose_frame: see Hand-eye calibration (Section 6.3.6.8).

Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 6.3.6.8).

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"pose_frame": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_base_plane_calibration",
"response": {

"plane": {
"distance": "float64",
"normal": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string"

},
"return_code": {

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

184 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"message": "string",
"value": "int16"

}
}

}

delete_base_plane_calibration

Deletes the configured base-plane calibration.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/delete_

→˓base_plane_calibration

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/delete_base_plane_

→˓calibration

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "delete_base_plane_calibration",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_preferred_orientation

Persistently stores the preferred orientation of the TCP to compute the reachability of
the grasps, which is used for filtering and, optionally, sorting the grasps returned by the
detect_object and detect_object_extended service (see Setting the preferred orientation
of the TCP, Section 6.3.6.5).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/set_

→˓preferred_orientation

API version 1 (deprecated)

Roboception GmbH
Manual: rc_reason_stack

185 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/set_preferred_orientation

Request

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string"

}
}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_preferred_orientation",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_preferred_orientation

Returns the preferred orientation of the TCP to compute the reachability of the grasps, which
is used for filtering and, optionally, sorting the grasps returned by the detect_object and
detect_object_extended service (see Setting the preferred orientation of the TCP, Section
6.3.6.5).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/get_

→˓preferred_orientation

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_preferred_orientation

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_preferred_orientation",

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

186 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"response": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_sorting_strategies

Persistently stores the sorting strategy for sorting the grasps and detected objects returned
by the detect_object and detect_object_extended service (see Detection of objects, Sec-
tion 6.3.6.7).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/set_

→˓sorting_strategies

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/set_sorting_strategies

Request

Only one strategy may have a weight greater than 0. If all weight values are set to 0, the
module will use the default sorting strategy.

If the weight for direction is set, the vector must contain the direction vector and
pose_frame must be either camera or external.

If the weight for distance_to_point is set, point must contain the sorting point and
pose_frame must be either camera or external.

If the weight for preferred_orientation is set, the axis can be set to x, y or z to consider
only rotational differences between the respective axes. If axis is empty, the full orientation
difference will be used for sorting.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"direction": {
"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

187 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

},
"distance_to_point": {
"farthest_first": "bool",
"point": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"weight": "float64"

},
"preferred_orientation": {
"axis": "string",
"weight": "float64"

}
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_sorting_strategies",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_sorting_strategies

Returns the sorting strategy for sorting the grasps and detected objects returned by the
detect_object and detect_object_extended service (see Detection of objects, Section
6.3.6.7).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/get_

→˓sorting_strategies

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_sorting_strategies

Request

This service has no arguments.

Response

All weight values are 0 when the module uses the default sorting strategy.

The definition for the response with corresponding datatypes is:

Roboception GmbH
Manual: rc_reason_stack

188 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

{
"name": "get_sorting_strategies",
"response": {
"direction": {

"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"distance_to_point": {
"farthest_first": "bool",
"point": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"weight": "float64"

},
"preferred_orientation": {
"axis": "string",
"weight": "float64"

},
"return_code": {
"message": "string",
"value": "int16"

}
}

}

trigger_dump

Triggers dumping of the detection that corresponds to the given timestamp, or the latest
detection, if no timestamp is given. The dumps are saved to the connected USB drive.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/trigger_

→˓dump

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/trigger_dump

Request

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"comment": "string",
"timestamp": {
"nsec": "int32",
"sec": "int32"

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

189 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

}
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "trigger_dump",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

reset_defaults

Resets all parameters of the module to its default values, as listed in above table. Also
resets preferred orientation and sorting strategies. The reset does not apply to templates
and base-plane calibration.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/reset_

→˓defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/reset_defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.3.6.12 Internal services

The following services for configuring grasps can change in future without notice. Setting, retrieving and
deleting grasps is recommend to be done via the Web GUI.

Roboception GmbH
Manual: rc_reason_stack

190 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

Note: Configuring grasps is global for all templates on the rc_reason_stack and affects all camera
pipelines.

set_grasp

Persistently stores a grasp for the given object template on the rc_reason_stack. All config-
ured grasps are persistent over firmware updates and rollbacks.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/set_

→˓grasp

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/set_grasp

Request

Details for the definition of the grasp type are given in Setting of grasp points (Section
6.3.6.4).

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasp": {
"gripper_id": "string",
"id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"priority": "int8",
"replication": {

"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

191 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

}
},
"step_x_deg": "float64"

},
"stroke_per_finger_approach_mm": "float64",
"stroke_per_finger_grasp_mm": "float64",
"template_id": "string"

}
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_grasp",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_all_grasps

Replaces the list of grasps for the given object template on the rc_reason_stack.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/set_all_

→˓grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/set_all_grasps

Request

Details for the definition of the grasp type are given in Setting of grasp points (Section
6.3.6.4).

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasps": [
{

"gripper_id": "string",
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

192 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"priority": "int8",
"replication": {
"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"stroke_per_finger_approach_mm": "float64",
"stroke_per_finger_grasp_mm": "float64",
"template_id": "string"

}
],
"template_id": "string"

}
}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_all_grasps",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_grasps

Returns all configured grasps which have the requested grasp_ids and belong to the re-
quested template_ids.

Details

This service can be called as follows.

API version 2

Roboception GmbH
Manual: rc_reason_stack

193 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/get_

→˓grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_grasps

Request

If no grasp_ids are provided, all grasps belonging to the requested template_ids are re-
turned. If no template_ids are provided, all grasps with the requested grasp_ids are re-
turned. If neither IDs are provided, all configured grasps are returned.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasp_ids": [
"string"

],
"template_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_grasps",
"response": {
"grasps": [

{
"gripper_id": "string",
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"priority": "int8",
"replication": {
"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

194 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"stroke_per_finger_approach_mm": "float64",
"stroke_per_finger_grasp_mm": "float64",
"template_id": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

delete_grasps

Deletes all grasps with the requested grasp_ids that belong to the requested template_ids.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/delete_

→˓grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/delete_grasps

Request

If no grasp_ids are provided, all grasps belonging to the requested template_ids are
deleted. The template_ids list must not be empty.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasp_ids": [
"string"

],
"template_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "delete_grasps",
"response": {
"return_code": {

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

195 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"message": "string",
"value": "int16"

}
}

}

get_symmetric_grasps

Returns all grasps that are symmetric to the given grasp.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/get_

→˓symmetric_grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_symmetric_grasps

Request

Details for the definition of the grasp type are given in Setting of grasp points (Section
6.3.6.4).

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasp": {
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"replication": {

"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

196 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

},
"step_x_deg": "float64"

},
"template_id": "string"

}
}

}

Response

The first grasp in the returned list is the one that was passed with the service call. If the
object template does not have an exact symmetry, only the grasp passed with the service
call will be returned. If the object template has a continuous symmetry (e.g. a cylindrical
object), only 12 equally spaced sample grasps will be returned.

Details for the definition of the grasp type are given in Setting of grasp points (Section
6.3.6.4).

The definition for the response with corresponding datatypes is:

{
"name": "get_symmetric_grasps",
"response": {

"grasps": [
{

"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"replication": {
"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"template_id": "string"

}
],
"return_code": {

"message": "string",
"value": "int16"

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

197 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

}
}

}

6.3.6.13 Return codes

Each service response contains a return_code, which consists of a value plus an optional message.
A successful service returns with a return_code value of 0. Negative return_code values indicate
that the service failed. Positive return_code values indicate that the service succeeded with additional
information.

Table 6.40: Return codes of the SilhouetteMatch and SilhouetteM-
atchAI module services

Code Description
0 Success
-1 An invalid argument was provided.
-3 An internal timeout occurred, e.g. during object detection.
-4 Data acquisition took longer than allowed.
-7 Data could not be read or written to persistent storage.
-8 Module is not in a state in which this service can be called. E.g. detect_object cannot be

called if there is no base-plane calibration.
-10 New element could not be added as the maximum storage capacity of regions of interest or

templates has been exceeded.
-100 An internal error occurred.
-101 Detection of the base plane failed.
-102 The hand-eye calibration changed since the last base-plane calibration.
-104 Offset between the base plane normal and the camera’s line of sight exceeds 10 degrees.
10 The maximum storage capacity of regions of interest or templates has been reached.
11 An existing element was overwritten.

100 The requested load carrier was not detected in the scene.
101 None of the detected grasps is reachable.
102 The detected load carrier is empty.
103 All detected grasps are in collision.
107 The base plane was not transformed to the current camera pose, e.g. because no robot

pose was provided during base-plane calibration.
108 The template is deprecated.
109 The plane for object detection does not fit to the load carrier, e.g. objects are below the load

carrier floor.
111 The detection result’s pose could not be refined with the point cloud because the template’s

outer contour is not closed.
113 No gripper was found for collision checking.
114 Collision checking during retraction was skipped, e.g. because no load carrier or no

pre-grasp offset were given.
151 The object template has a continuous symmetry.
999 Additional hints for application development

6.3.6.14 Template API

For template upload, download, listing and removal, special REST-API endpoints are provided. Tem-
plates can also be uploaded, downloaded and removed via the Web GUI. The templates include the
grasp points, if grasp points have been configured. Up to 50 templates can be stored persistently on
the rc_reason_stack.

Roboception GmbH
Manual: rc_reason_stack

198 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

GET /templates/rc_silhouettematch
Get list of all rc_silhouettematch templates.

Template request

GET /api/v2/templates/rc_silhouettematch HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": "string"
}

]

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns array of Template)

• 404 Not Found – node not found

Referenced Data Models

• Template (Section 7.2.3)

GET /templates/rc_silhouettematch/{id}
Get a rc_silhouettematch template. If the requested content-type is application/octet-stream, the
template is returned as file.

Template request

GET /api/v2/templates/rc_silhouettematch/<id> HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters

• id (string) – id of the template (required)

Response Headers

• Content-Type – application/json application/ubjson application/octet-stream

Status Codes

• 200 OK – successful operation (returns Template)

• 404 Not Found – node or template not found

Referenced Data Models

• Template (Section 7.2.3)

Roboception GmbH
Manual: rc_reason_stack

199 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.3. Detection & Measure modules

PUT /templates/rc_silhouettematch/{id}
Create or update a rc_silhouettematch template.

Template request

PUT /api/v2/templates/rc_silhouettematch/<id> HTTP/1.1
Accept: multipart/form-data application/json

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters

• id (string) – id of the template (required)

Form Parameters

• file – template or dxf file (required)

• object_height – object height in meters, required when uploading dxf (optional)

• units – Units for dxf file if not embedded in dxf (one of mm, cm, m, in, ft) (optional)

Request Headers

• Accept – multipart/form-data application/json

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns Template)

• 400 Bad Request – Template is not valid or max number of templates reached

• 403 Forbidden – forbidden, e.g. because there is no valid license for this mod-
ule.

• 404 Not Found – node or template not found

• 413 Request Entity Too Large – Template too large

Referenced Data Models

• Template (Section 7.2.3)

DELETE /templates/rc_silhouettematch/{id}
Remove a rc_silhouettematch template.

Template request

DELETE /api/v2/templates/rc_silhouettematch/<id> HTTP/1.1
Accept: application/json application/ubjson

Parameters

• id (string) – id of the template (required)

Request Headers

• Accept – application/json application/ubjson

Roboception GmbH
Manual: rc_reason_stack

200 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14
https://tools.ietf.org/html/rfc7231#section-5.3.2

6.3. Detection & Measure modules

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

• 403 Forbidden – forbidden, e.g. because there is no valid license for this mod-
ule.

• 404 Not Found – node or template not found

6.3.7 CADMatch

6.3.7.1 Introduction

The CADMatch module is an optional module of the rc_reason_stack and requires a separate CAD-
Match license (Section 8.2) to be purchased.

This module provides an out-of-the-box perception solution for 3D object detection and grasping. CAD-
Match targets the detection of 3D objects based on a CAD template for picking with a general gripper.
The objects can be located in a bin or placed arbitrarily in the field of view of the camera.

For the CADMatch module to work, special object templates are required for each type of object to be
detected. Please get in touch with the Roboception support (Contact , Section 10) to order a template
for your CAD file.

Note: This module is pipeline specific. Changes to its settings or parameters only affect the respec-
tive camera pipeline and have no influence on other pipelines running on the rc_reason_stack.
However, the object templates, grasp points and pose priors are stored globally. Setting, changing
or deleting an object template, its grasps or pose priors affects all camera pipelines.

The CADMatch module offers:

• A dedicated page on the rc_reason_stack Web GUI (Section 7.1) for easy setup, configuration,
testing, and application tuning.

• A REST-API interface (Section 7.2) and a KUKA Ethernet KRL Interface (Section 7.5).

• The definition of regions of interest to select relevant volumes in the scene (see RoiDB, Section
6.5.2).

• A load carrier detection functionality for bin-picking applications (see LoadCarrier , Section 6.3.2),
to provide grasps for objects inside a bin only.

• The definition of compartments inside a load carrier to provide grasps for specific volumes of the
bin only.

• The option to use user-defined object pose priors.

• Storing of up to 50 templates.

• The definition of up to 100 grasp points for each template via an interactive visualization in the
Web GUI.

• Collision checking between the gripper and the load carrier, other detected objects and/or the
point cloud.

• Collision checking between the object in the gripper and the load carrier walls during retraction.

• Support for static and robot-mounted cameras and optional integration with the Hand-eye calibra-
tion (Section 6.4.1) module, to provide grasps in the user-configured external reference frame.

• Selection of a sorting strategy to sort the detected objects and returned grasps.

• 3D visualization of the detection results with grasp points and gripper animations in the Web GUI.

Roboception GmbH
Manual: rc_reason_stack

201 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.3. Detection & Measure modules

6.3.7.2 Setting of grasp points

The CADMatch module detects 3D objects in a scene based on a CAD template and returns the poses
of the object origins. To use CADMatch directly in a robot application, up to 100 grasp points can be
defined for each template. A grasp point represents the desired position and orientation of the robot’s
TCP (Tool Center Point) to grasp an object.

Please consult Setting of grasp points (Section 6.3.6.4) for further details.

Setting grasp points in the Web GUI

The rc_reason_stack Web GUI provides an intuitive and interactive way of defining grasp points for
object templates. In a first step, the object template has to be uploaded to the rc_reason_stack. This
can be done in the Web GUI in any pipeline under Modules → CADMatch by clicking on + Add a
new Template in the Templates, Grasps and Pose Priors section, or in Database → Templates in the
CADMatch Templates, Grasps and Pose Priors section. Once the template upload is complete, a dialog
with a 3D visualization of the object template is shown for adding or editing grasp points. The same
dialog appears when editing an existing template.

More details are given in Setting grasp points in the Web GUI (Section 6.3.6.4).

Setting grasp points via the REST-API

Grasp points can be set via the REST-API interface (Section 7.2) using the set_grasp or
set_all_grasps services (see Internal services, Section 6.3.7.11).

More details are given in Setting grasp points via the REST-API (Section 6.3.6.4).

6.3.7.3 Setting of pose priors

The CADMatch module offers the possibility to define prior poses of the objects to be detected. If a
pose prior is given, the object detection will use this pose prior and only refine the given pose. This
speeds up the detection significantly. A pose prior represents the approximate position and orientation
of the object to be detected. The pose can be defined in the camera or the external coordinate frame, if
a hand-eye calibration is available.

Each pose prior consists of an id which must be unique within all pose priors for an object template,
the template_id representing the template the pose prior applies to, the pose and the pose_frame of
the prior. Pose priors can be set via the REST-API interface (Section 7.2), or by using the interactive
visualization in the Web GUI. The Web GUI allows to interactively position the object in the current point
cloud. This can be done in the “Pose Priors” tab during editing a template.

Pose priors should be used in applications where the approximate object poses are known beforehand.
The rc_reason_stack can store up to 50 pose priors per template.

6.3.7.4 Setting the preferred orientation of the TCP

The CADMatch module determines the reachability of grasp points based on the preferred orientation
of the TCP. The preferred orientation can be set via the set_preferred_orientation service call or on
the CADMatch page in the Web GUI. The resulting direction of the TCP’s z axis is used to reject grasps
which cannot be reached by the gripper. Furthermore, the preferred orientation can be used to sort the
reachable grasps by setting the corresponding sorting strategy.

The preferred orientation can be set in the camera coordinate frame or in the external coordinate frame,
in case a hand-eye calibration is available. If the preferred orientation is specified in the external coor-
dinate frame and the sensor is robot mounted, the current robot pose has to be given to each object
detection call. If no preferred orientation is set, the orientation of the left camera (see Coordinate frames
in the rc_visard manual) will be used as the preferred orientation of the TCP.

Roboception GmbH
Manual: rc_reason_stack

202 Rev: 26.01.4
Status: Jan 30, 2026

https://doc.rc-visard.com/latest/en/hardware_spec.html#sect-coordinate-frames

6.3. Detection & Measure modules

6.3.7.5 Setting the sorting strategies

The objects and grasps returned by the detect_object and detect_object_extended service call are
sorted according to a sorting strategy which can be chosen by the user. The following sorting strategies
are available and can be set in the Web GUI (Section 7.1) or using the set_sorting_strategies service
call:

• gravity: highest matches and grasp points along the gravity direction are returned first,

• match_score: matches with the highest match score and grasp points on objects with the highest
match score are returned first,

• preferred_orientation: matches and grasp points with minimal rotation difference of a chosen
axis (or all axes, when axis is empty) with respect to the preferred TCP orientation are returned
first,

• direction: matches and grasp points with the shortest distance along a defined direction vector
in a given pose_frame are returned first.

• distance_to_point: matches and grasp points with the shortest or farthest (if farthest_first is
true) distance from a point in a given pose_frame are returned first.

If no sorting strategy is set or default sorting is chosen in the Web GUI, sorting is done based on a
combination of match_score and the minimal distance from the camera along the z axis of the preferred
orientation of the TCP.

6.3.7.6 Detection of objects

The CADMatch module requires an object template for object detection. This template contains infor-
mation about the 3D shape of the object and prominent edges that can be visible in the camera images.
CADMatch also supports partial object templates, which contain only a specific part of the object that
can be detected well, e.g., in case of occlusions. Furthermore, templates can require a pose prior for
the detection which is then only refined using the image data.

The object detection is a two-stage process consisting of a prior estimation step and a pose refinement
step. First, a pose prior is computed based on the appearance of the object in the camera images.
Second, the pose is refined by using the 3D point cloud and edges in the camera image. For this to
work, the objects to detect must be visible in both left and right camera images. If pose priors are given,
only the pose refinement step is performed based, which decreases runtime significantly.

For triggering the object detection, in general, the following information can be provided to the CAD-
Match module:

• The template ID of the object to be detected in the scene

• The coordinate frame in which the poses of the detected objects and the grasp points shall be
returned (ref. Hand-eye calibration, Section 6.3.7.7).

Optionally, further information can be given to the CADMatch module:

• The IDs of the pose priors which approximately match the poses of the objects to be detected. In
case a template is used that requires a pose prior, one or more pose prior IDs have to be provided.

• The ID of the load carrier which contains the items to be detected.

• A compartment inside the load carrier where to detect objects (see Load carrier compartments,
Section 6.5.1.3).

• The ID of the 3D region of interest where to search for the load carriers if a load carrier is set.
Otherwise, the ID of the 3D region of interest where to search for the objects.

• The current robot pose in case the camera is mounted on the robot and the chosen coordinate
frame for the poses is external, or the preferred orientation is given in the external frame, or the
chosen region of interest is defined in the external frame.

Roboception GmbH
Manual: rc_reason_stack

203 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

• Collision detection information: The ID of the gripper to enable collision checking and optionally
a pre-grasp offset to define a pre-grasp position. Details on collision checking are given below in
CollisionCheck (Section 6.3.7.7).

• Data acquisition mode: The user can choose if a new image dataset is acquired for the detection
(default), or if the detection should be performed on the previously used image dataset. This saves
data acquisition time, e.g. in case several detections with different templates have to be run on
the same image.

On the Web GUI the detection can be tested in the Try Out section of the CADMatch module’s page.

The detected objects are returned in a list of matches, sorted according to the selected sorting strategy
(see Setting the sorting strategies, Section 6.3.7.5). Each detected object includes a uuid (Univer-
sally Unique Identifier) and the timestamp of the oldest image that was used to detect it. The pose
of a detected object corresponds to the pose of the origin of the object template used for detection.
Furthermore, the matching score is given to indicate the quality of the detection.

If the chosen template also has grasp points attached (see Setting of grasp points, Section 6.3.7.2),
a list of grasps for all objects is returned in addition to the list of detected objects. The grasps are
sorted according to the selected sorting strategy (see Setting the sorting strategies, Section 6.3.7.5).
The grasp poses are given in the desired coordinate frame. There are references between the detected
objects and the grasps via their uuids.

For objects with a discrete symmetry (e.g. prismatic objects), all collision-free symmetries of each grasp
point which are reachable according to the given preferred TCP orientation are returned, ordered by the
given sorting strategy.

For objects with a continuous symmetry (e.g. cylindrical objects), all grasps symmetric to each grasp
point on an object are checked for reachability and collisions, and only the best one according to the
given sorting strategy is returned.

The returned matches are visualized with green edges in the Result image on the CADMatch page
of the Web GUI. Matches that were found to be overlapped by other objects or parts of the scene
(if max_object_overlap is smaller than 1) are visualized with red edges in the result image and the
overlapped area is marked by red stripes. Additionally, matches that were filtered out due to low scores,
overlaps or the maximum number of matches are visualized in the Discarded Matches image.

Note: The first detection call with a new object template takes longer than the following detection
calls, because the object template has to be loaded into the CADMatch module first. To avoid this, the
warmup_template service can be used to load a template so that it is ready when the first detection
is triggered.

6.3.7.7 Interaction with other modules

Internally, the CADMatch module depends on, and interacts with other on-board modules as listed
below.

Note: All changes and configuration updates to these modules will affect the performance of the
CADMatch modules.

Camera and depth data

The CADMatch module makes internally use of the following data:

• Rectified images from the Camera module (rc_camera, Section 6.1)

• Disparity, error, and confidence images from the Stereo matching module (rc_stereomatching,
Section 6.2.2), in case a stereo camera is used. The quality parameter of the stereo matching
module must be set to Medium or higher (see Parameters, Section 6.2.2.1). We recommend Full
or High quality for using CADMatch.

Roboception GmbH
Manual: rc_reason_stack

204 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

• Disparity, error, and confidence images from the Orbbec module (rc_orbbec, Section 6.2.4), in
case an Orbbec camera is used

• Disparity, error, and confidence images from the Zivid module (rc_zivid, Section 6.2.3), in case
a zivid camera is used

All processed images are guaranteed to be captured after the module trigger time.

IO and Projector Control

In case the rc_reason_stack is used in conjunction with an external random dot projector and the IO and
Projector Control module (rc_iocontrol, Section 6.4.4), it is recommended to connect the projector to
GPIO Out 1 and set the stereo-camera module’s acquisition mode to SingleFrameOut1 (see Stereo
matching parameters, Section 6.2.2.1), so that on each image acquisition trigger an image with and
without projector pattern is acquired.

Alternatively, the output mode for the GPIO output in use should be set to ExposureAlternateActive
(see Description of run-time parameters, Section 6.4.4.1).

In either case, the Auto Exposure Mode exp_auto_mode should be set to AdaptiveOut1 to optimize the
exposure of both images.

Hand-eye calibration

In case the camera has been calibrated to a robot, the CADMatch module can automatically provide
poses in the robot coordinate frame. For the CADMatch node’s Services (Section 6.3.7.10), the frame
of the output poses can be controlled with the pose_frame argument.

Two different pose_frame values can be chosen:

1. Camera frame (camera). All poses provided by the modules are in the camera frame, and no
prior knowledge about the pose of the camera in the environment is required. This means that the
configured regions of interest and load carriers move with the camera. It is the user’s responsibility
to update the configured poses if the camera frame moves (e.g. with a robot-mounted camera).

2. External frame (external). All poses provided by the modules are in the external frame, con-
figured by the user during the hand-eye calibration process. The module relies on the on-
board Hand-eye calibration module (Section 6.4.1) to retrieve the sensor mounting (static or robot
mounted) and the hand-eye transformation. If the mounting is static, no further information is
needed. If the sensor is robot-mounted, the robot_pose is required to transform poses to and
from the external frame.

Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.

All pose_frame values that are not camera or external are rejected.

If the sensor is robot-mounted, the current robot_pose has to be provided depending on the value of
pose_frame, the definition of the preferred TCP orientation and the sorting direction or sorting point:

• If pose_frame is set to external, providing the robot pose is obligatory.

• If the preferred TCP orientation is defined in external, providing the robot pose is obligatory.

• If the sorting direction is defined in external, providing the robot pose is obligatory.

• If the distance-to-point sorting strategy is defined in external, providing the robot pose is obliga-
tory.

• In all other cases, providing the robot pose is optional.

Roboception GmbH
Manual: rc_reason_stack

205 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

LoadCarrier

The CADMatch module uses the load carrier detection functionality provided by the LoadCarrier module
(rc_load_carrier, Section 6.3.2), with the run-time parameters specified for this module. However, only
one load carrier will be returned and used in case multiple matching load carriers could be found in the
scene. In case multiple load carriers of the same type are visible, a region of interest should be set to
ensure that always the same load carrier is used for the CADMatch module.

CollisionCheck

Collision checking can be easily enabled for grasp computation of the CADMatch module by passing
a collision_detection argument to the detect_object or detect_object_extended service call. It
contains the ID of the used gripper and optionally a pre-grasp offset. The gripper has to be defined in
the GripperDB module (see Setting a gripper , Section 6.5.3.2) and details about collision checking are
given in Collision checking within other modules (Section 6.4.2.2).

Alternatively, grasp points can be assigned individual gripper IDs, and collision checking can be enabled
for all grasp points with gripper IDs by enabling the run-time parameter check_collisions.

If the selected CADMatch template contains a collision geometry and the run-time parameter
check_collisions_with_matches is true, also collisions between the gripper and all other detected
objects (not limited to max_matches) will be checked. The object on which the grasp point to be checked
is located, is excluded from the collision check.

If the run-time parameter check_collisions_with_point_cloud is true, also collisions between the
gripper and a watertight version of the point cloud are checked. If this feature is used with suctions
grippers, it should be ensured that the TCP is defined to be outside the gripper geometry, or that
the grasp points are defined above the object surface. Otherwise every grasp will result in a collision
between the gripper and the point cloud.

If the run-time parameter check_collisions_during_retraction is true and a load carrier and a pre-
grasp offset are given, each grasp point will be checked for collisions between the object in the gripper
and the load carrier walls during retraction. This collision check is performed along the full linear trajec-
tory from the grasp point back to the pre-grasp position.

If collision checking is enabled, only grasps which are collision free or could not be checked for collisions
(e.g. because no gripper was given) will be returned. The result image on top of the CADMatch page of
the Web GUI also shows collision-free grasps in green, unchecked grasps in yellow and colliding grasp
points in red. The detected objects which are considered in the collision check are visualized with their
edges in red.

The CollisionCheck module’s run-time parameters affect the collision detection as described in Colli-
sionCheck Parameters (Section 6.4.2.3).

6.3.7.8 Parameters

The CADMatch module is called rc_cadmatch in the REST-API and is represented in the Web
GUI (Section 7.1) in the desired pipeline under Modules → CADMatch. The user can explore and
configure the rc_cadmatch module’s run-time parameters, e.g. for development and testing, using the
Web GUI or the REST-API interface (Section 7.2).

Parameter overview

This module offers the following run-time parameters:

Roboception GmbH
Manual: rc_reason_stack

206 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

Table 6.41: The rc_cadmatch module’s run-time parameters
Name Type Min Max Default Description
check_collisions bool false true false Whether to check for collisions

when a gripper is defined for a grasp
check_collisions_during_-
retraction

bool false true false Whether to check for collisions be-
tween the object in the gripper and
the load carrier during retraction

check_collisions_with_-
matches

bool false true true Whether to check for collisions
between gripper and detected
matches

check_collisions_with_-
point_cloud

bool false true false Whether to check for collisions be-
tween gripper and point cloud

edge_max_distance float64 0.5 5.0 2.0 Maximum allowed distance in pix-
els between the template edges and
the detected edges in the image

edge_sensitivity float64 0.05 1.0 0.5 Sensitivity of the edge detector
grasp_filter_orientation_-
threshold

float64 0.0 180.0 45.0 Maximum allowed orientation
change between grasp and pre-
ferred orientation in degrees

max_matches int32 1 30 10 Maximum number of matches
max_object_overlap float64 0.0 1.0 1.0 Maximum fraction of object that is

allowed to be overlapped by some-
thing else

min_score float64 0.05 1.0 0.3 Minimum score for matches
only_highest_priority_-
grasps

bool false true false Whether to return only the highest
priority level grasps

prior_selection_mode string - - MatchSorting Method of selecting priors for refine-
ment [MatchSorting, PriorAccessi-
bility]

Description of run-time parameters

Each run-time parameter is represented by a row on the Web GUI’s CADMatch page. The name in the
Web GUI is given in brackets behind the parameter name and the parameters are listed in the order
they appear in the Web GUI:

max_matches (Maximum Matches)

is the maximum number of objects to detect.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?max_matches=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?max_matches=<value>

min_score (Minimum Score)

is the minimum detection score after refinement. The higher this value, the better
2D edges and 3D point cloud must match the given template.

Roboception GmbH
Manual: rc_reason_stack

207 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?min_score=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?min_score=<value>

edge_sensitivity (Edge Sensitivity)

is the sensitivity of the edge detector. The higher the value of this parameter, the
more edges will be used for pose refinement.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?edge_

→˓sensitivity=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?edge_sensitivity=<value>

edge_max_distance (Maximum Edge Distance)

is the maximum allowed distance in pixels between the template edges and the
detected edges in the image during the refinement step.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?edge_max_

→˓distance=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?edge_max_distance=<value>

grasp_filter_orientation_threshold (Grasp Orientation Threshold)

is the maximum deviation of the TCP’s z axis at the grasp point from the z axis of
the TCP’s preferred orientation in degrees. Only grasp points which are within this
threshold are returned. When set to zero, any deviations are valid.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?grasp_filter_

→˓orientation_threshold=<value>

API version 1 (deprecated)

Roboception GmbH
Manual: rc_reason_stack

208 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?grasp_filter_orientation_

→˓threshold=<value>

prior_selection_mode (Prior Selection Mode)

determines the method that is used to select which of the detected priors (initial pose esti-
mates) will be refined. Available options are MatchSorting and PriorAccessibility. When
MatchSorting is chosen, the priors are selected according to the chosen sorting strategy.
This is the default mode. When PriorAccessibility is chosen, the priors are selected ac-
cording to their accessibility for grasping. This mode should be used for chaotic scenes with
many overlapping objects, e.g. in bin picking.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?prior_

→˓selection_mode=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?prior_selection_mode=<value>

max_object_overlap (Maximum Object Overlap)

This parameter determines the maximum fraction of a match that is allowed to be overlapped
by other objects or scene parts relative to the camera’s line of sight. Matches with higher
overlap values will be discarded. A value of 1 disables the overlap check. Use this parameter
to ensure to only get grasps on objects that are not overlapped by others.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?max_object_

→˓overlap=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?max_object_overlap=<value>

only_highest_priority_grasps (Only Highest Priority Grasps)

If set to true, only grasps with the highest priority will be returned. If collision checking is
enabled, only the collision-free grasps among the group of grasps with the highest priority
are returned. This can save computation time and reduce the number of grasps to be parsed
on the application side.

Without collision checking, only grasps of highest priority are returned.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?only_highest_

→˓priority_grasps=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?only_highest_priority_grasps=
→˓<value>

Roboception GmbH
Manual: rc_reason_stack

209 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

check_collisions (Check Collisions)

If this parameter is enabled, collision checking will be performed for all grasps
which have a gripper ID assigned, even when no default gripper is given in the
detect_object or detect_object_extended service call. If a load carrier is used,
the collision check will always be performed between the gripper and the load car-
rier. Collision checking with the point cloud and other matches is only performed
when the corresponding runtime parameters are enabled.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?check_

→˓collisions=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?check_collisions=<value>

check_collisions_with_matches (Check Collisions with Matches)

This parameter is only used when collision checking is enabled by passing a grip-
per to the detect_object or detect_object_extended service call or by enabling
the check_collisions runtime parameter. If check_collisions_with_matches is
set to true, all grasp points will be checked for collisions between the gripper and
all other detected objects (not limited to max_matches), and only grasp points at
which the gripper would not collide with any other detected object will be returned.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?check_

→˓collisions_with_matches=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?check_collisions_with_matches=
→˓<value>

check_collisions_with_point_cloud (Check Collisions with Point Cloud)

This parameter is only used when collision checking is enabled by
passing a gripper to the detect_object or detect_object_extended ser-
vice call or by enabling the check_collisions runtime parameter. If
check_collisions_with_point_cloud is set to true, all grasp points will be
checked for collisions between the gripper and a watertight version of the point
cloud, and only grasp points at which the gripper would not collide with this point
cloud will be returned.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?check_

→˓collisions_with_point_cloud=<value>

API version 1 (deprecated)

Roboception GmbH
Manual: rc_reason_stack

210 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?check_collisions_with_point_

→˓cloud=<value>

check_collisions_during_retraction (Check Collisions during Retraction)

This parameter is only used when collision checking is enabled by pass-
ing a gripper to the detect_object or detect_object_extended service
call or by enabling the check_collisions runtime parameter. When
check_collisions_during_retraction is enabled and a load carrier and a pre-
grasp offset are given, each grasp point will be checked for collisions between
the object in the gripper and the load carrier walls during retraction. This collision
checking is performed along the full linear trajectory from the grasp point back to
the pre-grasp position. Only collision-free grasp points will be returned.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?check_

→˓collisions_during_retraction=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?check_collisions_during_

→˓retraction=<value>

6.3.7.9 Status values

The rc_cadmatch module reports the following status values:

Table 6.42: The rc_cadmatch module’s status values
Name Description
data_acquisition_time Time in seconds required by the last active service to acquire

images
last_timestamp_processed The timestamp of the last processed dataset
last_request_timestamp The timestamp of the last detection request
load_carrier_detection_time Processing time of the last load carrier detection in seconds
object_detection_time Processing time of the last last object detection in seconds
processing_time Processing time of the last detection (including load carrier

detection) in seconds
state The current state of the rc_cadmatch node

The reported state can take one of the following values.

Table 6.43: Possible states of the CADMatch module
State name Description
IDLE The module is idle.
RUNNING The module is running and ready for load carrier detection and object detection.
FATAL A fatal error has occurred.

6.3.7.10 Services

The user can explore and call the rc_cadmatch module’s services, e.g. for development and testing,
using the REST-API interface (Section 7.2) or the rc_reason_stack Web GUI (Section 7.1).

Roboception GmbH
Manual: rc_reason_stack

211 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

The CADMatch modules offer the following services.

detect_object

Triggers the detection of objects as described in Detection of objects (Section 6.3.7.6) based
on an object template.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/detect_object

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/detect_object

Request

Required arguments:

pose_frame: see Hand-eye calibration (Section 6.3.7.7).

template_id: the ID of the template to be detected.

Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 6.3.7.7).

pose_prior_ids: IDs of the pose priors for the items to be detected. In case the
chosen template requires a pose prior for the detection, this argument must be
provided.

Optional arguments:

load_carrier_id: ID of the load carrier which contains the items to be detected.

load_carrier_compartment: compartment inside the load carrier where to detect
items (see Load carrier compartments, Section 6.5.1.3).

region_of_interest_id: if load_carrier_id is set, ID of the 3D region of interest
where to search for the load carriers. Otherwise, ID of the 3D region of interest
where to search for the objects.

collision_detection: see Collision checking within other modules (Section
6.4.2.2).

data_acquisition_mode: if set to CAPTURE_NEW (default), a new image dataset will
be used for the detection. If set to USE_LAST the previous dataset will be used for
the detection.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"data_acquisition_mode": "string",

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

212 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"load_carrier_compartment": {
"box": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"pose_prior_ids": [
"string"

],
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"template_id": "string"

}
}

Response

grasps: list of grasps on the detected objects, ordered according to the chosen sorting
strategy. The match_uuid gives the reference to the detected object in matches this grasp
belongs to. The list of returned grasps will be trimmed to the 100 best grasps if more reach-
able grasps are found. Each grasp contains a flag collision_checked and a gripper_id
(see Collision checking within other modules, Section 6.4.2.2).

load_carriers: list of detected load carriers.

matches: list of detected objects matching the template. The matches are ordered accord-
ing to the chosen sorting strategy. The score indicates how well the object matches the
template. The grasp_uuids refer to the grasps in grasps which are reachable on this object.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

Roboception GmbH
Manual: rc_reason_stack

213 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

{
"name": "detect_object",
"response": {
"grasps": [

{
"collision_checked": "bool",
"gripper_id": "string",
"id": "string",
"match_uuid": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"priority": "int8",
"stroke_per_finger_approach_mm": "float64",
"stroke_per_finger_grasp_mm": "float64",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"uuid": "string"

}
],
"load_carriers": [
{

"height_open_side": "float64",
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

214 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"matches": [

{
"grasp_uuids": [
"string"

],
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"score": "float32",
"template_id": "string",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"uuid": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

detect_object_extended

Triggers the detection of objects in the same way as detect_object, but returns the match
information for each grasp directly instead of as a separate list. This allows for easier pars-
ing, e.g. when the match pose for each grasp is required for placing the object.

Details

This service can be called as follows.

Roboception GmbH
Manual: rc_reason_stack

215 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/detect_object_

→˓extended

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/detect_object_extended

Request

See detect_object service.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"data_acquisition_mode": "string",
"load_carrier_compartment": {

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"pose_prior_ids": [
"string"

],
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

216 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

}
},
"template_id": "string"

}
}

Response

grasps: list of grasps on the detected objects, ordered according to the chosen sorting
strategy. Each grasp contains a match field with information about the detected object, e.g.
its pose. The list of returned grasps will be trimmed to the 100 best grasps if more reachable
grasps are found. Each grasp contains a flag collision_checked and a gripper_id (see
Collision checking within other modules, Section 6.4.2.2).

load_carriers: list of detected load carriers.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

{
"name": "detect_object_extended",
"response": {

"grasps": [
{

"collision_checked": "bool",
"gripper_id": "string",
"id": "string",
"match": {

"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"score": "float32",
"template_id": "string",
"uuid": "string"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

217 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"pose_frame": "string",
"priority": "int8",
"stroke_per_finger_approach_mm": "float64",
"stroke_per_finger_grasp_mm": "float64",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"uuid": "string"

}
],
"load_carriers": [

{
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

218 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

}

set_preferred_orientation

Persistently stores the preferred orientation of the TCP to compute the reachability of
the grasps, which is used for filtering and, optionally, sorting the grasps returned by the
detect_object and detect_object_extended service (see Setting the preferred orientation
of the TCP, Section 6.3.7.4).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/set_preferred_

→˓orientation

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/set_preferred_orientation

Request

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string"

}
}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_preferred_orientation",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_preferred_orientation

Returns the preferred orientation of the TCP to compute the reachability of the grasps, which
is used for filtering and, optionally, sorting the grasps returned by the detect_object and
detect_object_extended service (see Setting the preferred orientation of the TCP, Section
6.3.7.4).

Details

Roboception GmbH
Manual: rc_reason_stack

219 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/get_preferred_

→˓orientation

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/get_preferred_orientation

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_preferred_orientation",
"response": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_sorting_strategies

Persistently stores the sorting strategy for sorting the grasps and matches returned by the
detect_object and detect_object_extended service (see Detection of objects, Section
6.3.7.6).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/set_sorting_

→˓strategies

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/set_sorting_strategies

Request

Only one strategy may have a weight greater than 0. If all weight values are set to 0, the
module will use the default sorting strategy.

If the weight for direction is set, the vector must contain the direction vector and
pose_frame must be either camera or external.

If the weight for distance_to_point is set, point must contain the sorting point and
pose_frame must be either camera or external.

Roboception GmbH
Manual: rc_reason_stack

220 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

If the weight for preferred_orientation is set, the axis can be set to x, y or z to consider
only rotational differences between the respective axes. If axis is empty, the full orientation
difference will be used for sorting.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"direction": {
"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"distance_to_point": {
"farthest_first": "bool",
"point": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"weight": "float64"

},
"gravity": {
"weight": "float64"

},
"match_score": {

"weight": "float64"
},
"preferred_orientation": {
"axis": "string",
"weight": "float64"

}
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_sorting_strategies",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_sorting_strategies

Returns the sorting strategy for sorting the grasps and matches returned by the
detect_object and detect_object_extended service (see Detection of objects, Section
6.3.7.6).

Details

This service can be called as follows.

Roboception GmbH
Manual: rc_reason_stack

221 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/get_sorting_

→˓strategies

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/get_sorting_strategies

Request

This service has no arguments.

Response

All weight values are 0 when the module uses the default sorting strategy.

The definition for the response with corresponding datatypes is:

{
"name": "get_sorting_strategies",
"response": {
"direction": {

"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"distance_to_point": {
"farthest_first": "bool",
"point": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"weight": "float64"

},
"gravity": {
"weight": "float64"

},
"match_score": {

"weight": "float64"
},
"preferred_orientation": {
"axis": "string",
"weight": "float64"

},
"return_code": {
"message": "string",
"value": "int16"

}
}

}

warmup_template

Loads a template so that it is ready when the first detection with this template is triggered.
Without using this service, the first detection with a new template takes longer than the
following ones, because the template is then loaded at the first detection.

Roboception GmbH
Manual: rc_reason_stack

222 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/warmup_template

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/warmup_template

Request

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"template_id": "string"
}

}

The template_id is the ID of the template to be loaded into the CADMatch module.

Response

The definition for the response with corresponding datatypes is:

{
"name": "warmup_template",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

start

Starts the module. If the command is accepted, the module moves to state RUNNING.

Details

The current_state value in the service response may differ from RUNNING if the state tran-
sition is still in process when the service returns.

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/start

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/start

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

Roboception GmbH
Manual: rc_reason_stack

223 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

{
"name": "start",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

stop

Stops the module. If the command is accepted, the module moves to state IDLE.

Details

The current_state value in the service response may differ from IDLE if the state transition
is still in process when the service returns.

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/stop

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/stop

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "stop",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

trigger_dump

Triggers dumping of the detection that corresponds to the given timestamp, or the latest
detection, if no timestamp is given. The dumps are saved to the connected USB drive.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/trigger_dump

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/trigger_dump

Request

The definition for the request arguments with corresponding datatypes is:

Roboception GmbH
Manual: rc_reason_stack

224 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

{
"args": {

"comment": "string",
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "trigger_dump",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

reset_defaults

Resets all parameters of the module to its default values, as listed in above table. Also resets
preferred orientation and sorting strategies. The reset does not apply to templates.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/reset_defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

Roboception GmbH
Manual: rc_reason_stack

225 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

6.3.7.11 Internal services

The following services for configuring grasps and pose priors can change in future without notice. Set-
ting, retrieving and deleting grasps and pose priors is recommended to be done via the Web GUI.

Note: Configuring grasps and pose priors is global for all templates on the rc_reason_stack and
affects all camera pipelines.

set_grasp

Persistently stores a grasp for the given object template on the rc_reason_stack. All config-
ured grasps are persistent over firmware updates and rollbacks.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/set_grasp

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/set_grasp

Request

Details for the definition of the grasp type are given in Setting of grasp points (Section
6.3.7.2).

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasp": {
"gripper_id": "string",
"id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"priority": "int8",
"replication": {

"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

226 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"stroke_per_finger_approach_mm": "float64",
"stroke_per_finger_grasp_mm": "float64",
"template_id": "string"

}
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_grasp",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_all_grasps

Replaces the list of grasps for the given object template on the rc_reason_stack.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/set_all_grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/set_all_grasps

Request

Details for the definition of the grasp type are given in Setting of grasp points (Section
6.3.7.2).

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasps": [
{

"gripper_id": "string",
"id": "string",
"pose": {
"orientation": {
"w": "float64",

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

227 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"priority": "int8",
"replication": {
"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"stroke_per_finger_approach_mm": "float64",
"stroke_per_finger_grasp_mm": "float64",
"template_id": "string"

}
],
"template_id": "string"

}
}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_all_grasps",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_grasps

Returns all configured grasps which have the requested grasp_ids and belong to the re-
quested template_ids.

Details

This service can be called as follows.

Roboception GmbH
Manual: rc_reason_stack

228 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/get_grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/get_grasps

Request

If no grasp_ids are provided, all grasps belonging to the requested template_ids are re-
turned. If no template_ids are provided, all grasps with the requested grasp_ids are re-
turned. If neither IDs are provided, all configured grasps are returned.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasp_ids": [
"string"

],
"template_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_grasps",
"response": {
"grasps": [

{
"gripper_id": "string",
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"priority": "int8",
"replication": {
"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

229 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"stroke_per_finger_approach_mm": "float64",
"stroke_per_finger_grasp_mm": "float64",
"template_id": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

delete_grasps

Deletes all grasps with the requested grasp_ids that belong to the requested template_ids.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/delete_grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/delete_grasps

Request

If no grasp_ids are provided, all grasps belonging to the requested template_ids are
deleted. The template_ids list must not be empty.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasp_ids": [
"string"

],
"template_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "delete_grasps",
"response": {
"return_code": {

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

230 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"message": "string",
"value": "int16"

}
}

}

get_symmetric_grasps

Returns all grasps that are symmetric to the given grasp.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/get_symmetric_

→˓grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/get_symmetric_grasps

Request

Details for the definition of the grasp type are given in Setting of grasp points (Section
6.3.7.2).

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasp": {
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"replication": {

"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

231 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

},
"step_x_deg": "float64"

},
"template_id": "string"

}
}

}

Response

The first grasp in the returned list is the one that was passed with the service call. If the
object template does not have an exact symmetry, only the grasp passed with the service
call will be returned. If the object template has a continuous symmetry (e.g. a cylindrical
object), only 12 equally spaced sample grasps will be returned.

Details for the definition of the grasp type are given in Setting of grasp points (Section
6.3.7.2).

The definition for the response with corresponding datatypes is:

{
"name": "get_symmetric_grasps",
"response": {

"grasps": [
{

"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"replication": {
"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"template_id": "string"

}
],
"return_code": {

"message": "string",
"value": "int16"

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

232 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

}
}

}

set_pose_prior

Persistently stores a pose prior for the given object template on the rc_reason_stack. All
configured pose priors are persistent over firmware updates and rollbacks.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/set_pose_prior

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/set_pose_prior

Request

Details for the definition of the pose_prior type are given in Setting of pose priors (Section
6.3.7.3).

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"pose_prior": {
"id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"template_id": "string"

}
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_pose_prior",
"response": {
"return_code": {
"message": "string",
"value": "int16"

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

233 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

}
}

}

set_all_pose_priors

Replaces the list of pose priors for the given object template on the rc_reason_stack.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/set_all_pose_

→˓priors

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/set_all_pose_priors

Request

Details for the definition of the pose_prior type are given in Setting of pose priors (Section
6.3.7.3).

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"pose_priors": [
{

"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"template_id": "string"

}
],
"template_id": "string"

}
}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_all_pose_priors",
"response": {

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

234 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_pose_priors

Returns all configured pose priors which have the requested pose_prior_ids and belong to
the requested template_ids.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/get_pose_priors

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/get_pose_priors

Request

If no pose_prior_ids are provided, all pose priors belonging to the requested template_ids
are returned. If no template_ids are provided, all pose priors with the requested
pose_prior_ids are returned. If neither IDs are provided, all configured pose priors are
returned.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"pose_prior_ids": [
"string"

],
"template_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_pose_priors",
"response": {
"pose_priors": [
{

"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

235 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"template_id": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

delete_pose_priors

Deletes all pose priors with the requested pose_prior_ids that belong to the requested
template_ids.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/delete_pose_

→˓priors

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/delete_pose_priors

Request

If no pose_prior_ids are provided, all pose priors belonging to the requested template_ids
are deleted. The template_ids list must not be empty.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"pose_prior_ids": [
"string"

],
"template_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "delete_pose_priors",
"response": {
"return_code": {

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

236 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

(continued from previous page)

"message": "string",
"value": "int16"

}
}

}

6.3.7.12 Return codes

Each service response contains a return_code, which consists of a value plus an optional message.
A successful service returns with a return_code value of 0. Negative return_code values indicate
that the service failed. Positive return_code values indicate that the service succeeded with additional
information. The smaller value is selected in case a service has multiple return_code values, but all
messages are appended in the return_code message.

The following table contains a list of common codes:

Table 6.44: Return codes of the CADMatch services
Code Description

0 Success
-1 An invalid argument was provided.
-2 An internal error occurred.
-3 An internal timeout occurred.
-4 Data acquisition took longer than allowed.
-8 Not applicable, stereo quality must be at least Medium.
-9 No valid license for the module.

-10 New element could not be added as the maximum storage capacity of load carriers or
regions of interest has been exceeded.

-11 Sensor not connected, not supported or not ready.
-12 Resource busy, e.g. when trigger_dump is called too frequently.
10 The maximum storage capacity of load carriers or regions of interest has been reached.
11 Existing data was overwritten.
100 The requested load carrier was not detected in the scene.
101 None of the detected grasps is reachable.
102 The detected load carrier is empty.
103 All detected grasps are in collision.
106 The list of returned grasps has been trimmed to the 100 best grasps.
110 Hints for setting up the application, e.g. reducing the distance from the camera, setting a

region of interest.
113 No gripper was found for collision checking.
114 Collision checking during retraction was skipped, e.g. because no load carrier or no

pre-grasp offset were given.
151 The object template has a continuous symmetry.
152 The objects are outside the given region of interest, outside the load carrier or outside the

image.
153 No edges could be detected in the camera image. Check the Edge Sensitivity.
999 Additional hints for application development

6.3.7.13 Template API

For template upload, download, listing and removal, special REST-API endpoints are provided. Tem-
plates can also be uploaded, downloaded and removed via the Web GUI. The templates include the
grasp points and pose priors, if grasp points or pose priors have been configured. Up to 50 templates
can be stored persistently on the rc_reason_stack.

Roboception GmbH
Manual: rc_reason_stack

237 Rev: 26.01.4
Status: Jan 30, 2026

6.3. Detection & Measure modules

GET /templates/rc_cadmatch
Get list of all rc_cadmatch templates.

Template request

GET /api/v2/templates/rc_cadmatch HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": "string"
}

]

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns array of Template)

• 404 Not Found – node not found

Referenced Data Models

• Template (Section 7.2.3)

GET /templates/rc_cadmatch/{id}
Get a rc_cadmatch template. If the requested content-type is application/octet-stream, the tem-
plate is returned as file.

Template request

GET /api/v2/templates/rc_cadmatch/<id> HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters

• id (string) – id of the template (required)

Response Headers

• Content-Type – application/json application/ubjson application/octet-stream

Status Codes

• 200 OK – successful operation (returns Template)

• 404 Not Found – node or template not found

Referenced Data Models

• Template (Section 7.2.3)

Roboception GmbH
Manual: rc_reason_stack

238 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.3. Detection & Measure modules

PUT /templates/rc_cadmatch/{id}
Create or update a rc_cadmatch template.

Template request

PUT /api/v2/templates/rc_cadmatch/<id> HTTP/1.1
Accept: multipart/form-data application/json

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters

• id (string) – id of the template (required)

Form Parameters

• file – template file (required)

Request Headers

• Accept – multipart/form-data application/json

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns Template)

• 400 Bad Request – Template is not valid or max number of templates reached

• 403 Forbidden – forbidden, e.g. because there is no valid license for this mod-
ule.

• 404 Not Found – node or template not found

• 413 Request Entity Too Large – Template too large

Referenced Data Models

• Template (Section 7.2.3)

DELETE /templates/rc_cadmatch/{id}
Remove a rc_cadmatch template.

Template request

DELETE /api/v2/templates/rc_cadmatch/<id> HTTP/1.1
Accept: application/json application/ubjson

Parameters

• id (string) – id of the template (required)

Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Roboception GmbH
Manual: rc_reason_stack

239 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

6.4. Configuration modules

Status Codes

• 200 OK – successful operation

• 403 Forbidden – forbidden, e.g. because there is no valid license for this mod-
ule.

• 404 Not Found – node or template not found

6.4 Configuration modules

The rc_reason_stack provides several configuration modules which enable the user to configure the
rc_reason_stack for specific applications.

The configuration modules are:

• Hand-eye calibration (rc_hand_eye_calibration, Section 6.4.1) enables the user to calibrate
the camera with respect to a robot, either via the Web GUI or the REST-API.

• CollisionCheck (rc_collision_check, Section 6.4.2) provides an easy way to check if a gripper
is in collision.

• Camera calibration (rc_stereocalib, Section 6.4.3) enables the user to check and perform
camera calibration via the WEB GUI (Section 7.1).

• IO and Projector Control (rc_iocontrol, Section 6.4.4) provides control over the camera’s
general purpose inputs and outputs with special modes for controlling an external random
dot projector.

These modules are pipeline specific, which means that they run inside each camera pipeline. Changes
to their settings or parameters only affect the corresponding pipeline and have no influence on the other
camera pipelines running on the rc_reason_stack.

6.4.1 Hand-eye calibration

For applications, in which the camera is integrated into one or more robot systems, it needs to be
calibrated w.r.t. some robot reference frames. For this purpose, the rc_reason_stack is shipped with
an on-board calibration routine called the hand-eye calibration module. It is a base module which is
available on every rc_reason_stack.

Note: This module is pipeline specific. Changes to its settings or parameters only affect the respec-
tive camera pipeline and have no influence on other pipelines running on the rc_reason_stack.

Note: The implemented calibration routine is completely agnostic about the user-defined robot frame
to which the camera is calibrated. It might be a robot’s end-effector (e.g., flange or tool center point)
or any point on the robot structure. The method’s only requirement is that the pose (i.e., translation
and rotation) of this robot frame w.r.t. a user-defined external reference frame (e.g., world or robot
mounting point) is exactly observable by the robot controller and can be reported to the calibration
module.

The Calibration routine (Section 6.4.1.3) itself is an easy-to-use multi-step procedure using a calibration
grid which can be obtained from Roboception.

6.4.1.1 Calibration interfaces

The following two interfaces are offered to conduct hand-eye calibration:

Roboception GmbH
Manual: rc_reason_stack

240 Rev: 26.01.4
Status: Jan 30, 2026

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.4. Configuration modules

1. All services and parameters of this module required to conduct the hand-eye calibration program-
matically are exposed by the rc_reason_stack ’s REST-API interface (Section 7.2). The respective
node name of this module is rc_hand_eye_calibration and the respective service calls are doc-
umented Services (Section 6.4.1.5).

Note: The described approach requires a network connection between the rc_reason_stack
and the robot controller to pass robot poses from the controller to the rc_reason_stack ’s cali-
bration module.

2. For use cases where robot poses cannot be passed programmatically to the rc_reason_stack ’s
hand-eye calibration module, the Web GUI’s Hand-Eye Calibration page under Configuration in
the desired pipeline offers a guided process to conduct the calibration routine manually.

Note: During the process, the described approach requires the user to manually enter into
the Web GUI robot poses, which need to be accessed from the respective robot-teaching or
handheld device.

6.4.1.2 Camera mounting

As illustrated in Fig. 6.15 and Fig. 6.17, two different use cases w.r.t. to the mounting of the camera
generally have to be considered:

a. The camera is mounted on the robot, i.e., it is mechanically fixed to a robot link (e.g., at its flange
or a flange-mounted tool), and hence moves with the robot.

b. The camera is not mounted on the robot but is fixed to a table or other place in the robot’s vicinity
and remains at a static position w.r.t. the robot.

While the general Calibration routine (Section 6.4.1.3) is very similar in both use cases, the calibration
process’s output, i.e., the resulting calibration transform, will be semantically different, and the fixture of
the calibration grid will also differ.

Calibration with a robot-mounted camera When calibrating a robot-mounted camera with the robot,
the calibration grid has to be secured in a static position w.r.t. the robot, e.g., on a table or some
other fixed-base coordinate system as sketched in Fig. 6.15.

Warning: It is extremely important that the calibration grid does not move during step 2
of the Calibration routine (Section 6.4.1.3). Securely fixing its position to prevent unintended
movements such as those caused by vibrations, moving cables, or the like is therefore strongly
recommended.

The result of the calibration (step 3 of the Calibration routine, Section 6.4.1.3) is a pose Trobot
camera de-

scribing the (previously unknown) relative positional and rotational transformation from the camera
frame into the user-selected robot frame such that

probot = Rrobot
camera · pcamera + trobot

camera , (6.1)

where probot = (𝑥, 𝑦, 𝑧)𝑇 is a 3D point with its coordinates expressed in the robot frame, pcamera is
the same point represented in the camera coordinate frame, and Rrobot

camera as well as trobot
camera are the

corresponding 3×3 rotation matrix and 3×1 translation vector of the pose Trobot
camera, respectively. In

practice, in the calibration result and in the provided robot poses, the rotation is defined by Euler
angles or as quaternion instead of a rotation matrix (see Pose formats, Section 11.1).

Roboception GmbH
Manual: rc_reason_stack

241 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

robot

ext

camera

T robot
ext

Tcamera
robot

calibration grid

Fig. 6.15: Important frames and transformations for calibrating a camera that is mounted on a general
robot. The camera is mounted with a fixed relative position to a user-defined robot frame (e.g., flange
or TCP). It is important that the pose Text

robot of this robot frame w.r.t. a user-defined external reference
frame ext is observable during the calibration routine. The result of the calibration process is the de-
sired calibration transformation Trobot

camera, i.e., the pose of the camera frame within the user-defined robot
frame.

Additional user input is required if the movement of the robot is constrained and the robot can
rotate the Tool Center Point (TCP) only around one axis. This is typically the case for robots with
four Degrees Of Freedom (4DOF) that are often used for palletizing tasks. In this case, the user
must specify which axis of the robot frame is the rotation axis of the TCP. Further, the signed offset
from the TCP to the camera coordinate system along the TCP rotation axis has to be provided.
Fig. 6.16 illustrates the situation.

For the rc_visard or rc_visard NG, the camera coordinate system is located in the optical center of
the left camera. The approximate location is given in Coordinate frames in the rc_visard manual.

robot

ext

camera

T robot
ext Tcamera

robot

calibration grid

TCP rotation axis

TCP offset

Fig. 6.16: In case of a 4DOF robot, the TCP rotation axis and the offset from the TCP to the camera
coordinate system along the TCP rotation axis must be provided. In the illustrated case, this offset is
negative.

Calibration with a statically-mounted camera In use cases where the camera is positioned statically
w.r.t. the robot, the calibration grid needs to be mounted to the robot as shown for example in Fig.
6.17 and Fig. 6.18.

Roboception GmbH
Manual: rc_reason_stack

242 Rev: 26.01.4
Status: Jan 30, 2026

https://doc.rc-visard.com/latest/en/hardware_spec.html#sect-coordinate-frames

6.4. Configuration modules

Note: The hand-eye calibration module is completely agnostic about the exact mounting and
positioning of the calibration grid w.r.t. the user-defined robot frame. That means, the relative
positioning of the calibration grid to that frame neither needs to be known, nor it is relevant for
the calibration routine, as shown in Fig. 6.18.

Warning: It is extremely important that the calibration grid is attached securely to the robot
such that it does not change its relative position w.r.t. the user-defined robot frame during step
2 of the Calibration routine (Section 6.4.1.3).

In this use case, the result of the calibration (step 3 of the Calibration routine, Section 6.4.1.3) is the
pose Text

camera describing the (previously unknown) relative positional and rotational transformation
between the camera frame and the user-selected external reference frame ext such that

pext = Rext
camera · pcamera + text

camera , (6.2)

where pext = (𝑥, 𝑦, 𝑧)𝑇 is a 3D point with its coordinates expressed in the external reference frame
ext, pcamera is the same point represented in the camera coordinate frame, and Rext

camera as well as
text

camera are the corresponding 3× 3 rotation matrix and 3× 1 translation vector of the pose Text
camera,

respectively. In practice, in the calibration result and in the provided robot poses, the rotation is
defined by Euler angles or as quaternion instead of a rotation matrix (see Pose formats, Section
11.1).

robot

ext

camera

T robot
ext Tcamera

ext

calibration

grid

Fig. 6.17: Important frames and transformations for calibrating a statically mounted camera: The latter
is mounted with a fixed position relative to a user-defined external reference frame ext (e.g., the world
coordinate frame or the robot’s mounting point). It is important that the pose Text

robot of the user-defined
robot frame w.r.t. this frame is observable during the calibration routine. The result of the calibration
process is the desired calibration transformation Text

camera, i.e., the pose of the camera frame in the user-
defined external reference frame ext.

Roboception GmbH
Manual: rc_reason_stack

243 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

robot

camera

robot

camera

Fig. 6.18: Alternate mounting options for attaching the calibration grid to the robot

Additional user input is required if the movement of the robot is constrained and the robot can
rotate the Tool Center Point (TCP) only around one axis. This is typically the case for robots with
four Degrees Of Freedom (4DOF) that are often used for palletizing tasks. In this case, the user
must specify which axis of the robot frame is the rotation axis of the TCP. Further, the signed
offset from the TCP to the visible surface of the calibration grid along the TCP rotation axis has to
be provided. The grid must be mounted such that the TCP rotation axis is orthogonal to the grid.
Fig. 6.19 illustrates the situation.

ext

camera

T robot
ext

Tcamera
ext

calibration
grid

robot

TCP rotation axis

TCP offset

Fig. 6.19: In case of a 4DOF robot, the TCP rotation axis and the offset from the TCP to the visible
surface of the grid along the TCP rotation axis must be provided. In the illustrated case, this offset is
negative.

6.4.1.3 Calibration routine

The hand-eye calibration can be performed manually using the Web GUI (Section 7.1) or program-
matically via the REST-API interface (Section 7.2). The general calibration routine will be described
by following the steps of the hand-eye calibration wizard provided on the Web GUI. This wizard can
be found in the rc_reason_stack ’s Web GUI in the desired pipeline under Configuration → Hand-Eye
Calibration. References to the corresponding REST-API calls are provided at the appropriate places.

Roboception GmbH
Manual: rc_reason_stack

244 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

Step 1: Hand-Eye Calibration Status

The starting page of the hand-eye calibration wizard shows the current status of the hand-eye cali-
bration. If a hand-eye calibration is saved on the rc_reason_stack, the calibration transformation is
displayed here (see Fig. 6.20).

Fig. 6.20: Current status of the hand-eye calibration in case a hand-eye calibration is saved

To query the hand-eye calibration status programmatically, the module’s REST-API offers the
get_calibration service call (see Services, Section 6.4.1.5). An existing hand-eye calibration can be
removed by pressing Remove Calibration or using remove_calibration in the REST-API (see Services,
Section 6.4.1.5).

To start a new hand-eye calibration, click on Perform Hand-Eye Calibration or Next.

Step 2: Checking Grid Detection

To achieve good calibration results, the images should be well exposed so that the calibration grid can be
detected accurately and reliably. In this step, the grid detection can be checked and the camera settings
can be adjusted if necessary. In case parts of the calibration grid are overexposed, the respective
squares of the calibration grid will be highlighted in red. A successful grid detection is visualized by
green check marks on every square of the calibration grid and a thick green border around the grid as
shown in Fig. 6.21.

Roboception GmbH
Manual: rc_reason_stack

245 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

Fig. 6.21: Checking the calibration grid detection

Step 3: Record Poses

In this step, the user records images of the calibration grid at several different robot poses. These poses
must each ensure that the calibration grid is completely visible in the left camera image. Furthermore,
the robot poses need to be selected properly to achieve a variety of different perspectives for the camera
to perceive the calibration grid. Fig. 6.22 shows a schematic recommendation of four different grid
positions which should be recorded from a close and a far point of view, resulting in eight images for the
calibration.

Roboception GmbH
Manual: rc_reason_stack

246 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

Fig. 6.22: Recommended views on the calibration grid during the calibration procedure. In case of a
4DOF robot, other views have to be chosen, which should be as different as possible.

Warning: Calibration quality, i.e., the accuracy of the calculated calibration result, depends on the
calibration-grid views provided. The more diverse the perspectives are, the better is the calibra-
tion. Choosing very similar views, i.e., varying the robot pose only slightly before recording a new
calibration pose, may lead to inaccurate estimation of the desired calibration transformation.

After the robot reaches each calibration pose, the corresponding pose Text
robot of the user-defined robot

frame in the user-defined external reference frame ext needs to be reported to the hand-eye calibra-
tion module. For this purpose, the module offers different slots to store the reported poses and the
corresponding left camera images. All filled slots will then be used to calculate the desired calibra-
tion transformation between the camera frame and either the user-defined robot frame (robot-mounted
camera) or the user-defined external reference frame ext (static camera).

In the Web GUI, the user can choose between many different pose formats for providing the calibration
poses (see Pose formats, Section 11.1). When calibrating using the REST-API, the poses are always
given in XYZ+quaternion. The Web GUI offers eight slots (Close View 1, Close View 2, etc.) for the user
to fill manually with robot poses. Next to each slot, a figure suggests a respective dedicated viewpoint
on the grid. For each slot, the robot should be operated to achieve the suggested view.

Roboception GmbH
Manual: rc_reason_stack

247 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

Fig. 6.23: Filling the first slot in the hand-eye calibration process for a statically mounted camera

To record a calibration pose, click on Set Pose for the respective slot and enter the robot frame’s pose
into the respective text fields. The pose is then stored with the corresponding camera image by clicking
the Take Picture to Proceed button. This will save the calibration pose in the respective slot.

To transmit the poses programmatically, the module’s REST-API offers the set_pose service call (see
Services, Section 6.4.1.5).

Note: The user’s acquisition of robot pose data depends on the robot model and manufacturer – it
might be read from a teaching or handheld device, which is shipped with the robot.

Warning: Please be careful to correctly and accurately enter the values; even small variations or
typos may lead to calibration-process failure.

The Web GUI displays the currently saved poses (only with slot numbers from 0 to 7) with their camera

Roboception GmbH
Manual: rc_reason_stack

248 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

images and also allows to delete them by clicking Delete Pose to remove a single pose, or clicking
Clear all Poses to remove all poses. In the REST-API the currently stored poses can be retrieved
via get_poses and removed via delete_poses for single poses or reset_calibration for removing all
poses (see Services, Section 6.4.1.5).

When at least four poses are set, the user can continue to the computation of the calibration result by
pressing Next.

Note: To successfully calculate the hand-eye calibration transformation, at least four different robot
calibration poses need to be reported and stored in slots. However, to prevent errors induced by
possible inaccurate measurements, at least eight calibration poses are recommended.

Step 4: Compute Calibration

Before computing the calibration result, the user has to provide the correct calibration parameters.
These include the exact calibration grid dimensions and the sensor mounting type. The Web GUI also
offers settings for calibrating 4DOF robots. In this case, the rotation axis, as well as the offset from
the TCP to the camera coordinate system (robot-mounted camera) or grid surface (statically mounted
camera) must be given. For the REST-API, the respective parameters are listed in Parameters (Section
6.4.1.4).

Fig. 6.24: Defining hand-eye calibration parameters and computing the calibration result via the
rc_reason_stack ’s Web GUI

Roboception GmbH
Manual: rc_reason_stack

249 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

When the parameters are correct, the desired calibration transformation can be computed from the
collected poses and camera images by clicking Compute Calibration. The REST-API offers this func-
tionality via the calibrate service call (see Services, Section 6.4.1.5).

Depending on the way the camera is mounted, the calibration result contains the transformation (i.e.,
the pose) between the camera frame and either the user-defined robot frame (robot-mounted cam-
era) or the user-defined external reference frame ext (statically mounted camera); see Camera mount-
ing (Section 6.4.1.2).

To enable users to judge the quality of the resulting calibration transformation, the translational and
rotational calibration errors are reported, which are computed from the variance of the calibration result.

If the calibration error is not acceptable, the user can change the calibration parameters and recompute
the result, or return to step 3 of the calibration procedure and add more poses or update poses.

To save the calibration result, press Save Calibration or use the REST-API save_calibration service
call (see Services, Section 6.4.1.5).

6.4.1.4 Parameters

The hand-eye calibration module is called rc_hand_eye_calibration in the REST-API and is repre-
sented in the Web GUI (Section 7.1) in the desired pipeline under Configuration → Hand-Eye Calibra-
tion. The user can change the calibration parameters there or use the REST-API interface (Section
7.2).

Parameter overview

This module offers the following run-time parameters:

Table 6.45: The rc_hand_eye_calibration module’s run-time pa-
rameters

Name Type Min Max Default Description
grid_height float64 0.0 10.0 0.0 The height of the calibration pattern

in meters
grid_width float64 0.0 10.0 0.0 The width of the calibration pattern

in meters
robot_mounted bool false true true Whether the camera is mounted on

the robot
tag_ids string - - - Optional, comma separated list of

AprilTag IDs that will be calibrated
too

tcp_offset float64 -10.0 10.0 0.0 Offset from TCP along
tcp_rotation_axis

tcp_rotation_axis int32 -1 2 -1 -1 for off, 0 for x, 1 for y, 2 for z

Description of run-time parameters

The parameter descriptions are given with the corresponding Web GUI names in brackets.

grid_width (Width)

Width of the calibration grid in meters. The width should be given with a very high accuracy,
preferably with sub-millimeter accuracy.

Via the REST-API, this parameter can be set as follows.

API version 2

Roboception GmbH
Manual: rc_reason_stack

250 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/parameters?
→˓grid_width=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/parameters?grid_width=<value>

grid_height (Height)

Height of the calibration grid in meters. The height should be given with a very high accuracy,
preferably with sub-millimeter accuracy.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/parameters?
→˓grid_height=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/parameters?grid_height=<value>

robot_mounted (Sensor Mounting)

If set to true, the camera is mounted on the robot. If set to false, the camera is mounted
statically and the calibration grid is mounted on the robot.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/parameters?
→˓robot_mounted=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/parameters?robot_mounted=<value>

tcp_offset (TCP Offset)

The signed offset from the TCP to the camera coordinate system (robot-mounted sensor) or
the visible surface of the calibration grid (statically mounted sensor) along the TCP rotation
axis in meters. This is required if the robot’s movement is constrained and it can rotate its
TCP only around one axis (e.g., 4DOF robot).

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/parameters?
→˓tcp_offset=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/parameters?tcp_offset=<value>

Roboception GmbH
Manual: rc_reason_stack

251 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

tcp_rotation_axis (TCP Rotation Axis)

The axis of the robot frame around which the robot can rotate its TCP. 0 is used for X, 1 for Y
and 2 for the Z axis. This is required if the robot’s movement is constrained and it can rotate
its TCP only around one axis (e.g., 4DOF robot). -1 means that the robot can rotate its TCP
around two independent rotation axes. tcp_offset is ignored in this case.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/parameters?
→˓tcp_rotation_axis=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/parameters?tcp_rotation_axis=
→˓<value>

6.4.1.5 Services

The REST-API service calls offered to programmatically conduct the hand-eye calibration and to restore
this module’s parameters are explained below.

get_calibration

returns the hand-eye calibration currently stored on the rc_reason_stack.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/services/
→˓get_calibration

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/get_calibration

Request

This service has no arguments.

Response

The field error gives the calibration error in pixels which is computed from the translational
error translation_error_meter and the rotational error rotation_error_degree. This value
is only given for compatibility with older versions. The translational and rotational errors
should be preferred.

Table 6.46: Return codes of the get_calibration service call
status success Description

0 true returned valid calibration pose
2 false calibration result is not available

The definition for the response with corresponding datatypes is:

Roboception GmbH
Manual: rc_reason_stack

252 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

{
"name": "get_calibration",
"response": {
"error": "float64",
"message": "string",
"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"robot_mounted": "bool",
"rotation_error_degree": "float64",
"status": "int32",
"success": "bool",
"tags": [

{
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"size": "float64"

}
],
"translation_error_meter": "float64"

}
}

remove_calibration

removes the persistent hand-eye calibration on the rc_reason_stack. After this call the
get_calibration service reports again that no hand-eye calibration is available. This ser-
vice call will also delete all the stored calibration poses and corresponding camera images
in the slots.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/services/
→˓remove_calibration

API version 1 (deprecated)

Roboception GmbH
Manual: rc_reason_stack

253 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/remove_calibration

Request

This service has no arguments.

Response

Table 6.47: Return codes of the get_calibration service call
status success Description

0 true removed persistent calibration, device reports as uncalibrated
1 true no persistent calibration found, device reports as uncalibrated
2 false could not remove persistent calibration

The definition for the response with corresponding datatypes is:

{
"name": "remove_calibration",
"response": {
"message": "string",
"status": "int32",
"success": "bool"

}
}

set_pose

allows to provide a robot pose as calibration pose to the hand-eye calibration routine and
records the current image of the calibration grid.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/services/
→˓set_pose

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/set_pose

Request

The slot argument is used to assign unique numbers to the different calibration poses. The
range for slot is from 0 to 15. At each instant when set_pose is called, an image is recorded.
This service call fails if the grid was undetectable in the current image.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

254 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

(continued from previous page)

"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"slot": "uint32"

}
}

Response

Table 6.48: Return codes of the set_pose service call
status success Description

1 true pose stored successfully
3 true pose stored successfully; collected enough poses for calibration,

i.e., ready to calibrate
4 false calibration grid was not detected, e.g., not fully visible in camera

image
8 false no image data available

12 false given orientation values are invalid
13 false invalid slot number

The field overexposed indicates if parts of the calibration grid were overexposed in this im-
age.

The definition for the response with corresponding datatypes is:

{
"name": "set_pose",
"response": {
"message": "string",
"overexposed": "bool",
"status": "int32",
"success": "bool"

}
}

get_poses

returns the robot poses that are currently stored for the hand-eye calibration routine.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/services/
→˓get_poses

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/get_poses

Request

This service has no arguments.

Response

Roboception GmbH
Manual: rc_reason_stack

255 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

Table 6.49: Return codes of the get_poses service call
status success Description

0 true stored poses are returned
1 true no calibration pose available

The field overexposed indicates if parts of the calibration grid were overexposed in this im-
age.

The definition for the response with corresponding datatypes is:

{
"name": "get_poses",
"response": {
"message": "string",
"poses": [

{
"overexposed": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"slot": "uint32",
"tag_ids": [
"string"

]
}

],
"status": "int32",
"success": "bool"

}
}

delete_poses

deletes the calibration poses and corresponding images with the specified slots.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/services/
→˓delete_poses

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/delete_poses

Request

Roboception GmbH
Manual: rc_reason_stack

256 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

The slots argument specifies which calibration poses should be deleted. If no slots are
provided, nothing will be deleted.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"slots": [
"uint32"

]
}

}

Response

Table 6.50: Return codes of the delete_poses service call
status success Description

0 true poses successfully deleted
1 true no slots given

The definition for the response with corresponding datatypes is:

{
"name": "delete_poses",
"response": {
"message": "string",
"status": "int32",
"success": "bool"

}
}

reset_calibration

deletes all previously provided poses and corresponding images. The last saved calibration
result is reloaded. This service might be used to (re-)start the hand-eye calibration from
scratch.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/services/
→˓reset_calibration

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/reset_calibration

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_calibration",
"response": {

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

257 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

(continued from previous page)

"message": "string",
"status": "int32",
"success": "bool"

}
}

calibrate

calculates and returns the hand-eye calibration transformation with the robot poses config-
ured by the set_pose service.

Details

save_calibration must be called to make the calibration available for other modules via the
get_calibration service call and to store it persistently.

Note: For calculating the hand-eye calibration transformation at least four robot calibra-
tion poses are required (see set_pose service). However, eight calibration poses are
recommended.

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/services/
→˓calibrate

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/calibrate

Request

This service has no arguments.

Response

The field error gives the calibration error in pixels which is computed from the translational
error translation_error_meter and the rotational error rotation_error_degree. This value
is only given for compatibility with older versions. The translational and rotational errors
should be preferred.

Table 6.51: Return codes of the calibrate service call
status success Description

0 true calibration successful, returned calibration result
1 false not enough poses to perform calibration
2 false calibration result is invalid, please verify the input data
3 false given calibration grid dimensions are not valid
4 false insufficient rotation, tcp_offset and tcp_rotation_axis must be

specified
5 false sufficient rotation available, tcp_rotation_axis must be set to -1
6 false poses are not distinct enough from each other

The definition for the response with corresponding datatypes is:

{
"name": "calibrate",
"response": {

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

258 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

(continued from previous page)

"error": "float64",
"message": "string",
"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"robot_mounted": "bool",
"rotation_error_degree": "float64",
"status": "int32",
"success": "bool",
"tags": [

{
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"size": "float64"

}
],
"translation_error_meter": "float64"

}
}

save_calibration

persistently saves the result of hand-eye calibration to the rc_reason_stack and overwrites
the existing one. The stored result can be retrieved any time by the get_calibration ser-
vice. This service call will also delete all the stored calibration poses and corresponding
camera images in the slots.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/services/
→˓save_calibration

API version 1 (deprecated)

Roboception GmbH
Manual: rc_reason_stack

259 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/save_calibration

Request

This service has no arguments.

Response

Table 6.52: Return codes of the save_calibration service call
status success Description

0 true calibration saved successfully
1 false could not save calibration file
2 false calibration result is not available

The definition for the response with corresponding datatypes is:

{
"name": "save_calibration",
"response": {

"message": "string",
"status": "int32",
"success": "bool"

}
}

set_calibration

sets the hand-eye calibration transformation with arguments of this call.

Details

The calibration transformation is expected in the same format as returned by the calibrate
and get_calibration calls. The given calibration information is also stored persistently on
the sensor by internally calling save_calibration.

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/services/
→˓set_calibration

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/set_calibration

Request

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

260 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

(continued from previous page)

"y": "float64",
"z": "float64"

}
},
"robot_mounted": "bool",
"tags": [

{
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"size": "float64"

}
]

}
}

Response

Table 6.53: Return codes of the set_calibration service call
status success Description

0 true setting the calibration transformation was successful
12 false given orientation values are invalid

The definition for the response with corresponding datatypes is:

{
"name": "set_calibration",
"response": {
"message": "string",
"status": "int32",
"success": "bool"

}
}

reset_defaults

restores and applies the default values for this module’s parameters (“factory reset”). Does
not affect the calibration result itself or any of the slots saved during calibration. Only
parameters such as the grid dimensions and the mount type will be reset.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/services/
→˓reset_defaults

Roboception GmbH
Manual: rc_reason_stack

261 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/reset_defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.4.2 CollisionCheck

6.4.2.1 Introduction

The CollisionCheck module is an optional on-board module of the rc_reason_stack and is licensed
with any of the modules ItemPick and ItemPickAI (Section 6.3.4) and BoxPick (Section 6.3.5) or CAD-
Match (Section 6.3.7) and SilhouetteMatch and SilhouetteMatchAI (Section 6.3.6). Otherwise it requires
a separate CollisionCheck license (Section 8.2) to be purchased.

The module provides an easy way to check if a gripper is in collision with a load carrier, the point
cloud (only in combination with CADMatch (Section 6.3.7) and SilhouetteMatch and SilhouetteM-
atchAI (Section 6.3.6)), or other detected objects (only in combination with CADMatch (Section 6.3.7)
and SilhouetteMatch and SilhouetteMatchAI (Section 6.3.6)). It is integrated with the ItemPick and Item-
PickAI (Section 6.3.4) and BoxPick (Section 6.3.5) and CADMatch (Section 6.3.7) and SilhouetteMatch
and SilhouetteMatchAI (Section 6.3.6) modules, but can be used as standalone product. The models
of the grippers for collision checking have to be defined in the GripperDB (Section 6.5.3) module.

Warning: Collisions are checked only between the load carrier and the gripper, not
the robot itself, the flange, other objects or the item located in the robot gripper. Only
if check_collisions_with_point_cloud is enabled in the respective detection module, col-
lisions between the gripper and a watertight version of the point cloud will be checked.
Only in combination with CADMatch (Section 6.3.7) and SilhouetteMatch and SilhouetteM-
atchAI (Section 6.3.6), and only in case the selected template contains a collision geometry and
check_collisions_with_matches is enabled in the respective detection module, also collisions be-
tween the gripper and other detected objects will be checked. Collisions with objects that cannot be
detected will not be checked.

Note: This module is pipeline specific. Changes to its settings or parameters only affect the respec-
tive camera pipeline and have no influence on other pipelines running on the rc_reason_stack.

Roboception GmbH
Manual: rc_reason_stack

262 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

Table 6.54: Specifications of the CollisionCheck module
Collision checking with detected load carrier, detected objects (only CADMatch (Section

6.3.7) and SilhouetteMatch and SilhouetteMatchAI (Section
6.3.6)), baseplane (only SilhouetteMatch and SilhouetteMatchAI,
Section 6.3.6), point cloud (only CADMatch (Section 6.3.7) and
SilhouetteMatch and SilhouetteMatchAI (Section 6.3.6))

Collision checking available in ItemPick and ItemPickAI (Section 6.3.4) and BoxPick (Section
6.3.5), CADMatch (Section 6.3.7) and SilhouetteMatch and
SilhouetteMatchAI (Section 6.3.6)

6.4.2.2 Collision checking

Stand-alone collision checking

The check_collisions service call triggers collision checking between the chosen gripper and the
provided load carriers for each of the provided grasps. Checking collisions with other objects or the
point cloud is not possible with the stand-alone check_collisions service. The CollisionCheck module
checks if the chosen gripper is in collision with at least one of the load carriers, when the TCP of the
gripper is positioned in the grasp position. It is possible to check the collision with multiple load carriers
simultaneously. The grasps which are in collision with any of the defined load carriers will be returned
as colliding.

The pre_grasp_offset can be used for additional collision checking. The pre-grasp offset 𝑃𝑜𝑓𝑓 is the
offset between the grasp point 𝑃𝑔𝑟𝑎𝑠𝑝 and the pre-grasp position 𝑃𝑝𝑟𝑒 in the grasp’s coordinate frame
(see Fig. 6.25). If the pre-grasp offset is defined, the grasp will be detected as colliding if the gripper
is in collision at any point during motion from the pre-grasp position to the grasp position (assuming a
linear movement).

y

z

x

Ppre

Pgrasp
y

z
x

Poff=Pgrasp-Ppre

Fig. 6.25: Illustration of the pre-grasp offset parameter for collision checking. In this case, the pre-grasp
position as well as the grasp position are collision free. However, the trajectory between these poses
would have collisions. Thus, this grasp pose would be marked as colliding.

Collision checking within other modules

Collision checking is integrated in the following modules’ services:

• ItemPick and ItemPickAI (Section 6.3.4): compute_grasps (see compute_grasps, Section 6.3.4.7)

• BoxPick (Section 6.3.5): compute_grasps (see compute_grasps, Section 6.3.5.8)

• SilhouetteMatch and SilhouetteMatchAI (Section 6.3.6): detect_object (see detect_object , Sec-
tion 6.3.6.11)

• CADMatch (Section 6.3.7): detect_object (see detect_object , Section 6.3.7.10)

Roboception GmbH
Manual: rc_reason_stack

263 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

Each of these services can take a collision_detection argument consisting of the gripper_id of the
default gripper and the pre_grasp_offset as described in the previous section Stand-alone collision
checking (Section 6.4.2.2). The default gripper given by the gripper_id argument is only used for grasp
points which do not have an individual gripper ID assigned. When the collision_detection argument
is given, these services only return the grasps at which the gripper is not in collision or which could not
be checked for collisions. When a load carrier ID is provided to these services, collision checking will
always be performed between the gripper and the load carrier. Additional collision check features can
be enabled depending on the module.

Only for CADMatch (Section 6.3.7) and SilhouetteMatch and SilhouetteMatchAI (Section 6.3.6), and
only in case the selected template contains a collision geometry and check_collisions_with_matches
is enabled in the respective detection module, grasp points at which the gripper would be in collision
with other detected objects are also rejected. The object on which the grasp point to be checked is
located, is excluded from the collision check.

When a gripper is defined for a grasp point in the object template for CADMatch (Section 6.3.7) and Sil-
houetteMatch and SilhouetteMatchAI (Section 6.3.6), then this gripper will be used for collision checking
at that specific grasp point instead of the default gripper defined in the collision_detection argument
of the detect_object service (see Setting of grasp points, Section 6.3.6.4). The grasps returned by the
detect_object service contain a flag collision_checked, indicating whether the grasp was checked
for collisions, and the field gripper_id. If collision_checked is true, the returned gripper_id contains
the ID of the gripper that was used for the collision check. That is the ID of the gripper defined for
that specific grasp, or, if empty, the gripper that was given in the collision_detection argument of the
request. If collision_checked is false, the returned gripper_id is the gripper ID that was defined for
that grasp.

In SilhouetteMatch and SilhouetteMatchAI, Section 6.3.6, collisions between the gripper and the base
plane can be checked, if check_collisions_with_base_plane is enabled in SilhouetteMatch.

Collisions between the gripper and a watertight version of the point cloud can be checked if
check_collisions_with_point_cloud is enabled in the respective module.

Warning: Collisions are checked only between the load carrier and the gripper, not the robot
itself, the flange or other objects. Only if check_collisions_with_point_cloud is enabled, collisions
between the gripper and a watertight version of the point cloud are checked. Only in combination with
CADMatch (Section 6.3.7) and SilhouetteMatch and SilhouetteMatchAI (Section 6.3.6), and only in
case the selected template contains a collision geometry and check_collisions_with_matches is
enabled in the respective detection module, also collisions between the gripper and other detected
objects are checked. Collisions with objects that cannot be detected will not be checked.

Only in combination with CADMatch, Section 6.3.7 and only if
check_collisions_during_retraction is enabled in CADMatch and a load carrier and a pre-
grasp offset are given, collisions between the object in the gripper and the walls of the given load
carrier are checked along the linear trajectory from the grasp point to the pre-grasp pose.

The collision-check results are affected by run-time parameters, which are listed and explained further
below.

6.4.2.3 Parameters

The CollisionCheck module is called rc_collision_check in the REST-API and is represented in the
Web GUI (Section 7.1) in the desired pipeline under Configuration → CollisionCheck. The user can
explore and configure the rc_collision_check module’s run-time parameters, e.g. for development
and testing, using the Web GUI or the REST-API interface (Section 7.2).

Parameter overview

This module offers the following run-time parameters:

Roboception GmbH
Manual: rc_reason_stack

264 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

Table 6.55: The rc_collision_check module’s run-time parame-
ters

Name Type Min Max Default Description
check_bottom bool false true true Whether to enable collision check-

ing with the bottom of the load car-
rier

check_flange bool false true true Whether all grasps with the flange
inside the load carrier should be
marked as colliding

collision_dist float64 0.0 0.1 0.01 Minimum distance in meters be-
tween any element of the gripper
and the load carrier or the base
plane (only SilhouetteMatch) for a
collision-free grasp

pointcloud_watertight bool false true true Whether to use a watertight dispar-
ity image for collision check with the
point cloud

Description of run-time parameters

Each run-time parameter is represented by a row in the Web GUI’s Settings section in the desired
pipeline under Configuration → CollisionCheck. The name in the Web GUI is given in brackets behind
the parameter name:

collision_dist (Collision Distance)

Minimal distance in meters between any part of the gripper and the load carrier and/or the
base plane (only SilhouetteMatch) for a grasp to be considered collision free.

Note: The collision distance is not applied when checking collisions between the gripper
and the point cloud, or the gripper and other detected objects. It is not applied when
checking if the flange is inside the load carrier (check_flange), either.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_collision_check/parameters?
→˓collision_dist=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_collision_check/parameters?collision_dist=<value>

check_flange (Check Flange)

Performs an additional safety check as described in Robot flange radius (Section 6.5.3.2).
If this parameter is set, all grasps in which any part of the robot’s flange is inside the load
carrier are marked as colliding.

Via the REST-API, this parameter can be set as follows.

API version 2

Roboception GmbH
Manual: rc_reason_stack

265 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_collision_check/parameters?check_

→˓flange=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_collision_check/parameters?check_flange=<value>

check_bottom (Check Bottom)

When this check is enabled the collisions will be checked not only with the side walls of the
load carrier but also with its bottom. It might be necessary to disable this check if the TCP is
inside the collision geometry (e.g. is defined inside a suction cup).

The load carrier bottom will always be excluded for the collision check be-
tween the object in the gripper and the load carrier during retraction in combina-
tion with ItemPick and ItemPickAI (Section 6.3.4) and BoxPick (Section 6.3.5) when
check_collisions_during_retraction is enabled.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_collision_check/parameters?check_

→˓bottom=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_collision_check/parameters?check_bottom=<value>

pointcloud_watertight (Watertight Point Cloud)

When this option is enabled the point cloud will be made watertight for collision checking.
In a watertight point cloud, holes from the disparity image will be interpolated by valid mea-
surements of neighboring pixels, so that the resulting point cloud has no holes. This leads
to conservative collision checking results.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_collision_check/parameters?
→˓pointcloud_watertight=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_collision_check/parameters?pointcloud_watertight=
→˓<value>

6.4.2.4 Status values

The rc_collision_check module reports the following status values:

Table 6.56: The rc_collision_check module status values
Name Description
last_evaluated_grasps Number of evaluated grasps
last_collision_free_grasps Number of collision-free grasps
collision_check_time Collision checking runtime

Roboception GmbH
Manual: rc_reason_stack

266 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

6.4.2.5 Services

The user can explore and call the rc_collision_check module’s services, e.g. for development and
testing, using REST-API interface (Section 7.2) or the rc_reason_stack Web GUI (Section 7.1).

The CollisionCheck module offers the following services.

reset_defaults

Resets all parameters of the module to its default values, as listed in above table.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_collision_check/services/reset_

→˓defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_collision_check/services/reset_defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

check_collisions (deprecated)

Triggers a collision check between a gripper and a load carrier.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_collision_check/services/check_

→˓collisions

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_collision_check/services/check_collisions

Request

Required arguments:

Roboception GmbH
Manual: rc_reason_stack

267 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

grasps: list of grasps that should be checked.

load_carriers: list of load carriers against which the collision should be checked.
The fields of the load carrier definition are described in Detection of load carri-
ers (Section 6.3.2.2). The position frame of the grasps and load carriers has to be
the same.

gripper_id: the id of the gripper that is used to check the collisions. The gripper
has to be configured beforehand.

Optional arguments:

pre_grasp_offset: the offset in meters from the grasp position to the pre-grasp
position in the grasp frame. If this argument is set, the collisions will not only be
checked in the grasp point, but also on the path from the pre-grasp position to the
grasp position (assuming a linear movement).

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasps": [
{

"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"uuid": "string"

}
],
"gripper_id": "string",
"load_carriers": [

{
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

268 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

(continued from previous page)

"z": "float64"
}

},
"pose_frame": "string",
"rim_thickness": {
"x": "float64",
"y": "float64"

}
}

],
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}

Response

colliding_grasps: list of grasps in collision with one or more load carriers.

collision_free_grasps: list of collision-free grasps.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

{
"name": "check_collisions",
"response": {

"colliding_grasps": [
{

"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"uuid": "string"

}
],
"collision_free_grasps": [

{
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

269 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

(continued from previous page)

"z": "float64"
}

},
"pose_frame": "string",
"uuid": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_gripper (deprecated)

Persistently stores a gripper on the rc_reason_stack.

API version 2

This service is not available in API version 2. Use set_gripper (Section 6.5.3.3) in
rc_gripper_db instead.

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_collision_check/services/set_gripper

The definitions of the request and response are the same as described in
set_gripper (Section 6.5.3.3) in rc_gripper_db.

get_grippers (deprecated)

Returns the configured grippers with the requested gripper_ids.

API version 2

This service is not available in API version 2. Use get_grippers (Section 6.5.3.3) in
rc_gripper_db instead.

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_collision_check/services/get_grippers

The definitions of the request and response are the same as described in
get_grippers (Section 6.5.3.3) in rc_gripper_db.

delete_grippers (deprecated)

Deletes the configured grippers with the requested gripper_ids.

API version 2

This service is not available in API version 2. Use delete_grippers (Section 6.5.3.3) in
rc_gripper_db instead.

API version 1 (deprecated)

Roboception GmbH
Manual: rc_reason_stack

270 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_collision_check/services/delete_grippers

The definitions of the request and response are the same as described in
delete_grippers (Section 6.5.3.3) in rc_gripper_db.

6.4.2.6 Return codes

Each service response contains a return_code, which consists of a value plus an optional message.
A successful service returns with a return_code value of 0. Negative return_code values indicate
that the service failed. Positive return_code values indicate that the service succeeded with additional
information. The smaller value is selected in case a service has multiple return_code values, but all
messages are appended in the return_code message.

The following table contains a list of common codes:

Table 6.57: Return codes of the CollisionCheck services
Code Description

0 Success
-1 An invalid argument was provided
-7 Data could not be read or written to persistent storage
-9 No valid license for the module

-10 New gripper could not be added as the maximum storage capacity of grippers has been
exceeded

10 The maximum storage capacity of grippers has been reached
11 Existing gripper was overwritten

6.4.3 Camera calibration

The camera calibration module is a base module which is available on every rc_reason_stack.

Note: This module is pipeline specific. Changes to its settings or parameters only affect the respec-
tive camera pipeline and have no influence on other pipelines running on the rc_reason_stack.

To use the camera as measuring instrument, camera parameters such as focal length, lens distortion,
and the relationship of the cameras to each other must be exactly known. The parameters are de-
termined by calibration and used for image rectification (see Rectification, Section 6.1.1), which is the
basis for all other image processing modules.

The camera calibration module is responsible for checking calibration and calibrating.

6.4.3.1 Calibration process

Manual calibration can be done through the Web GUI (Section 7.1) in the desired pipeline under Con-
figuration → Camera Calibration. This page provides a wizard to guide the user through the calibration
process.

During calibration, the calibration grid must be detected in different poses. When holding the calibration
grid, make sure that all black squares of the grid are completely visible and not occluded in both camera
images. A green check mark overlays each correctly detected square. The correct detection of the
grid is only possible if all of the black squares are detected. Some of the squares not being detected,
or being detected only briefly might indicate bad lighting conditions, or a damaged grid. Squares in
overexposed parts of the calibration grid are highlighted in red. In this case, the lighting conditions or
exposure setting must be adjusted. A thick green border around the calibration grid indicates that it was
detected correctly in both camera images.

Roboception GmbH
Manual: rc_reason_stack

271 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

Calibration settings

The quality of camera calibration heavily depends on the quality of the calibration grid. Calibration grids
can be obtained from Roboception.

Fig. 6.26: Calibration settings

In the first step, the calibration grid must be specified. The Next button proceeds to the next step.

Adjust focus

Note: This step is omitted on rc_visard pipelines.

In this step, the focus of the cameras can be adjusted. For this, the grid must be held such that it is
simultaneously visible in both cameras. After the grid is detected, the green bars at the right image
borders indicate the blur of the image. Adjust the focus of each camera so that the bar in each image is
minimal.

Note: While calibrating an rc_viscore, the camera exposure settings are temporarily changed to
values that allow for easier calibration. The exposure settings can still be changed and will be reset
when the calibration is done or cancelled.

Roboception GmbH
Manual: rc_reason_stack

272 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

Fig. 6.27: Adjust the focus of each camera

Verify calibration

In the next step, the current calibration can be verified. To perform the verification, the grid must be held
such that it is simultaneously visible in both cameras. When the grid is detected, the calibration error is
automatically computed and the result is displayed on the screen.

Roboception GmbH
Manual: rc_reason_stack

273 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

Fig. 6.28: Verification of calibration

Note: To compute a meaningful calibration error, the grid should be held as close as possible to
the cameras. If the grid only covers a small section of the camera images, the calibration error will
always be less than when the grid covers the full image. For this reason, the minimal and maximal
calibration error during verification are shown in addition to the calibration error at the current grid
position.

The typical calibration error is below 0.2 pixels. If the error is in this range, then the calibration procedure
can be skipped. If the calibration error is greater, the calibration procedure should be performed to
guarantee full sensor performance. The button Next starts the procedure.

Warning: A large error during verification can be due to miscalibrated cameras, an inaccurate
calibration grid, or wrong grid width or height. In case you use a custom calibration grid, please
make sure that the grid is accurate and the entered grid width and height are correct. Otherwise,
manual calibration will actually decalibrate the cameras!

Roboception GmbH
Manual: rc_reason_stack

274 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

Calibrate

The camera’s exposure time should be set appropriately before starting the calibration. To achieve
good calibration results, the images should be well-exposed and motion blur should be avoided. Thus,
the maximum auto-exposure time should be as short as possible, but still allow a good exposure. The
current exposure time is displayed below the camera images as shown in Fig. 6.30.

Full calibration consists of calibrating each camera individually (monocalibration) and then performing
a stereo calibration to determine the relationship between them. In most cases, the intrinsic calibration
of each camera does not get corrupted. For this reason, monocalibration is skipped by default during a
recalibration, but can be performed by clicking Perform Monocalibration in the Calibrate tab. This should
only be done if the result of the stereo calibration is not satisfactory.

Stereo calibration

During stereo calibration, both cameras are calibrated to each other to find their relative rotation and
translation.

The camera images can also be displayed mirrored to simplify the correct positioning of the calibration
grid.

First, the grid should be held as close as possible to the camera and very still. It must be fully visible in
both images and the cameras should look perpendicularly onto the grid. If the grid is not perpendicular
to the line of sight of the cameras, this will be indicated by small green arrows pointing to the expected
positions of the grid corners (see Fig. 6.29).

Fig. 6.29: Arrows indicating that the grid is not perpendicular to the camera’s line of sight during stereo
calibration

The grid must be kept very still for detection. If motion blur occurs, the grid will not be detected. All
grid cells that are drawn onto the image have to be covered by the calibration grid. This is visualized by
filling the covered cells in green (see Fig. 6.30).

Depending on the camera, the grid has to be held at different positions until all grid cells have been
covered and filled in green.

Roboception GmbH
Manual: rc_reason_stack

275 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

Fig. 6.30: Stereo calibration: Hold the grid as close as possible to fill all visualized cells

Note: If the check marks on the calibration grid all vanish, then either the camera does not look
perpendicularly onto the grid, or the grid is too far away from the camera.

Once all grid cells are covered, they disappear and a single far cell is visualized. Now, the grid should
be held as far as possible from the cameras, so that the small cell is covered. Arrows will indicate if the
grid is still too close to the camera. When the grid is successfully detected at the far pose, the cell is
filled in green and the result can be computed (see Fig. 6.31).

Roboception GmbH
Manual: rc_reason_stack

276 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

Fig. 6.31: Holding the grid far away during stereo calibration

If stereo calibration yields an unsatisfactory calibration error, then calibration should be repeated with
monocalibration (see next Section Monocalibration).

Monocalibration

Monocalibration is the intrinsic calibration of each camera individually. Since the intrinsic calibration
normally does not get corrupted, the monocalibration should only be performed if the result of stereo
calibration is not satisfactory.

Click Perform Monocalibration in the Calibrate tab to start monocalibration.

For monocalibration, the grid has to be held in certain poses. The arrows from the grid corners to the
green areas indicate that all grid corners should be placed inside the green areas. The green areas
are called sensitive areas. The Size of Sensitive Area slider can control their size to ease calibration.
However, please be aware that increasing their size too much may result in slightly lower calibration
accuracy.

Holding the grid upside down is a common mistake made during calibration. Spotting this in this case is
easy because the green lines from the grid corners into the green areas will cross each other as shown
in Fig. 6.32.

Fig. 6.32: Wrongly holding the grid upside down leads to crossed green lines.

Note: Calibration might appear cumbersome as it involves holding the grid in certain predefined
poses. However, these poses are required to ensure an unbiased, high-quality calibration result.

Roboception GmbH
Manual: rc_reason_stack

277 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

The monocalibration process involves five poses for each camera as shown in Fig. 6.33.

Fig. 6.33: Poses required for monocamera calibration

After the corners or sides of the grid are placed on top of the sensitive areas, the process automatically
shows the next pose required. When the process is finished for the left camera, the same procedure is
repeated for the right one.

Continue with the guidelines given in the previous Section Stereo calibration.

Storing the calibration result

Clicking the Compute Calibration button finishes the process and displays the final result. The indicated
result is the mean reprojection error of all calibration points. It is given in pixels and typically has a value
below 0.2.

Pressing Save Calibration applies the calibration and saves it to the device.

Note: The given result is the minimum error left after calibration. The real error is definitely not
less than this, but could in theory be larger. This is true for every camera-calibration algorithm and
the reason why we enforce holding the grid in very specific poses. Doing so ensures that the real
calibration error cannot significantly exceed the reported error.

Warning: If a hand-eye calibration was stored on the rc_reason_stack before camera calibration,
the hand-eye calibration values could have become invalid. Please repeat the hand-eye calibration
procedure.

6.4.3.2 Parameters

The module is called rc_stereocalib in the REST-API.

Note: The camera calibration module’s available parameters and status values are for internal use
only and may change in the future without further notice. Calibration should only be performed
through the Web GUI as described above.

6.4.3.3 Services

Note: The camera calibration module’s available service calls are for internal use only and may
change in the future without further notice. Calibration should only be performed through the Web
GUI as described above.

Roboception GmbH
Manual: rc_reason_stack

278 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

6.4.4 IO and Projector Control

The IOControl module is a base module which is available on every rc_reason_stack.

The IOControl module allows reading the status of the general purpose digital inputs and controlling the
digital general purpose outputs (GPIOs) of the camera. The outputs can be set to LOW or HIGH, or
configured to be HIGH for the exposure time of every image or every second image.

Note: This module is pipeline specific. Changes to its settings or parameters only affect the respec-
tive camera pipeline and have no influence on other pipelines running on the rc_reason_stack.

The purpose of the IOControl module is the control of an external light source or a projector, which is
connected to one of the camera’s GPIOs to be synchronized by the image acquisition trigger. In case
a pattern projector is used to improve stereo matching, the intensity images also show the projected
pattern, which might be a disadvantage for image processing tasks that are based on the intensity image
(e.g. edge detection). For this reason, the IOControl module allows setting GPIO outputs to HIGH for
the exposure time of every second image, so that intensity images without the projected pattern are
also available.

6.4.4.1 Parameters

The IOControl module is called rc_iocontrol in the REST-API and is represented in the Web
GUI (Section 7.1) in the desired pipeline under Configuration → IOControl.

The user can change the parameters via the Web GUI or the REST-API interface (Section 7.2).

Parameter overview

This module offers the following run-time parameters:

Table 6.58: The rc_iocontrol module’s run-time parameters
Name Type Min Max Default Description
out1_inverted bool false true false Inverting out1
out1_mode string - - Low Out1 mode: [Low, High, Exposure-

Active, ExposureAlternateActive]
out1_ratio float64 0.0 1.0 1.0 Ratio of exposure time that Out1 is

high in ExposureActive and Expo-
sureAlternateActive mode

out2_inverted bool false true false Inverting out2
out2_mode string - - Low Out2 mode: [Low, High, Exposure-

Active, ExposureAlternateActive]
out2_ratio float64 0.0 1.0 1.0 Ratio of exposure time that Out2 is

high in ExposureActive and Expo-
sureAlternateActive mode

Description of run-time parameters

out1_mode and out2_mode (Out1 / Projector and Out2)

The output modes for GPIO Out 1 and Out 2 can be set individually:

Low sets the output permanently to LOW. This is the factory default.

High sets the output permanently to HIGH.

ExposureActive sets the output to HIGH for the exposure time of every image.

Roboception GmbH
Manual: rc_reason_stack

279 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

ExposureAlternateActive sets the output to HIGH for the exposure time of every
second image.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_iocontrol/parameters?<out1_

→˓mode|out2_mode>=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_iocontrol/parameters?<out1_mode|out2_mode>=<value>

Fig. 6.34 shows which images are used for stereo matching and transmission via GigE Vision in
ExposureActive mode with a user-defined frame rate of 8 Hz.

Internal acquisition

Camera image

GPIO Out 1
Disparity image

Fig. 6.34: Example of using the ExposureActive mode for GPIO Out 1 with a user-defined frame rate
of 8 Hz. The internal image acquisition is always 25 Hz. GPIO Out 1 is HIGH for the exposure time
of every image. A disparity image is computed for camera images that are sent out via GigE Vision
according to the user-defined frame rate.

The mode ExposureAlternateActive is meant to be used when an external random dot projector is
connected to the camera’s GPIO Out 1. When setting Out 1 to ExposureAlternateActive, the stereo
matching (Section 6.2.2) module only uses images with GPIO Out 1 being HIGH, i.e. projector is on.
The maximum frame rate that is used for stereo matching is therefore half of the frame rate configured
by the user. All modules which make use of the intensity image, like TagDetect (Section 6.3.3) and
ItemPick (Section 6.3.4), use the intensity images with GPIO Out 1 being LOW, i.e. projector is off. Fig.
6.35 shows an example.

Internal acquisition

Camera image

GPIO Out 1
Disparity image

Fig. 6.35: Example of using the ExposureAlternateActive mode for GPIO Out 1 with a user-defined
frame rate of 8 Hz. The internal image acquisition is always 25 Hz. GPIO Out 1 is HIGH for the exposure
time of every second image. A disparity image is computed for images where Out 1 is HIGH and that are
sent out via GigE Vision according to the user-defined frame rate. In ExposureAlternateActive mode,
intensity images are always transmitted pairwise: one with GPIO Out 1 HIGH, for which a disparity
image might be available, and one with GPIO Out 1 LOW.

Note: In ExposureAlternateActive mode, an intensity image with GPIO Out 1 being HIGH (i.e. with
projection) is always 40 ms away from an intensity image with Out 1 being LOW (i.e. without pro-
jection), regardless of the user-defined frame rate. This needs to be considered when synchronizing
disparity images and camera images without projection in this special mode.

Roboception GmbH
Manual: rc_reason_stack

280 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

out1_ratio and out2_ratio (Out1 Ratio and Out2 Ratio)

The output ratios for GPIOs Out 1 and Out 2 determine how much of the image exposure
time the corresponding output GPIO should be HIGH, when ExposureActive or ExposureAl-
ternateActive are used. When the ratio is set to 1, the output will be HIGH for full amount of
exposure time. In case a projector is connected to the GPIO out1, a lower out1_ratio leads
to darker projections.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_iocontrol/parameters?<out1_

→˓ratio|out2_ratio>=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_iocontrol/parameters?<out1_ratio|out2_ratio>=<value>

out1_inverted and out2_inverted (Invert Out1 and Invert Out2)

The out1_inverted and out2_inverted parameters determine whether the corresponding
outputs should be inverted.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_iocontrol/parameters?<out1_

→˓inverted|out2_inverted>=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_iocontrol/parameters?<out1_inverted|out2_inverted>=
→˓<value>

6.4.4.2 Services

Each service response contains a return_code, which consists of a value plus an optional message.
A successful service returns with a return_code value of 0. Negative return_code values indicate
that the service failed. Positive return_code values indicate that the service succeeded with additional
information.

The IOControl module offers the following services.

get_io_values

Retrieves the current state of the camera’s general purpose inputs and outputs (GPIOs).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_iocontrol/services/get_io_values

API version 1 (deprecated)

Roboception GmbH
Manual: rc_reason_stack

281 Rev: 26.01.4
Status: Jan 30, 2026

6.4. Configuration modules

PUT http://<host>/api/v1/nodes/rc_iocontrol/services/get_io_values

Request

This service has no arguments.

Response

The returned timestamp is the time of measurement.

input_mask and output_mask are bit masks defining which bits are used for input and output
values, respectively.

values holds the values of the bits corresponding to input and output as given by the
input_mask and output_mask.

return_code holds possible warnings or error codes and messages. Possible return_code
values are shown below.

Code Description
0 Success
-2 Internal error
-9 License for IOControl is not available

The definition for the response with corresponding datatypes is:

{
"name": "get_io_values",
"response": {
"input_mask": "uint32",
"inverter_mask": "uint32",
"output_mask": "uint32",
"ratio_mask": "uint32",
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"values": "uint32"

}
}

reset_defaults

Restores and applies the default values for this module’s parameters (“factory reset”).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_iocontrol/services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_iocontrol/services/reset_defaults

Roboception GmbH
Manual: rc_reason_stack

282 Rev: 26.01.4
Status: Jan 30, 2026

6.5. Database modules

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.5 Database modules

The rc_reason_stack provides several database modules which enable the user to configure global
data which is used in many detection modules, such as load carriers and regions of interest. Via the
REST-API interface (Section 7.2) the database modules are only available in API version 2.

The database modules are:

• LoadCarrierDB (rc_load_carrier_db, Section 6.5.1) allows setting, retrieving and deleting load
carriers.

• RoiDB (rc_roi_db , Section 6.5.2) allows setting, retrieving and deleting 2D and 3D regions of
interest.

• GripperDB (rc_gripper_db, Section 6.5.3) allows setting, retrieving and deleting grippers for
collision checking.

These modules are global on the rc_reason_stack, which means that they run outside the camera
pipelines. Changes to their settings or parameters affect all pipelines running on the rc_reason_stack.

6.5.1 LoadCarrierDB

6.5.1.1 Introduction

The LoadCarrierDB module (Load carrier database module) allows the global definition of load carriers,
which can then be used in many detection modules. The specified load carriers are available for all
modules supporting load carriers on the rc_reason_stack.

Note: This module is global on the rc_reason_stack. Changes to its settings or parameters affect
every camera pipeline running on the rc_reason_stack.

The LoadCarrierDB module is a base module which is available on every rc_reason_stack.

Roboception GmbH
Manual: rc_reason_stack

283 Rev: 26.01.4
Status: Jan 30, 2026

6.5. Database modules

Table 6.59: Specifications of the LoadCarrierDB module
Supported load carrier types 4-sided or 3-sided
Supported rim types solid rim, stepped rim or ledged rim
Min. load carrier dimensions 0.1 m x 0.1 m x 0.05 m
Max. load carrier dimensions 5 m x 5 m x 5 m
Max. number of load carriers 50
Load carriers available in ItemPick and ItemPickAI (Section 6.3.4) and BoxPick (Section

6.3.5) and CADMatch (Section 6.3.7) and SilhouetteMatch and
SilhouetteMatchAI (Section 6.3.6)

Supported pose types no pose, orientation prior, exact pose
Supported reference frames camera, external

6.5.1.2 Load carrier definition

A load carrier (bin) is a container with four walls, a floor and a rectangular rim, which can contain objects.
It can be used to limit the volume in which to search for objects or grasp points.

A load carrier is defined by its outer_dimensions and inner_dimensions. The maximum
outer_dimensions are 5.0 meters in every dimension.

The origin of the load carrier reference frame is in the center of the load carrier’s outer box and its z
axis is perpendicular to the load carrier’s floor pointing outwards (see Fig. 6.36).

x
yz

outer_dimensions.x
inner_dimensions.x

inn
er
_d
im
en
sio
ns
.y

ou
ter
_d
im
en
sio
ns
.y

inner_dim
ensions.z

outer_dim
ensions.z

Fig. 6.36: Load carrier with reference frame and inner and outer dimensions

Note: Typically, outer and inner dimensions of a load carrier are available in the specifications of the
load carrier manufacturer.

The inner volume of the load carrier is defined by its inner dimensions, but includes a region of 10 cm
height above the load carrier, so that also items protruding from the load carrier are considered for
detection or grasp computation. Furthermore, an additional crop_distance is subtracted from the inner
volume in every dimension, which acts as a safety margin and can be configured as run-time parameter
in the LoadCarrier module (see Parameters, Section 6.3.2.5). Fig. 6.37 visualizes the inner volume of a
load carrier. Only points which are inside this volume are considered for detections.

Roboception GmbH
Manual: rc_reason_stack

284 Rev: 26.01.4
Status: Jan 30, 2026

6.5. Database modules

0.1 m

crop_distance

Fig. 6.37: Visualization of the inner volume of a load carrier. Only points which are inside this volume
are considered for detections.

Since the load carrier detection is based on the detection of the load carrier’s rim, the rim geometry
must be specified if it cannot be determined from the difference between outer and inner dimensions. A
load carrier with a stepped rim can be defined by setting a rim_thickness. The rim thickness gives the
thickness of the outer part of the rim in the x and y direction. When a rim thickness is given, an optional
rim_step_height can also be specified, which gives the height of the step between the outer and the
inner part of the rim. When the step height is given, it will also be considered during collision checking
(see CollisionCheck , Section 6.4.2). Examples of load carriers with stepped rims are shown in Fig. 6.38
A, B. In addition to the rim_thickness and rim_step_height the rim_ledge can be specified for defining
load carriers whose inner rim protrudes into the interior of the load carrier, such as pallet cages. The
rim_ledge gives the thickness of the inner part of the rim in the x and y direction. An example of a load
carrier with a ledged rim is shown in Fig. 6.38 C.

ou
te

r_
di

m
en

sio
n

z

rim_thickness (x, y)

inner_dimension (x, y)

outer_dimension (x, y)

in
ne

r_
di

m
en

sio
n

z

rim
_s

te
p_

he
ig

ht

ou
te

r_
di

m
en

sio
n

z

rim_thickness (x, y)

inner_dimension (x, y)

outer_dimension (x, y)

in
ne

r_
di

m
en

sio
n

z

rim
_s

te
p_

he
ig

ht

rim_thickness (x, y)

rim_ledge (x, y)

ou
te

r_
di

m
en

sio
n

z

in
ne

r_
di

m
en

sio
n

z

rim
_s

te
p_

he
ig

ht

inner_dimension (x, y)

outer_dimension (x, y)

A B C

Fig. 6.38: Examples of load carriers with stepped rim (A, B) or ledged rim (C)

The different rim types are applicable to both, standard 4-sided and 3-sided load carriers. For a 3-
sided load carrier, the type must be THREE_SIDED. If the type is set to STANDARD or left empty, a 4-sided
load carrier is specified. A 3-sided load carrier has one side that is lower than the other three sides.
This height_open_side is measured from the outer bottom of the load carrier. The open side is at the
negative y-axis of the load carrier’s coordinate system. Examples of the two load carrier types are given

Roboception GmbH
Manual: rc_reason_stack

285 Rev: 26.01.4
Status: Jan 30, 2026

6.5. Database modules

in Fig. 6.39. The height of the lower side is only considered during collision checking and not required
for the detection of the load carrier.

x
yz

ou
ter

_d
im

en
sio

n y outer_dimension x

di
m

en
sio

n
z

ou
te

r_

inner_dimension x
in

ne
r_

di
m

en
sio

n
z

inn
er_

iim
en

sio
n y

x
yz

ou
ter

_d
im

en
sio

n y outer_dimension x

di
m

en
sio

n
z

ou
te

r_

inner_dimension x

in
ne

r_
di

m
en

sio
n

z

inn
er_

dim
en

sio
n y

he
ig

ht
_o

pe
n_

sid
e

A B

Fig. 6.39: Examples of a standard 4-sided load carrier (A) and a 3-sided load carrier (B)

A load carrier can be specified with a full 3D pose consisting of a position and an orientation quater-
nion, given in a pose_frame. Based on the given pose_type this pose is either used as an orientation
prior (pose_type is ORIENTATION_PRIOR or empty), or as the exact pose of the load carrier (pose_type is
EXACT_POSE).

In case the pose serves as orientation prior, the detected load carrier pose is guaranteed to have the
minimum rotation with respect to the load carrier’s prior pose. This pose type is useful for detecting tilted
load carriers and for resolving the orientation ambiguity in the x and y direction caused by the symmetry
of the load carrier model.

In case the pose type is set to EXACT_POSE, no load carrier detection will be performed on the scene
data, but the given pose will be used in exactly the same way as if the load carrier is detected at that
pose. This pose type is especially useful in cases where load carriers do not change their positions
and/or are hard to detect (e.g. because their rim is too thin or the material is too shiny).

The rc_reason_stack can persistently store up to 50 different load carrier models, each one identified
by a different id. The configuration of a load carrier model is normally performed offline, during the
set up the desired application. This can be done via the REST-API interface (Section 7.2) or in the
rc_reason_stack Web GUI.

Note: The configured load carrier models are persistent even over firmware updates and rollbacks.

6.5.1.3 Load carrier compartments

Some detection modules can make use of a load_carrier_compartment to further limit the volume for
the detection, for example ItemPick’s compute_grasps service (see 6.3.4.7). A load carrier compart-
ment is a box whose pose is defined as the transformation from the load carrier reference frame to the
compartment reference frame, which is located in the center of the compartment box (see Fig. 6.40).
The load carrier compartment is defined for each detection call separately and is not part of the load
carrier definition in the LoadCarrierDB module.

Roboception GmbH
Manual: rc_reason_stack

286 Rev: 26.01.4
Status: Jan 30, 2026

6.5. Database modules

x
yz

co
mp

art
me

nt
.bo

x.y

compartment.box.x

com
partm

ent.box.z

Fig. 6.40: Sample compartment inside a load carrier. The coordinate frame shown in the image is the
reference frame of the compartment.

The compartment volume is intersected with the load carrier inner volume to compute the volume for
the detection. If this intersection should also contain the 10 cm region above the load carrier, the height
of the compartment box must be increased accordingly.

6.5.1.4 Interaction with other modules

Internally, the LoadCarrierDB module depends on, and interacts with other on-board modules as listed
below.

Hand-eye calibration

In case the camera has been calibrated to a robot, the load carrier’s exact pose or orientation prior
can be provided in the robot coordinate frame by setting the corresponding pose_frame argument to
external.

Two different pose_frame values can be chosen:

1. Camera frame (camera). The load carrier pose or orientation prior is provided in the camera
frame, and no prior knowledge about the pose of the camera in the environment is required. This
means that the configured load carriers move with the camera. It is the user’s responsibility to
update the configured poses if the camera frame moves (e.g. with a robot-mounted camera).

2. External frame (external). The load carrier pose or orientation prior is provided in the external
frame, configured by the user during the hand-eye calibration process. The module relies on the
on-board Hand-eye calibration module (Section 6.4.1) to retrieve the sensor mounting (static or
robot mounted) and the hand-eye transformation.

Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.

All pose_frame values that are not camera or external are rejected.

Roboception GmbH
Manual: rc_reason_stack

287 Rev: 26.01.4
Status: Jan 30, 2026

6.5. Database modules

6.5.1.5 Services

The LoadCarrierDB module is called rc_load_carrier_db in the REST-API and is represented in the
Web GUI (Section 7.1) under Database → Load Carriers. The user can explore and call the LoadCar-
rierDB module’s services, e.g. for development and testing, using the REST-API interface (Section 7.2)
or the Web GUI.

The LoadCarrierDB module offers the following services.

set_load_carrier

Persistently stores a load carrier on the rc_reason_stack. All configured load carriers are
persistent over firmware updates and rollbacks.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_load_carrier_db/services/set_load_carrier

Request

Details for the definition of the load_carrier type are given in Load carrier definition (Section
6.5.1.2).

The field type is optional and accepts STANDARD and THREE_SIDED.

The field pose_type is optional and accepts NO_POSE, EXACT_POSE and ORIENTATION_PRIOR.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"load_carrier": {
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"pose_type": "string",
"rim_ledge": {

"x": "float64",

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

288 Rev: 26.01.4
Status: Jan 30, 2026

6.5. Database modules

(continued from previous page)

"y": "float64"
},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_load_carrier",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_load_carriers

Returns the configured load carriers with the requested load_carrier_ids. If no
load_carrier_ids are provided, all configured load carriers are returned.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_load_carrier_db/services/get_load_carriers

Request

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"load_carrier_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_load_carriers",
"response": {
"load_carriers": [
{

"height_open_side": "float64",
"id": "string",
"inner_dimensions": {

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

289 Rev: 26.01.4
Status: Jan 30, 2026

6.5. Database modules

(continued from previous page)

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"pose_type": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

delete_load_carriers

Deletes the configured load carriers with the requested load_carrier_ids. All load carriers
to be deleted must be explicitly stated in load_carrier_ids.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_load_carrier_db/services/delete_load_carriers

Request

The definition for the request arguments with corresponding datatypes is:

{
"args": {

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

290 Rev: 26.01.4
Status: Jan 30, 2026

6.5. Database modules

(continued from previous page)

"load_carrier_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "delete_load_carriers",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.5.1.6 Return codes

Each service response contains a return_code, which consists of a value plus an optional message.
A successful service returns with a return_code value of 0. Negative return_code values indicate
that the service failed. Positive return_code values indicate that the service succeeded with additional
information. The smaller value is selected in case a service has multiple return_code values, but all
messages are appended in the return_code message.

The following table contains a list of common codes:

Table 6.60: Return codes of the LoadCarrierDB module’s services
Code Description

0 Success
-1 An invalid argument was provided

-10 New element could not be added as the maximum storage capacity of load carriers has
been exceeded

10 The maximum storage capacity of load carriers has been reached
11 An existent persistent model was overwritten by the call to set_load_carrier

6.5.2 RoiDB

6.5.2.1 Introduction

The RoiDB module (region of interest database module) allows the global definition of 2D and 3D
regions of interest, which can then be used in many detection modules. The ROIs are available for all
modules supporting 2D or 3D ROIs on the rc_reason_stack.

Note: This module is global on the rc_reason_stack. Changes to its settings or parameters affect
every camera pipeline running on the rc_reason_stack.

The RoiDB module is a base module which is available on every rc_reason_stack.

3D ROIs can be used in CADMatch (Section 6.3.7), ItemPick and ItemPickAI (Section 6.3.4) and Box-
Pick (Section 6.3.5). 2D ROIs can be used in SilhouetteMatch and SilhouetteMatchAI (Section 6.3.6),
and LoadCarrier (Section 6.3.2).

Roboception GmbH
Manual: rc_reason_stack

291 Rev: 26.01.4
Status: Jan 30, 2026

6.5. Database modules

Table 6.61: Specifications of the RoiDB module
Supported ROI types 2D, 3D
Supported ROI geometries 2D ROI: rectangle, 3D ROI: box, sphere
Max. number of ROIs 2D: 100, 3D: 100
ROIs available in 2D: SilhouetteMatch and SilhouetteMatchAI (Section 6.3.6),

LoadCarrier (Section 6.3.2), 3D: CADMatch (Section 6.3.7),
ItemPick and ItemPickAI (Section 6.3.4) and BoxPick (Section 6.3.5)

Supported reference frames camera, external

6.5.2.2 Region of interest

A region of interest (ROI) defines a volume in space (3D region of interest, region_of_interest), or a
rectangular region in the left camera image (2D region of interest, region_of_interest_2d) which is of
interest for a specific user-application.

A ROI can narrow the volume where a load carrier is searched for, or select a volume which only
contains items to be detected and/or grasped. Processing times can significantly decrease when using
a ROI.

3D regions of interest of the following types (type) are supported:

• BOX, with dimensions box.x, box.y, box.z.

• SPHERE, with radius sphere.radius.

The user can specify the 3D region of interest pose in the camera or the external coordinate system.
External can only be chosen if a Hand-eye calibration (Section 6.4.1) is available. When the sensor is
robot mounted, and the region of interest is defined in the external frame, the current robot pose must
be given to every detect service call that uses this region of interest.

A 2D ROI is defined as a rectangular part of the left camera image, and can be set via the REST-API
interface (Section 7.2) or the rc_reason_stack Web GUI (Section 7.1) on the page Regions of Interest
under Database. The Web GUI offers an easy-to-use selection tool. Each ROI must have a unique
name to address a specific 2D ROI.

In the REST-API, a 2D ROI is defined by the following values:

• id: Unique name of the region of interest

• offset_x, offset_y: offset in pixels along the x-axis and y-axis from the top-left corner of the
image, respectively

• width, height: width and height in pixels

The rc_reason_stack can persistently store up to 100 different 3D regions of interest and the same
number of 2D regions of interest. The configuration of regions of interest is normally performed offline,
during the set up of the desired application. This can be done via the REST-API interface (Section 7.2)
of RoiDB module, or in the rc_reason_stack Web GUI (Section 7.1) on the page Regions of Interest
under Database.

Note: The configured regions of interest are persistent even over firmware updates and rollbacks.

6.5.2.3 Interaction with other modules

Internally, the RoiDB module depends on, and interacts with other on-board modules as listed below.

Roboception GmbH
Manual: rc_reason_stack

292 Rev: 26.01.4
Status: Jan 30, 2026

6.5. Database modules

Hand-eye calibration

In case the camera has been calibrated to a robot, the pose of a 3D ROI can be provided in the robot
coordinate frame by setting the corresponding pose_frame argument.

Two different pose_frame values can be chosen:

1. Camera frame (camera). The ROI pose is provided in the camera frame, and no prior knowledge
about the pose of the camera in the environment is required. This means that the configured load
carriers move with the camera. It is the user’s responsibility to update the configured poses if the
camera frame moves (e.g. with a robot-mounted camera).

2. External frame (external). The ROI pose is provided in the external frame, configured by the user
during the hand-eye calibration process. The module relies on the on-board Hand-eye calibration
module (Section 6.4.1) to retrieve the sensor mounting (static or robot mounted) and the hand-eye
transformation.

Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.

All pose_frame values that are not camera or external are rejected.

6.5.2.4 Services

The RoiDB module is called rc_roi_db in the REST-API and is represented in the Web GUI (Section
7.1) under Database → Regions of Interest. The user can explore and call the RoiDB module’s services,
e.g. for development and testing, using the REST-API interface (Section 7.2) or the Web GUI.

The RoiDB module offers the following services.

set_region_of_interest

Persistently stores a 3D region of interest on the rc_reason_stack. All configured 3D regions
of interest are persistent over firmware updates and rollbacks.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_roi_db/services/set_region_of_interest

Request

Details for the definition of the region_of_interest type are given in Region of inter-
est (Section 6.5.2.2).

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"region_of_interest": {
"box": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

293 Rev: 26.01.4
Status: Jan 30, 2026

6.5. Database modules

(continued from previous page)

"z": "float64"
},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"sphere": {

"radius": "float64"
},
"type": "string"

}
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_region_of_interest",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_region_of_interest_2d

Persistently stores a 2D region of interest on the rc_reason_stack. All configured 2D regions
of interest are persistent over firmware updates and rollbacks.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_roi_db/services/set_region_of_interest_2d

Request

Details for the definition of the region_of_interest_2d type are given in Region of inter-
est (Section 6.5.2.2).

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"region_of_interest_2d": {
"height": "uint32",
"id": "string",
"offset_x": "uint32",
"offset_y": "uint32",
"width": "uint32"

}
}

}

Roboception GmbH
Manual: rc_reason_stack

294 Rev: 26.01.4
Status: Jan 30, 2026

6.5. Database modules

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_region_of_interest_2d",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_regions_of_interest

Returns the configured 3D regions of interest with the requested region_of_interest_ids.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_roi_db/services/get_regions_of_interest

Request

If no region_of_interest_ids are provided, all configured 3D regions of interest are re-
turned.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"region_of_interest_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_regions_of_interest",
"response": {

"regions_of_interest": [
{

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

295 Rev: 26.01.4
Status: Jan 30, 2026

6.5. Database modules

(continued from previous page)

"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"sphere": {
"radius": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_regions_of_interest_2d

Returns the configured 2D regions of interest with the requested
region_of_interest_2d_ids.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_roi_db/services/get_regions_of_interest_2d

Request

If no region_of_interest_2d_ids are provided, all configured 2D regions of interest are
returned.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"region_of_interest_2d_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_regions_of_interest_2d",
"response": {
"regions_of_interest": [
{

"height": "uint32",
"id": "string",
"offset_x": "uint32",
"offset_y": "uint32",
"width": "uint32"

}
],
"return_code": {

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

296 Rev: 26.01.4
Status: Jan 30, 2026

6.5. Database modules

(continued from previous page)

"message": "string",
"value": "int16"

}
}

}

delete_regions_of_interest

Deletes the configured 3D regions of interest with the requested region_of_interest_ids.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_roi_db/services/delete_regions_of_interest

Request

All regions of interest to be deleted must be explicitly stated in region_of_interest_ids.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"region_of_interest_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "delete_regions_of_interest",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

delete_regions_of_interest_2d

Deletes the configured 2D regions of interest with the requested
region_of_interest_2d_ids.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_roi_db/services/delete_regions_of_interest_2d

Request

All 2D regions of interest to be deleted must be explicitly stated in
region_of_interest_2d_ids.

The definition for the request arguments with corresponding datatypes is:

Roboception GmbH
Manual: rc_reason_stack

297 Rev: 26.01.4
Status: Jan 30, 2026

6.5. Database modules

{
"args": {

"region_of_interest_2d_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "delete_regions_of_interest_2d",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.5.2.5 Return codes

Each service response contains a return_code, which consists of a value plus an optional message.
A successful service returns with a return_code value of 0. Negative return_code values indicate
that the service failed. Positive return_code values indicate that the service succeeded with additional
information. The smaller value is selected in case a service has multiple return_code values, but all
messages are appended in the return_code message.

The following table contains a list of common codes:

Table 6.62: Return codes of the RoiDB module’s services
Code Description

0 Success
-1 An invalid argument was provided

-10 New element could not be added as the maximum storage capacity of regions of interest
has been exceeded

10 The maximum storage capacity of regions of interest has been reached
11 An existent persistent model was overwritten by the call to set_region_of_interest or

set_region_of_interest_2d

6.5.3 GripperDB

6.5.3.1 Introduction

The GripperDB module (gripper database module) is an optional on-board module of the
rc_reason_stack and is licensed with any of the modules ItemPick and ItemPickAI (Section 6.3.4)
and BoxPick (Section 6.3.5) or CADMatch (Section 6.3.7) and SilhouetteMatch and SilhouetteM-
atchAI (Section 6.3.6). Otherwise it requires a separate CollisionCheck license (Section 8.2) to be
purchased.

The module provides services to set, retrieve and delete grippers which can then be used for checking
collisions with a load carrier or other detected objects (only in combination with CADMatch (Section
6.3.7) and SilhouetteMatch and SilhouetteMatchAI (Section 6.3.6)). The specified grippers are available
for all modules supporting collision checking on the rc_reason_stack.

Roboception GmbH
Manual: rc_reason_stack

298 Rev: 26.01.4
Status: Jan 30, 2026

6.5. Database modules

Note: This module is global on the rc_reason_stack. Changes to its settings or parameters affect
every camera pipeline running on the rc_reason_stack.

Table 6.63: Specifications of the GripperDB module
Max. number of grippers 50
Supported gripper element geometries Box, Cylinder, CAD Element
Max. number of elements per gripper 15
Collision checking available in ItemPick and ItemPickAI (Section 6.3.4) and

BoxPick (Section 6.3.5), CADMatch (Section 6.3.7) and
SilhouetteMatch and SilhouetteMatchAI (Section 6.3.6)

6.5.3.2 Setting a gripper

The gripper is a collision geometry used to determine whether the grasp is in collision with the load
carrier. The gripper consists of up to 15 elements connected to each other.

At this point, the gripper can be built of elements of the following types:

• BOX, with dimensions box.x, box.y, box.z.

• CYLINDER, with radius cylinder.radius and height cylinder.height.

• CAD, with the id cad.id of the chosen CAD element.

Each gripper element can be assigned one of the following function_type values:

• NONE: default, same as empty. This element has no special function and will be considered during
collision checking as modelled.

• FINGER: This element is a movable finger or jaw and has a zero_pose in addition to its default pose.
It can move linearly from the zero pose towards the default pose by the stroke defined for each
grasp.

• SUCTION_CUP: This element is a deformable suction cup and will hence be ignored during collision
checking. It serves purely for visualization.

Additionally, for each gripper the flange radius, and information about the Tool Center Point (TCP) have
to be defined.

The configuration of the gripper is normally performed offline during the setup of the desired application.
This can be done via the REST-API interface (Section 7.2) or the rc_reason_stack Web GUI (Section
7.1).

Robot flange radius

Collisions are checked only with the gripper, the robot body is not considered. As a safety feature,
to prevent collisions between the load carrier and the robot, all grasps having any part of the robot’s
flange inside the load carrier can be designated as colliding (see Fig. 6.41). This check is based on the
defined gripper geometry and the flange radius value. It is optional to use this functionality, and it can
be turned on and off with the CollisionCheck module’s run-time parameter check_flange as described
in Parameter overview (Section 6.4.2.3).

Roboception GmbH
Manual: rc_reason_stack

299 Rev: 26.01.4
Status: Jan 30, 2026

6.5. Database modules

A B

Fig. 6.41: Case A would be marked as collision only if check_flange is true, because the robot’s flange
(red) is inside the load carrier. Case B is collision free independent of check_flange.

Uploading gripper CAD elements

A gripper can consist of boxes, cylinders and CAD elements. While boxes and cylinders can be param-
eterized when the gripper is created, the CAD elements must be uploaded beforehand to be available
during gripper creation. A CAD element can be uploaded via the REST-API interface (Section 7.2) as
described in Section CAD element API (Section 6.5.3.5) or via the rc_reason_stack Web GUI (Section
7.1). Supported file formats are STEP (*.stp, *.step), STL (*.stl), OBJ (*.obj) and PLY (*.ply). The
maximum file size to be uploaded is limited to 30 MB. The files are internally converted to PLY and, if
necessary, simplified. The CAD elements can be referenced during gripper creation by their ID.

Creating a gripper via the REST-API or the Web GUI

When creating a gripper via the REST-API interface (Section 7.2) or the Web GUI (Section 7.1), each
element of the gripper has a parent element, which defines how they are connected. The gripper is
always built in the direction from the robot flange to the TCP, and at least one element must have
‘flange’ as parent. The elements’ IDs must be unique and must not be ‘tcp’ or ‘flange’. The pose of the
child element has to be given in the coordinate frame of the parent element. The coordinate frame of a
CYLINDER or BOX element is always in its geometric center. Accordingly, for a child element to be exactly
below the parent element, the position of the child element must be computed from the heights of both
parent and child element (see Fig. 6.42).

Pcyl

Pbox

hbox

hcyl

Pdiff = (0, 0, (hcyl+hbox)/2)

Pdiff

Fig. 6.42: Reference frames for gripper creation via the REST-API and the Web GUI

In case a CAD element is used, the element’s origin is defined in the CAD data and is not necessarily
located in the center of the element’s bounding box.

It is recommended to create a gripper via the Web GUI, because it provides a 3D visualization of the
gripper geometry and also allows to automatically attach the child element to the bottom of its parent

Roboception GmbH
Manual: rc_reason_stack

300 Rev: 26.01.4
Status: Jan 30, 2026

6.5. Database modules

element, when the corresponding option for this element is activated. In this case, the elements also stay
attached when any of their sizes change. Automatic attachment of CAD elements uses the element’s
bounding box as reference. Automatic attachment is only possible when the child element is not rotated
around the x or y axis with respect to its parent.

The reference frame for the first element for the gripper creation is always the center of the robot’s flange
with the z axis pointing outwards. It is possible to create a gripper with a tree structure, corresponding
to multiple elements having the same parent element, as long as they are all connected.

Calculated TCP position

After gripper creation via the set_gripper service call, the TCP position in the flange coordinate system
is calculated and returned as tcp_pose_flange. It is important to check if this value is the same as the
robot’s true TCP position. When creating a gripper in the Web GUI the current TCP position is always
displayed in the 3D gripper visualization.

Creating rotationally asymmetric grippers

For grippers which are not rotationally symmetric around the z axis, it is crucial to ensure that the gripper
is properly mounted, so that the representation stored in the GripperDB module corresponds to reality.

6.5.3.3 Services

The GripperDB module is called rc_gripper_db in the REST-API and is represented in the Web
GUI (Section 7.1) under Database → Grippers. The user can explore and call the GripperDB mod-
ule’s services, e.g. for development and testing, using the REST-API interface (Section 7.2) or the Web
GUI.

The GripperDB module offers the following services.

set_gripper

Persistently stores a gripper on the rc_reason_stack. All configured grippers are persistent
over firmware updates and rollbacks.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_gripper_db/services/set_gripper

Request

Required arguments:

elements: list of geometric elements for the gripper. Each element must be of type
‘CYLINDER’ or ‘BOX’ with the corresponding dimensions in the cylinder or box
field, or of type ‘CAD’ with the corresponding id in the cad field. The pose of each
element must be given in the coordinate frame of the parent element (see Setting
a gripper (Section 6.5.3.2) for an explanation of the coordinate frames). The ele-
ment’s id must be unique and must not be ‘tcp’ or ‘flange’. The parent_id is the ID
of the parent element. It can either be ‘flange’ or it must correspond to another ele-
ment in list. Each element can have a function_type which is either NONE, FINGER
or SUCTION_CUP. Elements of type FINGER additionally need a zero_pose whose
orientation has to be the same as in the element’s pose. SUCTION_CUP elements
cannot have child elements.

Roboception GmbH
Manual: rc_reason_stack

301 Rev: 26.01.4
Status: Jan 30, 2026

6.5. Database modules

flange_radius: radius of the flange used in case the check_flange run-time pa-
rameter is active.

id: unique name of the gripper

tcp_parent_id: ID of the element on which the TCP is defined

tcp_pose_parent: The pose of the TCP with respect to the coordinate frame of
the element specified in tcp_parent_id.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"elements": [
{

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"cad": {
"id": "string"

},
"cylinder": {
"height": "float64",
"radius": "float64"

},
"id": "string",
"parent_id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"type": "string"

}
],
"flange_radius": "float64",
"id": "string",
"tcp_parent_id": "string",
"tcp_pose_parent": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Roboception GmbH
Manual: rc_reason_stack

302 Rev: 26.01.4
Status: Jan 30, 2026

6.5. Database modules

Response

gripper: returns the gripper as defined in the request with an additional field
tcp_pose_flange. This gives the coordinates of the TCP in the flange coordinate frame
for comparison with the true settings of the robot’s TCP.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

{
"name": "set_gripper",
"response": {
"gripper": {
"elements": [

{
"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"cad": {
"id": "string"

},
"cylinder": {
"height": "float64",
"radius": "float64"

},
"id": "string",
"parent_id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"type": "string"

}
],
"flange_radius": "float64",
"id": "string",
"tcp_parent_id": "string",
"tcp_pose_flange": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"tcp_pose_parent": {

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

303 Rev: 26.01.4
Status: Jan 30, 2026

6.5. Database modules

(continued from previous page)

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"type": "string"

},
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_grippers

Returns the configured grippers with the requested gripper_ids.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_gripper_db/services/get_grippers

Request

If no gripper_ids are provided, all configured grippers are returned.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"gripper_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_grippers",
"response": {
"grippers": [
{

"elements": [
{
"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

304 Rev: 26.01.4
Status: Jan 30, 2026

6.5. Database modules

(continued from previous page)

"cad": {
"id": "string"

},
"cylinder": {
"height": "float64",
"radius": "float64"

},
"id": "string",
"parent_id": "string",
"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"type": "string"

}
],
"flange_radius": "float64",
"id": "string",
"tcp_parent_id": "string",
"tcp_pose_flange": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"tcp_pose_parent": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"type": "string"

}
],
"return_code": {

"message": "string",
"value": "int16"

}

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

305 Rev: 26.01.4
Status: Jan 30, 2026

6.5. Database modules

(continued from previous page)

}
}

delete_grippers

Deletes the configured grippers with the requested gripper_ids.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_gripper_db/services/delete_grippers

Request

All grippers to be deleted must be explicitly stated in gripper_ids.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"gripper_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "delete_grippers",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.5.3.4 Return codes

Each service response contains a return_code, which consists of a value plus an optional message.
A successful service returns with a return_code value of 0. Negative return_code values indicate
that the service failed. Positive return_code values indicate that the service succeeded with additional
information. The smaller value is selected in case a service has multiple return_code values, but all
messages are appended in the return_code message.

The following table contains a list of common codes:

Roboception GmbH
Manual: rc_reason_stack

306 Rev: 26.01.4
Status: Jan 30, 2026

6.5. Database modules

Table 6.64: Return codes of the GripperDB services
Code Description

0 Success
-1 An invalid argument was provided
-7 Data could not be read or written to persistent storage
-9 No valid license for the module

-10 New gripper could not be added as the maximum storage capacity of grippers has been
exceeded

10 The maximum storage capacity of grippers has been reached
11 Existing gripper was overwritten

6.5.3.5 CAD element API

For gripper CAD element upload, download, listing and removal, special REST-API endpoints are pro-
vided. CAD elements can also be uploaded, downloaded and removed via the Web GUI. Up to 50 CAD
elements can be stored persistently on the rc_reason_stack.

The maximum file size to be uploaded is limited to 30 MB.

GET /cad/gripper_elements
Get list of all CAD gripper elements.

Template request

GET /api/v2/cad/gripper_elements HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": "string"
}

]

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns array of GripperElement)

• 404 Not Found – element not found

Referenced Data Models

• GripperElement (Section 7.2.3)

GET /cad/gripper_elements/{id}
Get a CAD gripper element. If the requested content-type is application/octet-stream, the gripper
element is returned as file.

Template request

GET /api/v2/cad/gripper_elements/<id> HTTP/1.1

Template response

Roboception GmbH
Manual: rc_reason_stack

307 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.5. Database modules

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters

• id (string) – id of the element (required)

Response Headers

• Content-Type – application/json application/ubjson application/octet-stream

Status Codes

• 200 OK – successful operation (returns GripperElement)

• 404 Not Found – element not found

Referenced Data Models

• GripperElement (Section 7.2.3)

PUT /cad/gripper_elements/{id}
Create or update a CAD gripper element.

Template request

PUT /api/v2/cad/gripper_elements/<id> HTTP/1.1
Accept: multipart/form-data application/json

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters

• id (string) – id of the element (required)

Form Parameters

• file – CAD file (required)

Request Headers

• Accept – multipart/form-data application/json

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns GripperElement)

• 400 Bad Request – CAD is not valid or max number of elements reached

• 404 Not Found – element not found

• 413 Request Entity Too Large – File too large

Referenced Data Models

Roboception GmbH
Manual: rc_reason_stack

308 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14

6.5. Database modules

• GripperElement (Section 7.2.3)

DELETE /cad/gripper_elements/{id}
Remove a CAD gripper element.

Template request

DELETE /api/v2/cad/gripper_elements/<id> HTTP/1.1
Accept: application/json application/ubjson

Parameters

• id (string) – id of the element (required)

Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

• 404 Not Found – element not found

Roboception GmbH
Manual: rc_reason_stack

309 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7 Interfaces

The following interfaces are provided for configuring and obtaining data from the rc_reason_stack :

• Web GUI (Section 7.1)

Easy-to-use graphical interface to configure the rc_reason_stack, do calibrations, view
live images, do service calls, visualize results, etc.

• REST-API interface (Section 7.2)

API to configure the rc_reason_stack, query status information, do service calls, etc.

• Generic Robot Interface (Section 7.3)

TCP socket communication interface for configuring the rc_reason_stack and for service
calls.

• OPC UA interface (Section 7.4)

OPC UA interface for configuring the rc_reason_stack and for service calls.

• KUKA Ethernet KRL Interface (Section 7.5)

API to configure the rc_reason_stack and do service calls from KUKA KSS robots.

• gRPC image stream interface (Section 7.6)

Stream synchronized image sets via gRPC.

7.1 Web GUI

The rc_reason_stack ’s Web GUI can be used to test, calibrate, and configure the device.

7.1.1 Accessing the Web GUI

The Web GUI of the rc_reason_stack can be accessed from any web browser, such as Firefox, Google
Chrome, or Microsoft Edge, via the host PC’s IP address with the port number 8080:

http://<host-ip>:8080/

7.1.2 Exploring the Web GUI

The Web GUI’s dashboard page gives the most important information about the device and the running
camera pipelines.

Roboception GmbH
Manual: rc_reason_stack

310 Rev: 26.01.4
Status: Jan 30, 2026

7.1. Web GUI

Fig. 7.1: Dashboard page of the rc_reason_stack ’s Web GUI

The page’s side menu permits access to the individual pages of the rc_reason_stack ’s Web GUI:

Pipeline gives access to the respective camera pipeline and its camera, detection and configuration
modules. Each camera pipeline provides an overview page with the most important information
about the camera connection and the software modules running in the pipeline.

Fig. 7.2: Pipeline overview page of the rc_reason_stack ’s Web GUI

Each pipeline provides a sub-menu with the individual pages for the modules running in the pipeline:

Camera shows a live stream of the rectified camera images and allows changing camera parameters.
See Camera module (Section 6.1) for more information.

Depth Image shows a live stream of the left rectified, disparity, and confidence images. The page
contains various settings for depth-image computation and filtering. See 3D modules (Section
6.2) for more information.

Roboception GmbH
Manual: rc_reason_stack

311 Rev: 26.01.4
Status: Jan 30, 2026

7.1. Web GUI

Modules gives access to the detection modules of the rc_reason_stack (see Detection & Measure
modules, Section 6.3).

Configuration gives access to the configuration modules of the rc_reason_stack (see Configuration
modules, Section 6.4).

The following modules running outside the pipelines can be accessed in the side menu:

Database gives access to the database modules of the rc_reason_stack (see Database modules,
Section 6.5).

Generic Robot Interface shows the jobs and hand-eye calibration configurations defined for the
Generic Robot Interface.

System gives access to general settings, software information and to the log files, and shows license
information.

Note: Further information on all parameters in the Web GUI can be obtained by pressing the Info
button next to each parameter.

7.1.3 Web GUI access control

The Web GUI has a simple mechanism to lock the UI against casual and accidental changes.

When enabling Web GUI access control via the System page, you will be asked to set a password.
Now the Web GUI is in a locked mode indicated by the lock symbol in the top bar. All pages, camera
streams, parameters and detections can be inspected as usual, but changes are not possible.

To temporarily unlock the Web GUI and make changes, click the lock symbol and enter the password.
While enabling or disabling Web GUI access control affects anyone accessing this rc_reason_stack,
the unlocked state is only valid for the browser where it was unlocked and indicated by the open lock
symbol. It is automatically locked again after 10 minutes of inactivity.

Web GUI access control can also be disabled again on the System page after providing the current
password.

Warning: This is not a security feature! It only locks the Web GUI and not the REST-API. It is meant
to prevent accidental and casual changes e.g. via a connected screen.

Note: In case the password is lost, this can be disabled via the REST-API delete ui_lock (Section
7.2.2.4).

7.1.4 Downloading camera images

The Web GUI provides an easy way to download a snapshot of the current scene as a .tar.gz file by
clicking on the camera icon below the image live streams on the Camera page. This snapshot contains:

• the rectified camera images in full resolution as .png files,

• a camera parameter file containing the camera matrix, image dimensions, exposure time, gain
value and the stereo baseline,

• the current IMU readings as imu.csv file, if available,

• a pipeline_status.json file containing information about all modules running inside the pipelines on
the rc_reason_stack,

• a backup.json file containing the settings of the rc_reason_stack including grippers, load carriers
and regions of interest,

Roboception GmbH
Manual: rc_reason_stack

312 Rev: 26.01.4
Status: Jan 30, 2026

7.2. REST-API interface

• a system_info.json file containing system information about the rc_reason_stack.

The filenames contain the timestamps.

7.1.5 Downloading depth images and point clouds

The Web GUI provides an easy way to download the depth data of the current scene as a .tar.gz file
by clicking on the camera icon below the image live streams on the Depth Image page. This snapshot
contains:

• the rectified left and right camera images in full resolution as .png files,

• an image parameter file corresponding to the left image containing the camera matrix, image
dimensions, exposure time, gain value and the stereo baseline,

• the disparity, error and confidence images in the resolution corresponding to the currently chosen
quality as .png files,

• a disparity parameter file corresponding to the disparity image containing the camera matrix, im-
age dimensions, exposure time, gain value and the stereo baseline, and information about the
disparity values (i.e. invalid values, scale, offset),

• the current IMU readings as imu.csv file, if available,

• a pipeline_status.json file containing information about all modules running inside the pipelines on
the rc_reason_stack,

• a backup.json file containing the settings of the rc_reason_stack including grippers, load carriers
and regions of interest,

• a system_info.json file containing system information about the rc_reason_stack.

The filenames contain the timestamps.

When clicking on the mesh icon below the image live streams on the Depth Image page, a snapshot is
downloaded which additionally includes a mesh of the point cloud in the current depth quality (resolution)
as .ply file.

Note: Downloading a depth snapshot will trigger an acquisition in the same way as clicking on
the “Acquire” button on the Depth Image page of the Web GUI, and, thus, might affect running
applications.

7.2 REST-API interface

The rc_reason_stack offers a comprehensive RESTful web interface (REST-API) which any HTTP client
or library can access. Whereas most of the provided parameters, services, and functionalities can also
be accessed via the user-friendly Web GUI (Section 7.1), the REST-API serves rather as a machine-to-
machine interface to the rc_reason_stack, e.g., to programmatically

• set and get run-time parameters of computation nodes, e.g., of cameras or image processing
modules;

• do service calls, e.g., to start and stop individual computational nodes, or to use offered services
such as the hand-eye calibration;

• read the current state of the system and individual computational nodes; or

• update the rc_reason_stack ’s firmware or license.

Note: In the rc_reason_stack ’s REST-API, a node is a computational component that bundles cer-
tain algorithmic functionality and offers a holistic interface (parameters, services, current status).
Examples for such nodes are the stereo matching node or the hand-eye calibration node.

Roboception GmbH
Manual: rc_reason_stack

313 Rev: 26.01.4
Status: Jan 30, 2026

7.2. REST-API interface

7.2.1 General API structure

The general entry point to the rc_reason_stack ’s API is http://<host>/api/, where <host> is
the IP address of the host PC that runs the rc_reason_stack combined with the port 8080, i.e.
<host-ip>::8080. Accessing this entry point with a web browser lets the user explore and test the
full API during run-time using the Swagger UI (Section 7.2.4).

For actual HTTP requests, the current API version is appended to the entry point of the API, i.e.,
http://<host>/api/v2.

All data sent to and received by the REST-API follows the JavaScript Object Notation (JSON). The API is
designed to let the user create, retrieve, modify, and delete so-called resources as listed in Available
resources and requests (Section 7.2.2) using the HTTP requests below.

Request type Description
GET Access one or more resources

and return the result as JSON.
PUT Modify a resource and return the

modified resource as JSON.
DELETE Delete a resource.
POST Upload file (e.g., license or

firmware image).

Depending on the type and the specific request itself, arguments to HTTP requests can be transmitted
as part of the path (URI) to the resource, as query string, as form data, or in the body of the request.
The following examples use the command line tool curl, which is available for various operating systems.
See https://curl.haxx.se.

• Get a node’s current status; its name is encoded in the path (URI)

curl -X GET 'http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching'

• Get values of some of a node’s parameters using a query string

curl -X GET 'http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching/parameters?
→˓name=minconf&name=maxdepth'

• Set a node’s parameter as JSON-encoded text in the body of the request

curl -X PUT --header 'Content-Type: application/json' -d '[{"name": "mindepth", "value": 0.
→˓1}]' 'http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching/parameters'

As for the responses to such requests, some common return codes for the rc_reason_stack ’s API are:

Status Code Description
200 OK The request was successful; the

resource is returned as JSON.
400 Bad Request A required attribute or argument

of the API request is missing or
invalid.

404 Not Found A resource could not be ac-
cessed; e.g., an ID for a re-
source could not be found.

403 Forbidden Access is (temporarily) forbid-
den; e.g., some parameters are
locked while a GigE Vision appli-
cation is connected.

429 Too many requests Rate limited due to excessive re-
quest frequency.

Roboception GmbH
Manual: rc_reason_stack

314 Rev: 26.01.4
Status: Jan 30, 2026

https://doc.rc-visard.com/latest/en/glossary.html#term-uri
https://curl.haxx.se

7.2. REST-API interface

The following listing shows a sample response to a successful request that accesses information about
the rc_stereomatching node’s minconf parameter:

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 157

{
"name": "minconf",
"min": 0,
"default": 0,
"max": 1,
"value": 0,
"type": "float64",
"description": "Minimum confidence"

}

Note: The actual behavior, allowed requests, and specific return codes depend heavily on the spe-
cific resource, context, and action. Please refer to the rc_reason_stack ’s available resources (Sec-
tion 7.2.2) and to each software module’s (Section 6) parameters and services.

7.2.2 Available resources and requests

The available REST-API resources are structured into the following parts:

• /nodes Access the rc_reason_stack ’s global Database modules (Section 6.5) with their run-time
status, parameters, and offered services, for storing data used in all camera pipelines and
multiple modules, such as load carriers, grippers and regions of interest.

• /pipelines/<number>/nodes Access the rc_reason_stack ’s 3D-camera, detection and configu-
ration software modules (Section 6) of the camera pipeline with the specified number, with
their run-time status, parameters, and offered services.

• /pipelines Access to the status and configuration of the camera pipelines.

• /templates Access the object templates on the rc_reason_stack.

• /cad Access the cad elements, e.g. for grippers, on the rc_reason_stack.

• /presets Access the 2D and 3D user-defined presets for zivid cameras.

• /system Access the system state, set network configuration, configure the camera pipeline types,
and manage licenses as well as firmware updates.

• /logs Access the log files on the rc_reason_stack.

• /generic_robot_interface Access the job and hec_configs for the Generic Robot Interface on
the rc_reason_stack.

7.2.2.1 Nodes, parameters, and services

Nodes represent the rc_reason_stack ’s software modules (Section 6), each bundling a certain algo-
rithmic functionality. All available global REST-API database nodes can be listed with their service calls
and parameters using

curl -X GET http://<host>/api/v2/nodes

Information about a specific node (e.g., rc_load_carrier_db) can be retrieved using

curl -X GET http://<host>/api/v2/nodes/rc_load_carrier_db

Roboception GmbH
Manual: rc_reason_stack

315 Rev: 26.01.4
Status: Jan 30, 2026

7.2. REST-API interface

All available 3D camera, detection and configuration REST-API nodes can be listed with their service
calls and parameters using

curl -X GET http://<host>/api/v2/pipelines/<pipeline number>/nodes

Information about a specific node (e.g., rc_camera on camera pipeline 1) can be retrieved using

curl -X GET http://<host>/api/v2/pipelines/1/nodes/rc_camera

Status: During run-time, each node offers information about its current status. This includes not only
the current processing status of the module (e.g., running or stale), but most nodes also of-
fer run-time statistics or read-only parameters, so-called status values. As an example, the
rc_camera values can be retrieved using

curl -X GET http://<host>/api/v2/pipelines/<pipeline number>/nodes/rc_camera/status

Note: The returned status values are specific to individual nodes and are documented in the
respective software module (Section 6).

Note: The status values are only reported when the respective node is in the running state.

Parameters: Most nodes expose parameters via the rc_reason_stack ’s REST-API to allow their run-
time behaviors to be changed according to application context or requirements. The REST-API
permits to read and write a parameter’s value, but also provides further information such as mini-
mum, maximum, and default values.

As an example, the rc_stereomatching parameters can be retrieved using

curl -X GET http://<host>/api/v2/pipelines/<pipeline number>/nodes/rc_stereomatching/
→˓parameters

Its quality parameter could be set to Full using

curl -X PUT http://<host>/api/v2/pipelines/<pipeline number>/nodes/rc_stereomatching/
→˓parameters?quality=Full

or equivalently

curl -X PUT --header 'Content-Type: application/json' -d '{ "value": "Full" }' http://<host>
→˓/api/v2/pipelines/<pipeline number>/nodes/rc_stereomatching/parameters/quality

Note: Run-time parameters are specific to individual nodes and are documented in the respec-
tive software module (Section 6).

Note: Most of the parameters that nodes offer via the REST-API can be explored and tested
via the rc_reason_stack ’s user-friendly Web GUI (Section 7.1).

In addition, each node that offers run-time parameters also features a service to restore the default
values for all of its parameters.

Services: Most nodes also offer services that can be called via REST-API, e.g., to restore parameters
as discussed above, or to start and stop nodes. As an example, the services of the hand-eye
calibration module (Section 6.4.1.5) could be listed using

curl -X GET http://<host>/api/v2/pipelines/<pipeline number>/nodes/rc_hand_eye_calibration/
→˓services

Roboception GmbH
Manual: rc_reason_stack

316 Rev: 26.01.4
Status: Jan 30, 2026

7.2. REST-API interface

A node’s service is called by issuing a PUT request for the respective resource and providing the
service-specific arguments (see the "args" field of the Service data model , Section 7.2.3). As an
example, the stereo matching module can be triggered to do an acquisition by:

curl -X PUT --header 'Content-Type: application/json' -d '{ "args": {} }' http://<host>/api/
→˓v2/pipelines/<pipeline number>/nodes/rc_stereomatching/services/acquisition_trigger

Note: The services and corresponding argument data models are specific to individual nodes
and are documented in the respective software module (Section 6).

The following list includes all REST-API requests regarding the global database nodes’ status, parame-
ters, and services calls:

GET /nodes
Get list of all available global nodes.

Template request

GET /api/v2/nodes HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"name": "rc_roi_db",
"parameters": [],
"services": [
"set_region_of_interest",
"get_regions_of_interest",
"delete_regions_of_interest",
"set_region_of_interest_2d",
"get_regions_of_interest_2d",
"delete_regions_of_interest_2d"

],
"status": "running"

},
{

"name": "rc_load_carrier_db",
"parameters": [],
"services": [
"set_load_carrier",
"get_load_carriers",
"delete_load_carriers"

],
"status": "running"

},
{

"name": "rc_gripper_db",
"parameters": [],
"services": [
"set_gripper",
"get_grippers",
"delete_grippers"

],
"status": "running"

}
]

Response Headers

Roboception GmbH
Manual: rc_reason_stack

317 Rev: 26.01.4
Status: Jan 30, 2026

7.2. REST-API interface

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns array of NodeInfo)

Referenced Data Models

• NodeInfo (Section 7.2.3)

GET /nodes/{node}
Get info on a single global node.

Template request

GET /api/v2/nodes/<node> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"name": "rc_roi_db",
"parameters": [],
"services": [

"set_region_of_interest",
"get_regions_of_interest",
"delete_regions_of_interest",
"set_region_of_interest_2d",
"get_regions_of_interest_2d",
"delete_regions_of_interest_2d"

],
"status": "running"

}

Parameters

• node (string) – name of the node (required)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns NodeInfo)

• 404 Not Found – node not found

Referenced Data Models

• NodeInfo (Section 7.2.3)

GET /nodes/{node}/services
Get descriptions of all services a global node offers.

Template request

GET /api/v2/nodes/<node>/services HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

318 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API interface

(continued from previous page)

[
{

"args": {},
"description": "string",
"name": "string",
"response": {}

}
]

Parameters

• node (string) – name of the node (required)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns array of Service)

• 404 Not Found – node not found

Referenced Data Models

• Service (Section 7.2.3)

GET /nodes/{node}/services/{service}
Get description of a global node’s specific service.

Template request

GET /api/v2/nodes/<node>/services/<service> HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"args": {},
"description": "string",
"name": "string",
"response": {}

}

Parameters

• node (string) – name of the node (required)

• service (string) – name of the service (required)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns Service)

• 404 Not Found – node or service not found

Referenced Data Models

• Service (Section 7.2.3)

Roboception GmbH
Manual: rc_reason_stack

319 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API interface

PUT /nodes/{node}/services/{service}
Call a service of a node. The required args and resulting response depend on the specific node
and service.

Template request

PUT /api/v2/nodes/<node>/services/<service> HTTP/1.1
Accept: application/json application/ubjson

{}

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"args": {},
"description": "string",
"name": "string",
"response": {}

}

Parameters

• node (string) – name of the node (required)

• service (string) – name of the service (required)

Request JSON Object

• service args (object) – example args (required)

Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – Service call completed (returns Service)

• 403 Forbidden – Service call forbidden, e.g. because there is no valid license
for this module.

• 404 Not Found – node or service not found

Referenced Data Models

• Service (Section 7.2.3)

GET /nodes/{node}/status
Get status of a global node.

Template request

GET /api/v2/nodes/<node>/status HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

320 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API interface

(continued from previous page)

"status": "running",
"timestamp": 1503075030.2335997,
"values": []

}

Parameters

• node (string) – name of the node (required)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns NodeStatus)

• 404 Not Found – node not found

Referenced Data Models

• NodeStatus (Section 7.2.3)

The following list includes all REST-API requests regarding the pipeline-specific 3D camera, detection
and configuration nodes’ status, parameters, and services calls:

GET /pipelines/{pipeline}/nodes
Get list of all available nodes.

Template request

GET /api/v2/pipelines/<pipeline>/nodes HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"name": "rc_camera",
"parameters": [
"fps",
"exp_auto",
"exp_value",
"exp_max"

],
"services": [
"reset_defaults"

],
"status": "running"

},
{

"name": "rc_hand_eye_calibration",
"parameters": [
"grid_width",
"grid_height",
"robot_mounted"

],
"services": [
"reset_defaults",
"set_pose",
"reset",
"save",

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

321 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API interface

(continued from previous page)

"calibrate",
"get_calibration"

],
"status": "idle"

},
{

"name": "rc_stereomatching",
"parameters": [
"quality",
"seg",
"fill",
"minconf",
"mindepth",
"maxdepth",
"maxdeptherr"

],
"services": [

"reset_defaults"
],
"status": "running"

}
]

Parameters

• pipeline (string) – name of the pipeline (one of 0, 1, 2, 3) (required)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns array of NodeInfo)

Referenced Data Models

• NodeInfo (Section 7.2.3)

GET /pipelines/{pipeline}/nodes/{node}
Get info on a single node.

Template request

GET /api/v2/pipelines/<pipeline>/nodes/<node> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"name": "rc_camera",
"parameters": [

"fps",
"exp_auto",
"exp_value",
"exp_max"

],
"services": [
"reset_defaults"

],
"status": "running"

}

Roboception GmbH
Manual: rc_reason_stack

322 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.2. REST-API interface

Parameters

• pipeline (string) – name of the pipeline (one of 0, 1, 2, 3) (required)

• node (string) – name of the node (required)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns NodeInfo)

• 404 Not Found – node not found

Referenced Data Models

• NodeInfo (Section 7.2.3)

GET /pipelines/{pipeline}/nodes/{node}/parameters
Get parameters of a node.

Template request

GET /api/v2/pipelines/<pipeline>/nodes/<node>/parameters?name=<name> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"default": 25,
"description": "Frames per second in Hz",
"max": 25,
"min": 1,
"name": "fps",
"type": "float64",
"value": 25

},
{

"default": true,
"description": "Switching between auto and manual exposure",
"max": true,
"min": false,
"name": "exp_auto",
"type": "bool",
"value": true

},
{

"default": 0.007,
"description": "Maximum exposure time in s if exp_auto is true",
"max": 0.018,
"min": 6.6e-05,
"name": "exp_max",
"type": "float64",
"value": 0.007

}
]

Parameters

• pipeline (string) – name of the pipeline (one of 0, 1, 2, 3) (required)

• node (string) – name of the node (required)

Roboception GmbH
Manual: rc_reason_stack

323 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API interface

Query Parameters

• name (string) – limit result to parameters with name (optional)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns array of Parameter)

• 404 Not Found – node not found

Referenced Data Models

• Parameter (Section 7.2.3)

PUT /pipelines/{pipeline}/nodes/{node}/parameters
Update multiple parameters.

Template request

PUT /api/v2/pipelines/<pipeline>/nodes/<node>/parameters HTTP/1.1
Accept: application/json application/ubjson

[
{

"name": "string",
"value": {}

}
]

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"default": 25,
"description": "Frames per second in Hz",
"max": 25,
"min": 1,
"name": "fps",
"type": "float64",
"value": 10

},
{

"default": true,
"description": "Switching between auto and manual exposure",
"max": true,
"min": false,
"name": "exp_auto",
"type": "bool",
"value": false

},
{

"default": 0.005,
"description": "Manual exposure time in s if exp_auto is false",
"max": 0.018,
"min": 6.6e-05,
"name": "exp_value",
"type": "float64",
"value": 0.005

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

324 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API interface

(continued from previous page)

}
]

Parameters

• pipeline (string) – name of the pipeline (one of 0, 1, 2, 3) (required)

• node (string) – name of the node (required)

Request JSON Array of Objects

• parameters (ParameterNameValue) – array of parameters (required)

Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns array of Parameter)

• 400 Bad Request – invalid parameter value

• 403 Forbidden – Parameter update forbidden, e.g. because they are locked by
a running GigE Vision application or there is no valid license for this module.

• 404 Not Found – node not found

Referenced Data Models

• ParameterNameValue (Section 7.2.3)

• Parameter (Section 7.2.3)

GET /pipelines/{pipeline}/nodes/{node}/parameters/{param}
Get a specific parameter of a node.

Template request

GET /api/v2/pipelines/<pipeline>/nodes/<node>/parameters/<param> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"default": 25,
"description": "Frames per second in Hertz",
"max": 25,
"min": 1,
"name": "fps",
"type": "float64",
"value": 10

}

Parameters

• pipeline (string) – name of the pipeline (one of 0, 1, 2, 3) (required)

• node (string) – name of the node (required)

• param (string) – name of the parameter (required)

Roboception GmbH
Manual: rc_reason_stack

325 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API interface

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns Parameter)

• 404 Not Found – node or parameter not found

Referenced Data Models

• Parameter (Section 7.2.3)

PUT /pipelines/{pipeline}/nodes/{node}/parameters/{param}
Update a specific parameter of a node.

Template request

PUT /api/v2/pipelines/<pipeline>/nodes/<node>/parameters/<param> HTTP/1.1
Accept: application/json application/ubjson

{
"value": {}

}

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"default": 25,
"description": "Frames per second in Hertz",
"max": 25,
"min": 1,
"name": "fps",
"type": "float64",
"value": 10

}

Parameters

• pipeline (string) – name of the pipeline (one of 0, 1, 2, 3) (required)

• node (string) – name of the node (required)

• param (string) – name of the parameter (required)

Request JSON Object

• parameter (ParameterValue) – parameter to be updated as JSON object (re-
quired)

Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns Parameter)

• 400 Bad Request – invalid parameter value

• 403 Forbidden – Parameter update forbidden, e.g. because they are locked by
a running GigE Vision application or there is no valid license for this module.

Roboception GmbH
Manual: rc_reason_stack

326 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

7.2. REST-API interface

• 404 Not Found – node or parameter not found

Referenced Data Models

• ParameterValue (Section 7.2.3)

• Parameter (Section 7.2.3)

GET /pipelines/{pipeline}/nodes/{node}/services
Get descriptions of all services a node offers.

Template request

GET /api/v2/pipelines/<pipeline>/nodes/<node>/services HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"args": {},
"description": "Restarts the module.",
"name": "restart",
"response": {

"accepted": "bool",
"current_state": "string"

}
},
{

"args": {},
"description": "Starts the module.",
"name": "start",
"response": {

"accepted": "bool",
"current_state": "string"

}
},
{

"args": {},
"description": "Stops the module.",
"name": "stop",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

]

Parameters

• pipeline (string) – name of the pipeline (one of 0, 1, 2, 3) (required)

• node (string) – name of the node (required)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns array of Service)

• 404 Not Found – node not found

Referenced Data Models

Roboception GmbH
Manual: rc_reason_stack

327 Rev: 26.01.4
Status: Jan 30, 2026

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API interface

• Service (Section 7.2.3)

GET /pipelines/{pipeline}/nodes/{node}/services/{service}
Get description of a node’s specific service.

Template request

GET /api/v2/pipelines/<pipeline>/nodes/<node>/services/<service> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"args": {

"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"slot": "int32"

},
"description": "Save a pose (grid or gripper) for later calibration.",
"name": "set_pose",
"response": {
"message": "string",
"status": "int32",
"success": "bool"

}
}

Parameters

• pipeline (string) – name of the pipeline (one of 0, 1, 2, 3) (required)

• node (string) – name of the node (required)

• service (string) – name of the service (required)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns Service)

• 404 Not Found – node or service not found

Referenced Data Models

• Service (Section 7.2.3)

PUT /pipelines/{pipeline}/nodes/{node}/services/{service}
Call a service of a node. The required args and resulting response depend on the specific node
and service.

Roboception GmbH
Manual: rc_reason_stack

328 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API interface

Template request

PUT /api/v2/pipelines/<pipeline>/nodes/<node>/services/<service> HTTP/1.1
Accept: application/json application/ubjson

{}

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"name": "set_pose",
"response": {
"message": "Grid detected, pose stored.",
"status": 1,
"success": true

}
}

Parameters

• pipeline (string) – name of the pipeline (one of 0, 1, 2, 3) (required)

• node (string) – name of the node (required)

• service (string) – name of the service (required)

Request JSON Object

• service args (object) – example args (required)

Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – Service call completed (returns Service)

• 403 Forbidden – Service call forbidden, e.g. because there is no valid license
for this module.

• 404 Not Found – node or service not found

Referenced Data Models

• Service (Section 7.2.3)

GET /pipelines/{pipeline}/nodes/{node}/status
Get status of a node.

Template request

GET /api/v2/pipelines/<pipeline>/nodes/<node>/status HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

329 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API interface

(continued from previous page)

"status": "running",
"timestamp": 1503075030.2335997,
"values": {
"baseline": "0.0650542",
"color": "0",
"exp": "0.00426667",
"focal": "0.844893",
"fps": "25.1352",
"gain": "12.0412",
"height": "960",
"temp_left": "39.6",
"temp_right": "38.2",
"time": "0.00406513",
"width": "1280"

}
}

Parameters

• pipeline (string) – name of the pipeline (one of 0, 1, 2, 3) (required)

• node (string) – name of the node (required)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns NodeStatus)

• 404 Not Found – node not found

Referenced Data Models

• NodeStatus (Section 7.2.3)

7.2.2.2 Pipelines

Pipelines represent the rc_reason_stack ’s camera pipelines.

The following list includes all REST-API requests regarding the camera pipelines’ configuration:

GET /pipelines
Get active pipelines

Template request

GET /api/v2/pipelines HTTP/1.1

Status Codes

• 200 OK – successful operation

GET /pipelines/{pipeline}
Get active pipeline type and status

Template request

GET /api/v2/pipelines/<pipeline> HTTP/1.1

Parameters

• pipeline (string) – name of the pipeline (one of 0, 1, 2, 3) (required)

Roboception GmbH
Manual: rc_reason_stack

330 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.2. REST-API interface

Status Codes

• 200 OK – successful operation

GET /system/pipelines
Get pipeline configuration.

Template request

GET /api/v2/system/pipelines HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"config": {
"0": {

"type": "rc_visard"
}

},
"max_pipelines": 4,
"pending_changes": false

}

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

GET /system/pipelines/config/{pipeline}
Get configuration for specific pipeline.

Template request

GET /api/v2/system/pipelines/config/<pipeline> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"0": {

"type": "rc_visard"
}

}

Parameters

• pipeline (string) – name of the pipeline (one of 0, 1, 2, 3) (required)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

Roboception GmbH
Manual: rc_reason_stack

331 Rev: 26.01.4
Status: Jan 30, 2026

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.2. REST-API interface

PUT /system/pipelines/config/{pipeline}
Update configuration for specific pipeline.

Template request

PUT /api/v2/system/pipelines/config/<pipeline>?type=<type> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"type": "rc_visard"

}

Parameters

• pipeline (string) – name of the pipeline (one of 0, 1, 2, 3) (required)

Query Parameters

• type (string) – pipeline type (one of rc_visard, rc_viscore, blaze, zivid,
stereo_ace) (required)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

• 400 Bad Request – invalid pipeline name or type

DELETE /system/pipelines/config/{pipeline}
Delete specific pipeline.

Template request

DELETE /api/v2/system/pipelines/config/<pipeline> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"message": "Pipeline 1 deleted"

}

Parameters

• pipeline (string) – name of the pipeline (one of 1, 2, 3) (required)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

• 400 Bad Request – invalid pipeline name, e.g. pipeline 0 cannot be deleted

Roboception GmbH
Manual: rc_reason_stack

332 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

7.2. REST-API interface

7.2.2.3 UserSpace

UserSpace information including running apps and their published ports can be queried via the
userspace endpoint. An app can be of type container or compose (compose stack with potentially
multiple containers).

7.2.2.4 System and logs

The following resources and requests expose the rc_reason_stack ’s system-level API. They enable

• access to log files (system-wide or module-specific)

• access to information about the device and run-time statistics such as date, MAC address, clock-
time synchronization status, and available resources;

• management of installed software licenses; and

• the rc_reason_stack to be updated with a new firmware image.

GET /logs
Get list of available log files.

Template request

GET /api/v2/logs HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"date": 1503060035.0625782,
"name": "rcsense-api.log",
"size": 730

},
{

"date": 1503060035.741574,
"name": "stereo.log",
"size": 39024

},
{

"date": 1503060044.0475223,
"name": "camera.log",
"size": 1091

}
]

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns array of LogInfo)

Referenced Data Models

• LogInfo (Section 7.2.3)

GET /logs/{log}
Get a log file. Content type of response depends on parameter ‘format’.

Template request

Roboception GmbH
Manual: rc_reason_stack

333 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.2. REST-API interface

GET /api/v2/logs/<log>?format=<format>&limit=<limit> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"date": 1581609251.8168414,
"log": [

{
"component": "rc_gev_server",
"level": "INFO",
"message": "Application from IP 10.0.1.7 registered with control access.",
"timestamp": 1581609249.61

},
{

"component": "rc_gev_server",
"level": "INFO",
"message": "Application from IP 10.0.1.7 deregistered.",
"timestamp": 1581609249.739

},
{

"component": "rc_gev_server",
"level": "INFO",
"message": "Application from IP 10.0.1.7 registered with control access.",
"timestamp": 1581609250.94

},
{

"component": "rc_gev_server",
"level": "INFO",
"message": "Application from IP 10.0.1.7 deregistered.",
"timestamp": 1581609251.819

}
],
"name": "gev.log",
"size": 42112

}

Parameters

• log (string) – name of the log file (required)

Query Parameters

• format (string) – return log as JSON or raw (one of json, raw; default: json)
(optional)

• limit (integer) – limit to last x lines in JSON format (default: 100) (optional)

Response Headers

• Content-Type – text/plain application/json

Status Codes

• 200 OK – successful operation (returns Log)

• 404 Not Found – log not found

Referenced Data Models

• Log (Section 7.2.3)

GET /system
Get system information on device.

Roboception GmbH
Manual: rc_reason_stack

334 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API interface

Template request

GET /api/v2/system HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"dongle_id": "wibu:1234",
"firmware": {

"active_image": {
"image_version": "26.01.0"

}
},
"model_name": "rc_reason_stack",
"pipelines": {

"config": {
"0": {

"type": "rc_visard"
},
"1": {

"type": "rc_visard"
}

},
"max_pipelines": 4,
"pending_changes": false

},
"ready": true,
"reboot_required": false,
"time": 1649678734.0306993,
"uptime": 336455.25

}

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns SysInfo)

Referenced Data Models

• SysInfo (Section 7.2.3)

GET /system/backup
Get backup.

Template request

GET /api/v2/system/backup?pipelines=<pipelines>&load_carriers=<load_carriers>®ions_of_

→˓interest=<regions_of_interest>&grippers=<grippers> HTTP/1.1

Query Parameters

• pipelines (boolean) – backup pipelines with node settings, i.e. parameters and
preferred_orientation (default: True) (optional)

• load_carriers (boolean) – backup load_carriers (default: True) (optional)

• regions_of_interest (boolean) – backup regions_of_interest (default: True)
(optional)

Roboception GmbH
Manual: rc_reason_stack

335 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.2. REST-API interface

• grippers (boolean) – backup grippers (default: True) (optional)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

POST /system/backup
Restore backup.

Template request

POST /api/v2/system/backup HTTP/1.1
Accept: application/json application/ubjson

{}

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"return_code": {
"message": "backup restored",
"value": 0

},
"warnings": []

}

Request JSON Object

• backup (object) – backup data as json object (required)

Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

GET /system/disk_info
Get disk space info

Template request

GET /api/v2/system/disk_info HTTP/1.1

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

GET /system/license
Get information about licenses installed on device.

Template request

Roboception GmbH
Manual: rc_reason_stack

336 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.2. REST-API interface

GET /api/v2/system/license HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"components": {

"hand_eye_calibration": true,
"rectification": true,
"stereo": true

},
"valid": true

}

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns LicenseInfo)

Referenced Data Models

• LicenseInfo (Section 7.2.3)

POST /system/license
Update license on device with a license file.

Template request

POST /api/v2/system/license HTTP/1.1
Accept: multipart/form-data

Form Parameters

• file – license file (required)

Request Headers

• Accept – multipart/form-data

Status Codes

• 200 OK – successful operation

• 400 Bad Request – not a valid license

GET /system/ui_lock
Get UI lock status.

Template request

GET /api/v2/system/ui_lock HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"enabled": false

}

Roboception GmbH
Manual: rc_reason_stack

337 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-5.3.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

7.2. REST-API interface

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns UILock)

Referenced Data Models

• UILock (Section 7.2.3)

DELETE /system/ui_lock
Remove UI lock.

Template request

DELETE /api/v2/system/ui_lock HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"enabled": false,
"valid": false

}

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

POST /system/ui_lock
Verify or set UI lock.

Template request

POST /api/v2/system/ui_lock?hash=<hash>&set=<set> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"enabled": true,
"valid": true

}

Query Parameters

• hash (string) – hash of the UI lock password (required)

• set (boolean) – set new hash instead of veryfing (optional)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

Roboception GmbH
Manual: rc_reason_stack

338 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.2. REST-API interface

7.2.3 Data type definitions

The REST-API defines the following data models, which are used to access or modify the available
resources (Section 7.2.2) either as required attributes/parameters of the requests or as return types.

FirmwareInfo: Information about currently active and inactive firmware images, and what image is/will
be booted.

An object of type FirmwareInfo has the following properties:

• active_image (ImageInfo) - see description of ImageInfo

Template object

{
"active_image": {
"image_version": "string"

}
}

FirmwareInfo objects are nested in SysInfo.

GripperElement: CAD gripper element

An object of type GripperElement has the following properties:

• id (string) - Unique identifier of the element

Template object

{
"id": "string"

}

GripperElement objects are used in the following requests:

• GET /cad/gripper_elements

• GET /cad/gripper_elements/{id}

• PUT /cad/gripper_elements/{id}

ImageInfo: Information about specific firmware image.

An object of type ImageInfo has the following properties:

• image_version (string) - image version

Template object

{
"image_version": "string"

}

ImageInfo objects are nested in FirmwareInfo.

LicenseComponentConstraint: Constraints on the module version.

An object of type LicenseComponentConstraint has the following properties:

• max_version (string) - optional maximum supported version (exclusive)

• min_version (string) - optional minimum supported version (inclusive)

Template object

{
"max_version": "string",
"min_version": "string"

}

Roboception GmbH
Manual: rc_reason_stack

339 Rev: 26.01.4
Status: Jan 30, 2026

7.2. REST-API interface

LicenseComponentConstraint objects are nested in LicenseConstraints.

LicenseComponents: List of the licensing status of the individual software modules. The respective
flag is true if the module is unlocked with the currently applied software license.

An object of type LicenseComponents has the following properties:

• hand_eye_calibration (boolean) - hand-eye calibration module

• rectification (boolean) - image rectification module

• stereo (boolean) - stereo matching module

Template object

{
"hand_eye_calibration": false,
"rectification": false,
"stereo": false

}

LicenseComponents objects are nested in LicenseInfo.

LicenseConstraints: Version constrains for modules.

An object of type LicenseConstraints has the following properties:

• image_version (LicenseComponentConstraint) - see description of LicenseComponentCon-
straint

Template object

{
"image_version": {

"max_version": "string",
"min_version": "string"

}
}

LicenseConstraints objects are nested in LicenseInfo.

LicenseInfo: Information about the currently applied software license on the device.

An object of type LicenseInfo has the following properties:

• components (LicenseComponents) - see description of LicenseComponents

• components_constraints (LicenseConstraints) - see description of LicenseConstraints

• valid (boolean) - indicates whether the license is valid or not

Template object

{
"components": {

"hand_eye_calibration": false,
"rectification": false,
"stereo": false

},
"components_constraints": {
"image_version": {

"max_version": "string",
"min_version": "string"

}
},
"valid": false

}

LicenseInfo objects are used in the following requests:

Roboception GmbH
Manual: rc_reason_stack

340 Rev: 26.01.4
Status: Jan 30, 2026

7.2. REST-API interface

• GET /system/license

Log: Content of a specific log file represented in JSON format.

An object of type Log has the following properties:

• date (float) - UNIX time when log was last modified

• log (array of LogEntry) - the actual log entries

• name (string) - name of log file

• size (integer) - size of log file in bytes

Template object

{
"date": 0,
"log": [

{
"component": "string",
"level": "string",
"message": "string",
"timestamp": 0

},
{

"component": "string",
"level": "string",
"message": "string",
"timestamp": 0

}
],
"name": "string",
"size": 0

}

Log objects are used in the following requests:

• GET /logs/{log}

LogEntry: Representation of a single log entry in a log file.

An object of type LogEntry has the following properties:

• component (string) - module name that created this entry

• level (string) - log level (one of DEBUG, INFO, WARN, ERROR, FATAL)

• message (string) - actual log message

• timestamp (float) - Unix time of log entry

Template object

{
"component": "string",
"level": "string",
"message": "string",
"timestamp": 0

}

LogEntry objects are nested in Log.

LogInfo: Information about a specific log file.

An object of type LogInfo has the following properties:

• date (float) - UNIX time when log was last modified

• name (string) - name of log file

Roboception GmbH
Manual: rc_reason_stack

341 Rev: 26.01.4
Status: Jan 30, 2026

7.2. REST-API interface

• size (integer) - size of log file in bytes

Template object

{
"date": 0,
"name": "string",
"size": 0

}

LogInfo objects are used in the following requests:

• GET /logs

NodeInfo: Description of a computational node running on device.

An object of type NodeInfo has the following properties:

• name (string) - name of the node

• parameters (array of string) - list of the node’s run-time parameters

• services (array of string) - list of the services this node offers

• status (string) - status of the node (one of unknown, down, idle, running)

Template object

{
"name": "string",
"parameters": [

"string",
"string"

],
"services": [

"string",
"string"

],
"status": "string"

}

NodeInfo objects are used in the following requests:

• GET /nodes

• GET /nodes/{node}

• GET /pipelines/{pipeline}/nodes

• GET /pipelines/{pipeline}/nodes/{node}

NodeStatus: Detailed current status of the node including run-time statistics.

An object of type NodeStatus has the following properties:

• status (string) - status of the node (one of unknown, down, idle, running)

• timestamp (float) - Unix time when values were last updated

• values (object) - dictionary with current status/statistics of the node

Template object

{
"status": "string",
"timestamp": 0,
"values": {}

}

NodeStatus objects are used in the following requests:

Roboception GmbH
Manual: rc_reason_stack

342 Rev: 26.01.4
Status: Jan 30, 2026

7.2. REST-API interface

• GET /nodes/{node}/status

• GET /pipelines/{pipeline}/nodes/{node}/status

Parameter: Representation of a node’s run-time parameter. The parameter’s ‘value’ type (and hence
the types of the ‘min’, ‘max’ and ‘default’ fields) can be inferred from the ‘type’ field and might be
one of the built-in primitive data types.

An object of type Parameter has the following properties:

• default (type not defined) - the parameter’s default value

• description (string) - description of the parameter

• max (type not defined) - maximum value this parameter can be assigned to

• min (type not defined) - minimum value this parameter can be assigned to

• name (string) - name of the parameter

• type (string) - the parameter’s primitive type represented as string (one of bool, int8, uint8,
int16, uint16, int32, uint32, int64, uint64, float32, float64, string)

• value (type not defined) - the parameter’s current value

Template object

{
"default": {},
"description": "string",
"max": {},
"min": {},
"name": "string",
"type": "string",
"value": {}

}

Parameter objects are used in the following requests:

• GET /pipelines/{pipeline}/nodes/{node}/parameters

• PUT /pipelines/{pipeline}/nodes/{node}/parameters

• GET /pipelines/{pipeline}/nodes/{node}/parameters/{param}

• PUT /pipelines/{pipeline}/nodes/{node}/parameters/{param}

ParameterNameValue: Parameter name and value. The parameter’s ‘value’ type (and hence the types
of the ‘min’, ‘max’ and ‘default’ fields) can be inferred from the ‘type’ field and might be one of the
built-in primitive data types.

An object of type ParameterNameValue has the following properties:

• name (string) - name of the parameter

• value (type not defined) - the parameter’s current value

Template object

{
"name": "string",
"value": {}

}

ParameterNameValue objects are used in the following requests:

• PUT /pipelines/{pipeline}/nodes/{node}/parameters

ParameterValue: Parameter value. The parameter’s ‘value’ type (and hence the types of the ‘min’,
‘max’ and ‘default’ fields) can be inferred from the ‘type’ field and might be one of the built-in
primitive data types.

Roboception GmbH
Manual: rc_reason_stack

343 Rev: 26.01.4
Status: Jan 30, 2026

7.2. REST-API interface

An object of type ParameterValue has the following properties:

• value (type not defined) - the parameter’s current value

Template object

{
"value": {}

}

ParameterValue objects are used in the following requests:

• PUT /pipelines/{pipeline}/nodes/{node}/parameters/{param}

Service: Representation of a service that a node offers.

An object of type Service has the following properties:

• args (ServiceArgs) - see description of ServiceArgs

• description (string) - short description of this service

• name (string) - name of the service

• response (ServiceResponse) - see description of ServiceResponse

Template object

{
"args": {},
"description": "string",
"name": "string",
"response": {}

}

Service objects are used in the following requests:

• GET /nodes/{node}/services

• GET /nodes/{node}/services/{service}

• PUT /nodes/{node}/services/{service}

• GET /pipelines/{pipeline}/nodes/{node}/services

• GET /pipelines/{pipeline}/nodes/{node}/services/{service}

• PUT /pipelines/{pipeline}/nodes/{node}/services/{service}

ServiceArgs: Arguments required to call a service with. The general representation of these argu-
ments is a (nested) dictionary. The specific content of this dictionary depends on the respective
node and service call.

ServiceArgs objects are nested in Service.

ServiceResponse: The response returned by the service call. The general representation of this re-
sponse is a (nested) dictionary. The specific content of this dictionary depends on the respective
node and service call.

ServiceResponse objects are nested in Service.

SysInfo: System information about the device.

An object of type SysInfo has the following properties:

• firmware (FirmwareInfo) - see description of FirmwareInfo

• ready (boolean) - system is fully booted and ready

• time (float) - system time as Unix timestamp

• ui_lock (UILock) - see description of UILock

Roboception GmbH
Manual: rc_reason_stack

344 Rev: 26.01.4
Status: Jan 30, 2026

7.2. REST-API interface

• uptime (float) - system uptime in seconds

Template object

{
"firmware": {

"active_image": {
"image_version": "string"

}
},
"ready": false,
"time": 0,
"ui_lock": {
"enabled": false

},
"uptime": 0

}

SysInfo objects are used in the following requests:

• GET /system

Template: Detection template

An object of type Template has the following properties:

• id (string) - Unique identifier of the template

Template object

{
"id": "string"

}

Template objects are used in the following requests:

• GET /templates/rc_boxpick

• GET /templates/rc_boxpick/{id}

• PUT /templates/rc_boxpick/{id}

• GET /templates/rc_cadmatch

• GET /templates/rc_cadmatch/{id}

• PUT /templates/rc_cadmatch/{id}

• GET /templates/rc_silhouettematch

• GET /templates/rc_silhouettematch/{id}

• PUT /templates/rc_silhouettematch/{id}

UILock: UI lock status.

An object of type UILock has the following properties:

• enabled (boolean)

Template object

{
"enabled": false

}

UILock objects are nested in SysInfo, and are used in the following requests:

• GET /system/ui_lock

Roboception GmbH
Manual: rc_reason_stack

345 Rev: 26.01.4
Status: Jan 30, 2026

7.2. REST-API interface

7.2.4 Swagger UI

The rc_reason_stack ’s Swagger UI allows developers to easily visualize and interact with the REST-
API, e.g., for development and testing. Accessing http://<host>/api/ or http://<host>/api/swagger
(the former will automatically be redirected to the latter) opens a visualization of the rc_reason_stack ’s
general API structure including all available resources and requests (Section 7.2.2) and offers a simple
user interface for exploring all of its features.

Note: Users must be aware that, although the rc_reason_stack ’s Swagger UI is designed to explore
and test the REST-API, it is a fully functional interface. That is, any issued requests are actually
processed and particularly PUT, POST, and DELETE requests might change the overall status and/or
behavior of the device.

Using this interface, available resources and requests can be explored by clicking on them to uncollapse
or recollapse them. The following figure shows an example of how to get a node’s current status by
filling in the necessary parameters (pipeline number and node name) and clicking Execute. This action
results in the Swagger UI showing, amongst others, the actual curl command that was executed when
issuing the request as well as the response body showing the current status of the requested node in a
JSON-formatted string.

Roboception GmbH
Manual: rc_reason_stack

346 Rev: 26.01.4
Status: Jan 30, 2026

https://swagger.io/

7.2. REST-API interface

Fig. 7.3: Result of requesting the rc_stereomatching node’s status

Some actions, such as setting parameters or calling services, require more complex parameters to an
HTTP request. The Swagger UI allows developers to explore the attributes required for these actions
during run-time, as shown in the next example. In the figure below, the attributes required for the
the rc_hand_eye_calibration node’s set_pose service are explored by performing a GET request on
this resource. The response features a full description of the service offered, including all required
arguments with their names and types as a JSON-formatted string.

Roboception GmbH
Manual: rc_reason_stack

347 Rev: 26.01.4
Status: Jan 30, 2026

7.2. REST-API interface

Fig. 7.4: The result of the GET request on the set_pose service shows the required arguments for this
service call.

Users can easily use this preformatted JSON string as a template for the service arguments to actually
call the service:

Roboception GmbH
Manual: rc_reason_stack

348 Rev: 26.01.4
Status: Jan 30, 2026

7.3. Generic Robot Interface

Fig. 7.5: Filling in the arguments of the set_pose service request

7.3 Generic Robot Interface

The Generic Robot Interface (GRI) is an integration layer that bridges the REST-API v2 (Section 7.2)
and provides a standardized way to communicate with the software modules using simple TCP socket
communication on port 7100. It can be activated via a separate license (Section 8.2).

The GRI enables the user to create configurations and save them as numbered jobs. These jobs can
be triggered by simple commands from the robot using TCP socket communication. The GRI internally
manages the REST-API communication and delivers the selected pose results in a format that can be
chosen specifically for the robot.

7.3.1 Job definition

Jobs are pre-configured tasks that can be triggered by the robot application. Each job has a unique ID
and contains all the necessary information for a specific operation, e.g. computing grasps for bin picking
or changing run-time parameters of a module. Once configured, the robot can execute these jobs using
simple socket commands and, if applicable, receive the returned poses.

7.3.1.1 Job Types

The Generic Robot Interface supports three types of jobs:

Pipeline service job (CALL_PIPELINE_SERVICE)

This job calls a service on a specific camera pipeline, e.g. to detect objects or compute grasps, and
returns pose data to the robot (e.g. grasp poses).

Roboception GmbH
Manual: rc_reason_stack

349 Rev: 26.01.4
Status: Jan 30, 2026

7.3. Generic Robot Interface

A pipeline service job consists of:

• job_type: the job type CALL_PIPELINE_SERVICE

• name: name of the job (descriptive name to distinguish jobs)

• pipeline: the camera pipeline to be used for the job (e.g. “0”)

• node: the REST-API name of the pipeline node that should be used (e.g. rc_load_carrier)

• service: the REST-API name of the service to call

• args: the REST-API json arguments to pass to the service

• selected_return: the REST-API name of the field to return

A sample pipeline service job definition is:

{
"args": {

"pose_frame": "external",
"suction_surface_length": 0.02,
"suction_surface_width": 0.02

},
"job_type": "CALL_PIPELINE_SERVICE",
"name": "Compute Grasps",
"node": "rc_itempick",
"pipeline": "0",
"selected_return": "grasps",
"service": "compute_grasps"

}

The available values for selected_return depend on the chosen node and can be e.g. grasps or
matches. Refer to the service definitions of the corresponding module for details about node, service,
args and selected_return.

Global service job (CALL_GLOBAL_SERVICE)

This job calls a service that is not tied to a specific pipeline, e.g. database services for setting regions
of interest or load carriers. Global service jobs do not return any poses.

A global service job consists of:

• job_type: the job type CALL_GLOBAL_SERVICE

• name: name of the job (descriptive name to distinguish jobs)

• node: the REST-API name of the global node that should be used (e.g. rc_load_carrier_db)

• service: the REST-API name of the service to call

• args: the REST-API json arguments to pass to the service

A sample global job definition is:

{
"args": {

"region_of_interest_2d": {
"id": "2d_roi",
"width": 526,
"height": 501,
"offset_x": 558,
"offset_y": 307

}
},
"job_type": "CALL_GLOBAL_SERVICE",
"name": "Set 2D ROI",
"node": "rc_roi_db",

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

350 Rev: 26.01.4
Status: Jan 30, 2026

7.3. Generic Robot Interface

(continued from previous page)

"service": "set_region_of_interest_2d"
}

Refer to the service definitions of the corresponding module for details about node, service and args.

Parameter setting job (SET_PIPELINE_PARAMETER)

This job sets run-time parameters on pipeline nodes, e.g. for adjusting camera or detection module
settings. Parameter setting services do not return any poses.

A parameter setting job consists of:

• job_type: the job type SET_PIPELINE_PARAMETER

• name: name of the job (descriptive name to distinguish jobs)

• pipeline: the camera pipeline to be used for the job (e.g. “0”)

• node: the REST-API name of the pipeline node that should be used (e.g. rc_stereomatching)

• parameters: the parameters to set as key-value pairs

A sample parameter job definition is:

{
"job_type": "SET_PIPELINE_PARAMETERS",
"name": "Set Stereo Parameters",
"node": "rc_stereomatching",
"parameters": {

"maxdepth": 2,
"quality": "High"

},
"pipeline": "0"

}

Refer to the run-time parameter definitions of the corresponding module for details about node and
parameters.

The jobs can be defined via the Web GUI or via the REST-API (see Job and HEC_config API).

7.3.1.2 Primary and related objects

The primary objects are the selected_return objects, e.g. grasps. The related objects are then the
items or matches that correspond to the returned grasp. While a primary object grasp as exactly one
related object item or match, a primary object match can have multiple related objects grasps.

7.3.1.3 Execution modes

The Generic Robot Interface supports two execution modes to optimize the robot’s cycle time:

• Synchronous Execution: The robot triggers a job and waits for the first result to arrive. This mode
should be chosen when results are required immediately.

• Asynchronous Execution: The robot starts a job and can continue with other operations while the
job is running in the background. The job status can be queried and results can be retrieved when
ready. This mode maximizes efficiency during long detection times.

7.3.2 Hand-Eye Calibration

A hand-eye calibration configuration can be defined for each camera pipeline to allow for programmatic
hand-eye calibration using the GRI. Each hand-eye calibration configuration consists of the following
information:

Roboception GmbH
Manual: rc_reason_stack

351 Rev: 26.01.4
Status: Jan 30, 2026

7.3. Generic Robot Interface

• grid_height: height of the calibration grid in meters

• grid_width: width of the calibration grid in meters

• robot_mounted: boolean that determines whether the camera is mounted on the robot

• tcp_offset: 0 for 6DOF robots. For 4DOF robots: the signed offset from the TCP to the camera
coordinate system (robot-mounted sensor) or the visible surface of the calibration grid (statically
mounted sensor) along the TCP rotation axis in meters.

• tcp_rotation_axis: -1 for 6DOF robots. For 4DOF robots: determines the axis of the robot frame
around which the robot can rotate its TCP (0 is used for X, 1 for Y and 2 for the Z axis).

More detailed information about these settings and the hand-eye calibration in general is given in Hand-
eye calibration.

The hand-eye calibration configurations can be set via the Web GUI or via the REST-API (see Job and
HEC_config API).

7.3.3 GRI binary protocol specification

This specification defines the exact on-wire format for client-server messages. A message consists of a
fixed 8-byte header and a body whose layout depends on the protocol version. Currently, there is only
protocol version 1.

Note: All multi-byte integers are little-endian. Types are uint8 (8-bit unsigned), int16 (16-bit
signed), int32 (32-bit signed).

7.3.3.1 Message header (8 bytes)

Table 7.1: Message header definition
Field Type Size Description
magic_number uint32 4 ASCII tag “GRI0”, bytes 47 52 49 00 (little-endian)
protocol_version uint8 1 Protocol version: currently 1
message_length uint8 1 Total message size (bytes), incl. header + body
pose_format uint8 1 Pose data format (see Pose formats)
action uint8 1 Command/action (see Actions)

7.3.3.2 Pose formats

The GRI always uses millimeters for representing a position. The following tables show different rota-
tion formats that can be chosen to match to the rotation representation of the used robot. The formats
are grouped by non-Euler rotation formats, Tait-Bryan-Euler rotation formats (all three axes are used)
and proper Euler rotation formats (first and last rotation axis are the same).

Table 7.2: Non-Euler rotation formats
Name Value rot_1 rot_2 rot_3 rot_4 Units Robot Example
QUAT_WXYZ 1 w x y z – ABB
QUAT_XYZW 2 x y z w – Fruitcore HORST
AXIS_ANGLE_RAD 3 rx ry rz – rad Universal Robots

In the following notation primes indicate successive rotations in the intrinsic frame (e.g., Y’ = rotation
about Y-axis after first rotation). _B and _F determine the order in which the rotation components are
given. F stands for forward, meaning that the rotation components are given in the same order as the
rotation is applied, and B stands for backward, meaning the rotation components are given in reverse
order. _RAD and _DEG determine whether the rotation components are given in radians or degrees,

Roboception GmbH
Manual: rc_reason_stack

352 Rev: 26.01.4
Status: Jan 30, 2026

7.3. Generic Robot Interface

respectively, if applicable. So the format EULER_ZYX_B_DEG means that the intrinsic rotation order is z-y’-
x” (first rotate around the z axis, then rotate around the new y axis, then rotate around the new x axis),
the order in which the rotation components are given is backward (so the first rotation element is the
angle around the x axis), and the angels are given in degrees.

Roboception GmbH
Manual: rc_reason_stack

353 Rev: 26.01.4
Status: Jan 30, 2026

7.3. Generic Robot Interface

Table 7.3: Tait-Bryan-Euler rotation formats. Primes indicate suc-
cessive rotations in the intrinsic frame (e.g., Y’ = rotation about Y-
axis after first rotation). _F (Forward): [1st, 2nd, 3rd] | _B (Back-
ward): [3rd, 2nd, 1st], _DEG: degrees | _RAD: radian.

Name Value rot_1 rot_2 rot_3 rot_4 Units Robot Example
EU-
LER_XYZ_F_DEG

4 X Y’ Z” – deg

EU-
LER_XYZ_F_RAD

5 X Y’ Z” – rad

EU-
LER_XYZ_B_DEG

6 Z” Y’ X – deg

EU-
LER_XYZ_B_RAD

7 Z” Y’ X – rad

EU-
LER_XZY_F_DEG

8 X Z’ Y” – deg

EU-
LER_XZY_F_RAD

9 X Z’ Y” – rad

EU-
LER_XZY_B_DEG

10 Y” Z’ X – deg

EU-
LER_XZY_B_RAD

11 Y” Z’ X – rad

EU-
LER_YXZ_F_DEG

12 Y X’ Z” – deg

EU-
LER_YXZ_F_RAD

13 Y X’ Z” – rad

EU-
LER_YXZ_B_DEG

14 Z” X’ Y – deg

EU-
LER_YXZ_B_RAD

15 Z” X’ Y – rad

EU-
LER_YZX_F_DEG

16 Y Z’ X” – deg

EU-
LER_YZX_F_RAD

17 Y Z’ X” – rad

EU-
LER_YZX_B_DEG

18 X” Z’ Y – deg

EU-
LER_YZX_B_RAD

19 X” Z’ Y – rad

EU-
LER_ZXY_F_DEG

20 Z X’ Y” – deg

EU-
LER_ZXY_F_RAD

21 Z X’ Y” – rad

EU-
LER_ZXY_B_DEG

22 Y” X’ Z – deg

EU-
LER_ZXY_B_RAD

23 Y” X’ Z – rad

EU-
LER_ZYX_F_DEG

24 Z Y’ X” – deg KUKA

EU-
LER_ZYX_F_RAD

25 Z Y’ X” – rad

EU-
LER_ZYX_B_DEG

26 X” Y’ Z – deg FANUC, Mitsubishi,
Yaskawa

EU-
LER_ZYX_B_RAD

27 X” Y’ Z – rad

Roboception GmbH
Manual: rc_reason_stack

354 Rev: 26.01.4
Status: Jan 30, 2026

7.3. Generic Robot Interface

Table 7.4: Euler rotation formats. Primes indicate successive ro-
tations in the intrinsic frame (e.g., Y’ = rotation about Y-axis after
first rotation). _F (Forward): [1st, 2nd, 3rd] | _B (Backward):
[3rd, 2nd, 1st], _DEG: degrees | _RAD: radian.

Name Value rot_1 rot_2 rot_3 rot_4 Units Robot Example
EULER_XYX_F_DEG 28 X Y’ X” – deg
EULER_XYX_F_RAD 29 X Y’ X” – rad
EULER_XYX_B_DEG 30 X” Y’ X – deg
EULER_XYX_B_RAD 31 X” Y’ X – rad
EULER_XZX_F_DEG 32 X Z’ X” – deg
EULER_XZX_F_RAD 33 X Z’ X” – rad
EULER_XZX_B_DEG 34 X” Z’ X – deg
EULER_XZX_B_RAD 35 X” Z’ X – rad
EULER_YXY_F_DEG 36 Y X’ Y” – deg
EULER_YXY_F_RAD 37 Y X’ Y” – rad
EULER_YXY_B_DEG 38 Y” X’ Y – deg
EULER_YXY_B_RAD 39 Y” X’ Y – rad
EULER_YZY_F_DEG 40 Y Z’ Y” – deg
EULER_YZY_F_RAD 41 Y Z’ Y” – rad
EULER_YZY_B_DEG 42 Y” Z’ Y – deg
EULER_YZY_B_RAD 43 Y” Z’ Y – rad
EULER_ZXZ_F_DEG 44 Z X’ Z” – deg
EULER_ZXZ_F_RAD 45 Z X’ Z” – rad
EULER_ZXZ_B_DEG 46 Z” X’ Z – deg
EULER_ZXZ_B_RAD 47 Z” X’ Z – rad
EULER_ZYZ_F_DEG 48 Z Y’ Z” – deg Kawasaki
EULER_ZYZ_F_RAD 49 Z Y’ Z” – rad
EULER_ZYZ_B_DEG 50 Z” Y’ Z – deg
EULER_ZYZ_B_RAD 51 Z” Y’ Z – rad

All pose components (position and rotation) are int32 scaled by 1,000,000.

• Float to Int: int = round(float * 1000000)

• Int to Float: float = int / 1000000.0

• Positions in millimeters before scaling

• Angles in degrees/radians (per format) before scaling

• Quaternions unitless, same scaling

• rot_4 unused for Euler/axis-angle (set to 0)

7.3.3.3 Actions

The following actions can be sent.

Roboception GmbH
Manual: rc_reason_stack

355 Rev: 26.01.4
Status: Jan 30, 2026

7.3. Generic Robot Interface

Table 7.5: GRI actions
Name Value Description
STATUS 1 Get system readiness; maps readiness to data_2 (1 or 0)
TRIGGER_JOB_SYNC 2 Execute job synchronously
TRIGGER_JOB_ASYNC 3 Start job asynchronously
GET_JOB_STATUS 4 Query async job status (see Job status)
GET_NEXT_POSE 5 Retrieve next available result
GET_RELATED_POSE 6 Retrieve next related pose
HEC_INIT 7 Initialize hand-eye calibration
HEC_SET_POSE 8 Provide/store calibration pose
HEC_CALIBRATE 9 Run calibration and save results

STATUS (1)

Returns system readiness information fetched from the rc_reason_stack in data_2 (1 if ready, 0 if not).

TRIGGER_JOB_SYNC (2)

Runs the job and returns the first result immediately; additional results are stored for later retrieval.
On success with results, error_code will be zero and the pose will be filled. If no results are returned,
error_code will be NO_POSES_FOUND (positive warning). It also reports:

• data_1 = node’s return_code value

• data_2 = number of remaining primary objects (ref. Primary and related objects)

• data_3 = number of remaining related objects (ref. Primary and related objects)

TRIGGER_JOB_ASYNC (3)

Starts the job and returns immediately. The job’s status can be polled with GET_JOB_STATUS (4) (see Job
status) and the results can be fetched with GET_NEXT_POSE (5), as soon as the job is DONE.

GET_JOB_STATUS (4)

Returns the job status. It reports:

• data_1 = node’s return_code value

• data_2 = job status (see table Job status values)

Error details flow through error_code.

GET_NEXT_POSE (5)

Returns the next result of the primary object. It also reports:

• data_1 = node’s return_code value

• data_2 = number of remaining primary objects (ref. Primary and related objects)

• data_3 = number of remaining related objects (ref. Primary and related objects)

When no more primary objects are available, it returns NO_POSES_FOUND and resets the job.

GET_RELATED_POSE (6)

Returns the next pose of the related object corresponding to the current primary object. It also reports:

• data_1 = node’s return_code value

• data_2 = number of remaining primary objects (ref. Primary and related objects)

• data_3 = number of remaining related objects (ref. Primary and related objects)

If no related poses were found, it returns NO_RELATED_POSES.

HEC_INIT (7)

Roboception GmbH
Manual: rc_reason_stack

356 Rev: 26.01.4
Status: Jan 30, 2026

7.3. Generic Robot Interface

This action initializes the hand-eye calibration. It clears any existing calibration data, applies the
pipeline’s configuration parameters and prepares the system for recording new poses. data_1 spec-
ifies the target pipeline.

HEC_SET_POSE (8)

This action is to be used eight times to record distinct robot poses with visible calibration pattern. The
field data_2 is used to specify the image storage slot (0-7). A previous pose in a slot will be overwritten
if a slot is reused. Each pose must provide a different view of the calibration pattern, as described in
Hand-eye calibration. data_1 specifies the target pipeline.

HEC_CALIBRATE (9)

This action processes all recorded poses and calculates the transformation between camera and robot.
It automatically saves successful calibration results. data_1 specifies the target pipeline.

7.3.3.4 Job status

The following job status values can be returned.

Table 7.6: Job status values
Name Value
INACTIVE 1
RUNNING 2
DONE 3
FAILED 4

7.3.3.5 Body definitions

There are different body definitions depending on whether it is a request that is sent or a response that
is received. The request body consists of 54 bytes in total and its definition is given in table Request
body definition.

Table 7.7: Request body definition
Field Type Size Description
header struct 8 Message header (see Message header (8 bytes))
job_id uint16 2 Unique job ID from job configuration
pos_x int32 4 Position X (scaled by 10^6)
pos_y int32 4 Position Y (scaled by 10^6)
pos_z int32 4 Position Z (scaled by 10^6)
rot_1 int32 4 Rotation component 1 (scaled by 10^6)
rot_2 int32 4 Rotation component 2 (scaled by 10^6)
rot_3 int32 4 Rotation component 3 (scaled by 10^6)
rot_4 int32 4 Rotation component 4 (scaled by 10^6)
data_1 int32 4 Additional parameter 1
data_2 int32 4 Additional parameter 2
data_3 int32 4 Additional parameter 3
data_4 int32 4 Additional parameter 4

The job ID is the unique identifier from the job configuration. The usage of the fields data_1...data_4
depends on the action and job. They are set to 0 if unused.

The response body consists of 80 bytes in total. Its definition is given in table Response body definition.

Roboception GmbH
Manual: rc_reason_stack

357 Rev: 26.01.4
Status: Jan 30, 2026

7.3. Generic Robot Interface

Table 7.8: Response body definition
Field Type Size Description
header struct 8 Protocol header
job_id uint16 2 Processed job number
error_code int16 2 GRI result status (severity by sign)
pos_x int32 4 Position X (scaled by 10^6)
pos_y int32 4 Position Y (scaled by 10^6)
pos_z int32 4 Position Z (scaled by 10^6)
rot_1 int32 4 Rotation component 1 (scaled by 10^6)
rot_2 int32 4 Rotation component 2 (scaled by 10^6)
rot_3 int32 4 Rotation component 3 (scaled by 10^6)
rot_4 int32 4 Rotation component 4 (scaled by 10^6)
data_1 int32 4 Node’s return code (0 if none)
data_2 int32 4 Additional result 2
data_3 int32 4 Additional result 3
data_4 int32 4 Additional result 4
data_5 int32 4 Additional result 5
data_6 int32 4 Additional result 6
data_7 int32 4 Additional result 7
data_8 int32 4 Additional result 8
data_9 int32 4 Additional result 9
data_10 int32 4 Additional result 10

Note: For rc_measure, mean_z is mapped to pos_x/pos_y/pos_z.

7.3.3.6 Error codes and semantics

The error_code is int16 and encodes errors/warnings by sign:

• Negative < 0 = error (failure)

• Zero = 0 = success

• Positive > 0 = warning (success with caveat)

The tables below give the different error codes and are split by sign and sorted.

Success

Name Value Description
NO_ERROR 0 Operation successful

Negative error codes

Roboception GmbH
Manual: rc_reason_stack

358 Rev: 26.01.4
Status: Jan 30, 2026

7.3. Generic Robot Interface

Name Value Description
UNKNOWN_ERROR -1 GRI internal, unspecified
INTERNAL_ERROR -2 GRI internal system error
API_NOT_REACHABLE -3 Cannot reach API
API_RESPONSE_ERROR -4 API returned a negative code
PIPELINE_NOT_AVAILABLE -5 Processing pipeline unavailable
INVALID_REQUEST_ERROR -6 Malformed request
INVALID_REQUEST_LENGTH -7 Wrong message length
INVALID_ACTION -8 Unsupported action
PROCESSING_TIMEOUT -9 Operation timed out
UNKNOWN_PROTOCOL_VERSION -10 Protocol version not supported
WRONG_PROTOCOL_FOR_JOB -11 Job does not match protocol version
JOB_DOES_NOT_EXIST -12 Invalid job ID
MISCONFIGURED_JOB -13 Invalid job configuration
HEC_CONFIG_ERROR -14 Invalid configuration parameters
HEC_INIT_ERROR -15 Calibration init failed
HEC_SET_POSE_ERROR -16 Failed to record pose in specified slot
HEC_CALIBRATE_ERROR -17 Unable to compute calibration from recorded poses
HEC_INSUFFICIENT_DETECTION -18 Calibration grid not visible or not detected

Positive codes

Name Value Description
NO_POSES_FOUND 1 No results available
NO_RELATED_POSES 2 No related data found
NO_RETURN_SPECIFIED 3 Job configured with no return type
JOB_STILL_RUNNING 4 Async job not complete

Node return code semantics

The modules/nodes may return a return_code. This node return code is placed in the response data_1
field (defaults to 0 if no code). The GRI’s primary status is in error_code (sign-based semantics).

7.3.4 Integration with a robot

The Generic Robot Interface offers communication on port 7100.

For integrating the GRI communication with a robot, examples for different robot languages are given in
https://github.com/roboception/rc_generic_robot_interface_robot.

Different robot platforms can be supported by implementing a TCP socket client following the GRI binary
protocol (ref. GRI binary protocol specification). This requires a robot controller with TCP/IP support
and the ability to pack robot poses into binary messages and to parse binary messages into robot
poses.

The implementation steps are as follows:

1. Create TCP socket connection

2. Compose request message:

• Set message header (8 bytes)

• Set job ID (2 bytes)

• Pack position (12 bytes, 3x int32)

• Pack rotation (16 bytes, 4x int32)

• Pack additional data (16 bytes, 4x int32)

Roboception GmbH
Manual: rc_reason_stack

359 Rev: 26.01.4
Status: Jan 30, 2026

https://github.com/roboception/rc_generic_robot_interface_robot

7.3. Generic Robot Interface

3. Send request (54 bytes total)

4. Receive response (80 bytes total)

5. Parse response:

• Message header (8 bytes)

• Job ID (2 bytes)

• Error code (2 bytes)

• Position (12 bytes, 3x int32)

• Rotation (16 bytes, 4x int32)

• Additional data (40 bytes, 10x int32)

7.3.4.1 Byte interpretation in socket communication

Some robot scripting languages interpret individual socket bytes as signed values in the range [-128,
127] instead of unsigned [0, 255]. If this is the case, each byte has to be converted to unsigned before
reconstructing int32 values:

Convert signed byte to unsigned
if byte_value < 0:

byte_value = byte_value + 256

After conversion, reconstruct the int32 using little-endian byte order, then apply signed interpretation
to the most significant byte (MSB) to determine if the overall int32 value is negative.

Note: All pose components use scaling as described in Pose formats.

7.3.5 Job and HEC_config API

The job definitions and the definitions of HEC_configs for hand-eye calibration can be set, retrieved and
deleted via the following REST-API endpoints.

GET /generic_robot_interface/hec_configs
Get defined hand-eye calibration configurations

Template request

GET /api/v2/generic_robot_interface/hec_configs HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"0": {

"grid_height": 0.18,
"grid_width": 0.26,
"robot_mounted": true,
"tcp_offset": 0,
"tcp_rotation_axis": -1

}
}

Response Headers

• Content-Type – application/json application/ubjson

Roboception GmbH
Manual: rc_reason_stack

360 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5

7.3. Generic Robot Interface

Status Codes

• 200 OK – successful operation

GET /generic_robot_interface/hec_configs/{pipeline}
Get hand-eye calibration configuration for the selected pipeline

Template request

GET /api/v2/generic_robot_interface/hec_configs/<pipeline> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"grid_height": 0.18,
"grid_width": 0.26,
"robot_mounted": true,
"tcp_offset": 0,
"tcp_rotation_axis": -1

}

Parameters

• pipeline (string) – pipeline of the hand-eye calibration configuration (required)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

PUT /generic_robot_interface/hec_configs/{pipeline}
Sets a hand-eye calibration configuration for the selected pipeline.

Template request

PUT /api/v2/generic_robot_interface/hec_configs/<pipeline> HTTP/1.1
Accept: application/json application/ubjson

{}

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"return_code": {
"message": "HEC configuration saved successfully",
"value": 0

}
}

Parameters

• pipeline (string) – pipeline of the hand-eye calibration configuration (required)

Request JSON Object

• hand-eye calibration configuration (object) – example args (required)

Roboception GmbH
Manual: rc_reason_stack

361 Rev: 26.01.4
Status: Jan 30, 2026

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.3. Generic Robot Interface

Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

DELETE /generic_robot_interface/hec_configs/{pipeline}
Remove a hand-eye calibration configuration.

Template request

DELETE /api/v2/generic_robot_interface/hec_configs/<pipeline> HTTP/1.1
Accept: application/json application/ubjson

Parameters

• pipeline (string) – pipeline of the hand-eye calibration configuration (required)

Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

• 403 Forbidden – forbidden, e.g. because there is no valid license for this mod-
ule.

• 404 Not Found – hec config for the given pipeline not found

GET /generic_robot_interface/jobs
Get defined jobs

Template request

GET /api/v2/generic_robot_interface/jobs HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"0": {

"args": {
"pose_frame": "external",
"tags": []

},
"job_type": "CALL_PIPELINE_SERVICE",
"name": "detect_qr_code",
"node": "rc_qr_code_detect",
"pipeline": "0",
"selected_return": "tags",
"service": "detect"

},
"1": {

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

362 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.3. Generic Robot Interface

(continued from previous page)

"job_type": "SET_PARAMETERS_SERVICE",
"name": "set_depth_full_quality",
"node": "rc_stereomatching",
"parameters": {
"double_shot": true,
"quality": "Full"

},
"pipeline": "0"

}
}

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

GET /generic_robot_interface/jobs/{job_id}
Get selected job definition

Template request

GET /api/v2/generic_robot_interface/jobs/<job_id> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"args": {

"pose_frame": "camera",
"tags": []

},
"job_type": "CALL_PIPELINE_SERVICE",
"name": "detect_qr_code",
"node": "rc_qr_code_detect",
"pipeline": "0",
"selected_return": "tags",
"service": "detect"

}

Parameters

• job_id (string) – ID of the job (required)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

PUT /generic_robot_interface/jobs/{job_id}
Sets a job definition for the selected job ID. The required keys depend on the chosen job_type.

Template request

Roboception GmbH
Manual: rc_reason_stack

363 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.3. Generic Robot Interface

PUT /api/v2/generic_robot_interface/jobs/<job_id> HTTP/1.1
Accept: application/json application/ubjson

{}

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"job_id": "1",
"return_code": {
"message": "Job configuration updated successfully",
"value": 0

}
}

Parameters

• job_id (string) – ID of the job (required)

Request JSON Object

• job definition (object) – example args (required)

Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

DELETE /generic_robot_interface/jobs/{job_id}
Remove a job definition.

Template request

DELETE /api/v2/generic_robot_interface/jobs/<job_id> HTTP/1.1
Accept: application/json application/ubjson

Parameters

• job_id (string) – ID of the job (required)

Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

• 403 Forbidden – forbidden, e.g. because there is no valid license for this mod-
ule.

• 404 Not Found – job with given id not found

Roboception GmbH
Manual: rc_reason_stack

364 Rev: 26.01.4
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.4. OPC UA interface

7.4 OPC UA interface

The rc_reason_stack also offers an optional OPC UA interface running on TCP port 4840. The OPC
UA server can be activated via a separate license (Section 8.2).

The OPC UA server provides access to parameters and services of all available software modules
analogous to the REST-API. To browse the OPC UA Address Space use e.g. the freely available
UAExpert GUI client.

The OPC UA server uses the DataTypeDefinition attribute (available in OPC UA version 1.04) for
custom datatypes and also uses methods and variable length arrays. Please check if your OPC UA
client supports this.

Note: The OPC UA server currently only supports the equivalent of API version 1 (i.e. only camera
pipeline 0).

Please contact support@roboception.de if you are interested in using the OPC UA server.

7.5 KUKA Ethernet KRL Interface

The rc_reason_stack provides an Ethernet KRL Interface (EKI Bridge), which allows communicating
with the rc_reason_stack from KUKA KRL via KUKA.EthernetKRL XML.

Note: The component is optional and requires a separate Roboception’s EKIBridge license (Section
8.2) to be purchased.

Note: The KUKA.EthernetKRL add-on software package version 2.2 up to version 5.x must be
activated on the robot controller to use this component.

The EKI Bridge can be used to programmatically to

• do service calls, e.g. to start and stop individual computational nodes, or to use offered services
such as the hand-eye calibration or the computation of grasp poses;

• set and get run-time parameters of computation nodes, e.g. of the camera, or disparity calculation.

Note: A known limitation of the EKI Bridge is that strings representing valid numbers will be converted
to int/float. Hence user-defined names (like ROI IDs, etc.) should always contain at least one letter
so they can be used in service call arguments.

7.5.1 Ethernet connection configuration

The EKI Bridge listens on port 7000 for EKI XML messages and transparently bridges the
rc_reason_stack ’s REST-API v2 (Section 7.2). The received EKI messages are transformed to JSON
and forwarded to the rc_reason_stack ’s REST-API. The response from the REST-API is transformed
back to EKI XML.

The EKI Bridge gives access to run-time parameters and offered services of all computational nodes
described in Software modules (Section 6).

The Ethernet connection to the rc_reason_stack on the robot controller is configured using XML con-
figuration files.

The EKI XML configuration files of all nodes running on the rc_reason_stack are available for download
at:

https://doc.rc-visard.com/latest/en/eki.html#eki-xml-configuration-files

Roboception GmbH
Manual: rc_reason_stack

365 Rev: 26.01.4
Status: Jan 30, 2026

https://www.unified-automation.com/products/development-tools/uaexpert.html
mailto:support@roboception.de
https://doc.rc-visard.com/latest/en/eki.html#eki-xml-configuration-files

7.5. KUKA Ethernet KRL Interface

Each node offering run-time parameters has an XML configuration file for setting and getting its param-
eters. These are named following the scheme <node_name>-parameters.xml. Each node’s service has
its own XML configuration file. These are named following the scheme <node_name>-<service_name>.
xml.

The IP of the host PC running the rc_reason_stack needs to be filled into the XML file.

The port is already set to 7000, which corresponds to pipeline 0. This needs to be adjusted if a different
pipeline should be used. The port number is 7000 + pipeline number, so 7001 for pipeline 1, etc.

These files must be stored in the directory C:\KRC\ROBOTER\Config\User\Common\EthernetKRL of the
robot controller and they are read in when a connection is initialized.

As an example, an Ethernet connection to configure the rc_stereomatching parameters is established
with the following KRL code.

DECL EKI_Status RET
RET = EKI_INIT("rc_stereomatching-parameters")
RET = EKI_Open("rc_stereomatching-parameters")

; ----------- Desired operation -----------

RET = EKI_Close("rc_stereomatching-parameters")

Note: The EKI Bridge automatically terminates the connection to the client if the received XML
telegram is invalid.

7.5.2 Generic XML structure

For data transmission, the EKI Bridge uses <req> as root XML element (short for request).

The root tag always includes the following elements.

• <node>. This includes a child XML element used by the EKI Bridge to identify the target node. The
node name is already included in the XML configuration file.

• <end_of_request>. End of request flag that triggers the request.

The following listing shows the generic XML structure for data transmission.

<SEND>
<XML>

<ELEMENT Tag="req/node/<node_name>" Type="STRING"/>
<ELEMENT Tag="req/end_of_request" Type="BOOL"/>

</XML>
</SEND>

For data reception, the EKI Bridge uses <res> as root XML element (short for response). The root tag
always includes a <return_code> child element.

<RECEIVE>
<XML>

<ELEMENT Tag="res/return_code/@value" Type="INT"/>
<ELEMENT Tag="res/return_code/@message" Type="STRING"/>
<ELEMENT Tag="res" Set_Flag="998"/>

</XML>
</RECEIVE>

Note: By default the XML configuration files uses 998 as flag to notify KRL that the response data
record has been received. If this value is already in use, it should be changed in the corresponding
XML configuration file.

Roboception GmbH
Manual: rc_reason_stack

366 Rev: 26.01.4
Status: Jan 30, 2026

7.5. KUKA Ethernet KRL Interface

7.5.2.1 Return code

The <return_code> element consists of a value and a message attribute.

As for all other components, a successful request returns with a res/return_code/@value of 0. Neg-
ative values indicate that the request failed. The error message is contained in res/return_code/
@message. Positive values indicate that the request succeeded with additional information, contained in
res/return_code/@message as well.

The following codes can be issued by the EKI Bridge component.

Table 7.9: Return codes of the EKI Bridge component
Code Description

0 Success
-1 Parsing error in the conversion from XML to JSON
-2 Internal error
-5 Connection error from the REST-API
-9 Missing or invalid license for EKI Bridge component

Note: The EKI Bridge can also return return code values specific to individual nodes. They are
documented in the respective software module (Section 6).

Note: Due to limitations in KRL, the maximum length of a string returned by the EKI Bridge is 512
characters. All messages larger than this value are truncated.

7.5.3 Services

For the nodes’ services, the XML schema is generated from the service’s arguments and response in
JavaScript Object Notation (JSON) described in Software modules (Section 6). The conversion is done
transparently, except for the conversion rules described below.

Conversions of poses:

A pose is a JSON object that includes position and orientation keys.

{
"pose": {
"position": {
"x": "float64",
"y": "float64",
"z": "float64",

},
"orientation": {
"x": "float64",
"y": "float64",
"z": "float64",
"w": "float64",

}
}

}

This JSON object is converted to a KRL FRAME in the XML message.

<pose X="..." Y="..." Z="..." A="..." B="..." C="..."></pose>

Positions are converted from meters to millimeters and orientations are converted from
quaternions to KUKA ABC (in degrees).

Roboception GmbH
Manual: rc_reason_stack

367 Rev: 26.01.4
Status: Jan 30, 2026

7.5. KUKA Ethernet KRL Interface

Note: No other unit conversions are included in the EKI Bridge. All dimensions and 3D
coordinates that don’t belong to a pose are expected and returned in meters.

Arrays:

Arrays are identified by adding the child element <le> (short for list element) to the list name.
As an example, the JSON object

{
"rectangles": [
{
"x": "float64",
"y": "float64"

}
]

}

is converted to the XML fragment

<rectangles>
<le>
<x>...</x>
<y>...</y>

</le>
</rectangles>

Use of XML attributes:

All JSON keys whose values are a primitive data type and don’t belong to an array are stored
in attributes. As an example, the JSON object

{
"item": {
"uuid": "string",
"confidence": "float64",
"rectangle": {
"x": "float64",
"y": "float64"

}
}

}

is converted to the XML fragment

<item uuid="..." confidence="...">
<rectangle x="..." y="...">
</rectangle>

</item>

7.5.3.1 Request XML structure

The <SEND> element in the XML configuration file for a generic service follows the specification below.

<SEND>
<XML>

<ELEMENT Tag="req/node/<node_name>" Type="STRING"/>
<ELEMENT Tag="req/service/<service_name>" Type="STRING"/>
<ELEMENT Tag="req/args/<argX>" Type="<argX_type>"/>
<ELEMENT Tag="req/end_of_request" Type="BOOL"/>

</XML>
</SEND>

Roboception GmbH
Manual: rc_reason_stack

368 Rev: 26.01.4
Status: Jan 30, 2026

7.5. KUKA Ethernet KRL Interface

The <service> element includes a child XML element that is used by the EKI Bridge to identify the
target service from the XML telegram. The service name is already included in the configuration file.

The <args> element includes the service arguments and should be configured with EKI_Set<Type> KRL
instructions.

As an example, the <SEND> element of the rc_load_carrier_db’s get_load_carriers service (see
LoadCarrierDB, Section 6.5.1) is:

<SEND>
<XML>

<ELEMENT Tag="req/node/rc_load_carrier_db" Type="STRING"/>
<ELEMENT Tag="req/service/get_load_carriers" Type="STRING"/>
<ELEMENT Tag="req/args/load_carrier_ids/le" Type="STRING"/>
<ELEMENT Tag="req/end_of_request" Type="BOOL"/>

</XML>
</SEND>

The <end_of_request> element allows to have arrays in the request. For configuring an array, the
request is split into as many packages as the size of the array. The last telegram contains all tags,
including the <end_of_request> flag, while all other telegrams contain one array element each.

As an example, for requesting two load carrier models to the rc_load_carrier_db’s get_load_carriers
service, the user needs to send two XML messages. The first XML telegram is:

<req>
<args>

<load_carrier_ids>
<le>load_carrier1</le>

</load_carrier_ids>
</args>

</req>

This telegram can be sent from KRL with the EKI_Send command, by specifying the list element as path:

DECL EKI_STATUS RET
RET = EKI_SetString("rc_load_carrier_db-get_load_carriers", "req/args/load_carrier_ids/
→˓le", "load_carrier1")
RET = EKI_Send("rc_load_carrier_db-get_load_carriers", "req/args/load_carrier_ids/le")

The second telegram includes all tags and triggers the request to the rc_load_carrier_db node:

<req>
<node>

<rc_load_carrier_db></rc_load_carrier_db>
</node>
<service>

<get_load_carriers></get_load_carriers>
</service>
<args>

<load_carrier_ids>
<le>load_carrier2</le>

</load_carrier_ids>
</args>
<end_of_request></end_of_request>

</req>

This telegram can be sent from KRL by specifying req as path for EKI_Send:

DECL EKI_STATUS RET
RET = EKI_SetString("rc_load_carrier_db-get_load_carriers", "req/args/load_carrier_ids/
→˓le", "load_carrier2")
RET = EKI_Send("rc_load_carrier_db-get_load_carriers", "req")

Roboception GmbH
Manual: rc_reason_stack

369 Rev: 26.01.4
Status: Jan 30, 2026

7.5. KUKA Ethernet KRL Interface

7.5.3.2 Response XML structure

The <RECEIVE> element in the XML configuration file for a generic service follows the specification below:

<RECEIVE>
<XML>

<ELEMENT Tag="res/<resX>" Type="<resX_type>"/>
<ELEMENT Tag="res/return_code/@value" Type="INT"/>
<ELEMENT Tag="res/return_code/@message" Type="STRING"/>
<ELEMENT Tag="res" Set_Flag="998"/>

</XML>
</RECEIVE>

As an example, the <RECEIVE> element of the rc_april_tag_detect’s detect service (see TagDetect ,
Section 6.3.3) is:

<RECEIVE>
<XML>

<ELEMENT Tag="res/timestamp/@sec" Type="INT"/>
<ELEMENT Tag="res/timestamp/@nsec" Type="INT"/>
<ELEMENT Tag="res/return_code/@message" Type="STRING"/>
<ELEMENT Tag="res/return_code/@value" Type="INT"/>
<ELEMENT Tag="res/tags/le/pose_frame" Type="STRING"/>
<ELEMENT Tag="res/tags/le/timestamp/@sec" Type="INT"/>
<ELEMENT Tag="res/tags/le/timestamp/@nsec" Type="INT"/>
<ELEMENT Tag="res/tags/le/pose/@X" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@Y" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@Z" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@A" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@B" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@C" Type="REAL"/>
<ELEMENT Tag="res/tags/le/instance_id" Type="STRING"/>
<ELEMENT Tag="res/tags/le/id" Type="STRING"/>
<ELEMENT Tag="res/tags/le/size" Type="REAL"/>
<ELEMENT Tag="res" Set_Flag="998"/>

</XML>
</RECEIVE>

For arrays, the response includes multiple instances of the same XML element. Each element is written
into a separate buffer within EKI and can be read from the buffer with KRL instructions. The number
of instances can be requested with EKI_CheckBuffer and each instance can then be read by calling
EKI_Get<Type>.

As an example, the tag poses received after a call to the rc_april_tag_detect’s detect service can be
read in KRL using the following code:

DECL EKI_STATUS RET
DECL INT i
DECL INT num_instances
DECL FRAME poses[32]

DECL FRAME pose = {X 0.0, Y 0.0, Z 0.0, A 0.0, B 0.0, C 0.0}

RET = EKI_CheckBuffer("rc_april_tag_detect-detect", "res/tags/le/pose")
num_instances = RET.Buff
for i=1 to num_instances

RET = EKI_GetFrame("rc_april_tag_detect-detect", "res/tags/le/pose", pose)
poses[i] = pose

endfor
RET = EKI_ClearBuffer("rc_april_tag_detect-detect", "res")

Roboception GmbH
Manual: rc_reason_stack

370 Rev: 26.01.4
Status: Jan 30, 2026

7.5. KUKA Ethernet KRL Interface

Note: Before each request from EKI to the rc_reason_stack, all buffers should be cleared in order to
store only the current response in the EKI buffers.

7.5.4 Parameters

All nodes’ parameters can be set and queried from the EKI Bridge. The XML configuration file for a
generic node follows the specification below:

<SEND>
<XML>

<ELEMENT Tag="req/node/<node_name>" Type="STRING"/>
<ELEMENT Tag="req/parameters/<parameter_x>/@value" Type="INT"/>
<ELEMENT Tag="req/parameters/<parameter_y>/@value" Type="STRING"/>
<ELEMENT Tag="req/end_of_request" Type="BOOL"/>

</XML>
</SEND>
<RECEIVE>

<XML>
<ELEMENT Tag="res/parameters/<parameter_x>/@value" Type="INT"/>
<ELEMENT Tag="res/parameters/<parameter_x>/@default" Type="INT"/>
<ELEMENT Tag="res/parameters/<parameter_x>/@min" Type="INT"/>
<ELEMENT Tag="res/parameters/<parameter_x>/@max" Type="INT"/>
<ELEMENT Tag="res/parameters/<parameter_y>/@value" Type="REAL"/>
<ELEMENT Tag="res/parameters/<parameter_y>/@default" Type="REAL"/>
<ELEMENT Tag="res/parameters/<parameter_y>/@min" Type="REAL"/>
<ELEMENT Tag="res/parameters/<parameter_y>/@max" Type="REAL"/>
<ELEMENT Tag="res/return_code/@value" Type="INT"/>
<ELEMENT Tag="res/return_code/@message" Type="STRING"/>
<ELEMENT Tag="res" Set_Flag="998"/>

</XML>
</RECEIVE>

The request is interpreted as a get request if all parameter’s value attributes are empty. If any value
attribute is non-empty, it is interpreted as set request of the non-empty parameters.

As an example, the current value of all parameters of rc_stereomatching can be queried using the XML
telegram:

<req>
<node>

<rc_stereomatching></rc_stereomatching>
</node>
<parameters></parameters>
<end_of_request></end_of_request>

</req>

This XML telegram can be sent out with Ethernet KRL using:

DECL EKI_STATUS RET
RET = EKI_Send("rc_stereomatching-parameters", "req")

The response from the EKI Bridge contains all parameters:

<res>
<parameters>

<acquisition_mode default="Continuous" max="" min="" value="Continuous"/>
<quality default="High" max="" min="" value="High"/>
<static_scene default="0" max="1" min="0" value="0"/>
<seg default="200" max="4000" min="0" value="200"/>
<smooth default="1" max="1" min="0" value="1"/>

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

371 Rev: 26.01.4
Status: Jan 30, 2026

7.5. KUKA Ethernet KRL Interface

(continued from previous page)

<fill default="3" max="4" min="0" value="3"/>
<minconf default="0.5" max="1.0" min="0.5" value="0.5"/>
<mindepth default="0.1" max="100.0" min="0.1" value="0.1"/>
<maxdepth default="100.0" max="100.0" min="0.1" value="100.0"/>
<maxdeptherr default="100.0" max="100.0" min="0.01" value="100.0"/>

</parameters>
<return_code message="" value="0"/>

</res>

The quality parameter of rc_stereomatching can be set to Low by the XML telegram:

<req>
<node>

<rc_stereomatching></rc_stereomatching>
</node>
<parameters>

<quality value="Low"></quality>
</parameters>
<end_of_request></end_of_request>

</req>

This XML telegram can be sent out with Ethernet KRL using:

DECL EKI_STATUS RET
RET = EKI_SetString("rc_stereomatching-parameters", "req/parameters/quality/@value",
→˓"Low")
RET = EKI_Send("rc_stereomatching-parameters", "req")

In this case, only the applied value of quality is returned by the EKI Bridge:

<res>
<parameters>

<quality default="High" max="" min="" value="Low"/>
</parameters>
<return_code message="" value="0"/>

</res>

7.5.5 Example applications

More detailed robot application examples can be found at https://github.com/roboception/eki_examples.

7.5.6 Troubleshooting

SmartPad error message: Limit of element memory reached

This error may occur if the number of matches exceeds the memory limit.

• Increase BUFFERING and set BUFFSIZE in EKI config files. Adapt these settings to your partic-
ular KRC.

• Decrease the ‘Maximum Matches’ parameter in the detection module

• Even if the total memory limit (BUFFSIZE) of a message is not reached, the KRC might not be
able to parse the number of child elements in the XML tree if the BUFFERING limit is too small.
For example, if your application proposes 50 different grasps, the BUFFERING limit needs to be
50 too.

Roboception GmbH
Manual: rc_reason_stack

372 Rev: 26.01.4
Status: Jan 30, 2026

https://github.com/roboception/eki_examples

7.6. gRPC image stream interface

7.6 gRPC image stream interface

The gRPC image streaming interface can be used for getting camera images and synchronized sets of
images (e.g. left camera image and corresponding disparity image).

gRPC is a remote procedure call system that also supports streaming. It uses Protocol Buffers (see
https://developers.google.com/protocol-buffers/) as interface description language and data serializa-
tion. For a gRPC introduction and more details please see the official website (https://grpc.io/).

The advantages of the gRPC interface in comparison to GigE Vision are:

• It is simpler to use in own programs than GigE Vision.

• There is gRPC support for a lot of programming languages (see https://grpc.io/).

• The communication is based on TCP instead of UDP and therefore it also works over less stable
networks, e.g. WLAN.

The disadvantages of the gRPC interface in comparison to GigE Vision are:

• It does not support changing parameters, but the REST-API interface (Section 7.2) can be used
for changing parameters.

• It is not a standard vision interface like GigE Vision.

The rc_reason_stack provides synchronized image sets via gRPC server side streams on a separate
port for each pipeline. The port is 50051 + pipeline number, so 50051 for pipeline 0, 50052 for pipeline
1, etc.

The communication is started by sending an ImageSetRequest message to the server. The message
contains the information about requested images, i.e. left, right, disparity, confidence and disparity_error
images can be enabled separately.

After getting the request, the server starts continuously sending ImageSet messages that contain all
requested images with all parameters necessary for interpreting the images. The images that are
contained in an ImageSet message are synchronized, i.e. they are all captured at the same time. The
only exception to this rule is if the out1_mode (Section 6.4.4.1) is set to AlternateExposureActive. In
this case, the camera and disparity images are taken 40 ms apart, so that the GPIO Out1 is LOW when
the left and right images are taken, and HIGH for the disparity, confidence and error images. This mode
is useful when a random dot projector is used, because the projector would be off for capturing the
left and right image, and on for the disparity image, which results in undisturbed camera images and a
much denser and more accurate disparity image.

Streaming of images is done until the client closes the connection.

An ImageEventsRequest message can be sent to start streaming ImageEvents. This message contains
the depth_acquisition_done Event, which signals that the image acquisition for depth computation
has finished. It also contains the imageset_timestamp of the corresponding ImageSet. This event cen
be used to optimize cycle time in a robotic application, because it signals when it is safe to move the
camera or the scene after triggering a detection.

7.6.1 gRPC service definition

syntax = "proto3";

message Time
{

int32 sec = 1; ///< Seconds
int32 nsec = 2; ///< Nanoseconds

}

message Gpios
{

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

373 Rev: 26.01.4
Status: Jan 30, 2026

https://grpc.io/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://grpc.io/
https://grpc.io/

7.6. gRPC image stream interface

(continued from previous page)

uint32 inputs = 1; ///< bitmask of available inputs
uint32 outputs = 2; ///< bitmask of available outputs
uint32 values = 3; ///< bitmask of GPIO values

}

message Image
{

Time timestamp = 1; ///< Acquisition timestamp of the image
uint32 height = 2; ///< image height (number of rows)
uint32 width = 3; ///< image width (number of columns)
float focal_length = 4; ///< focal length in pixels
float principal_point_u = 5; ///< horizontal position of the principal point
float principal_point_v = 6; ///< vertical position of the principal point
string encoding = 7; ///< Encoding of pixels ["mono8", "mono16", "rgb8"]
bool is_bigendian = 8; ///< is data bigendian, (in our case false)
uint32 step = 9; ///< full row length in bytes
bytes data = 10; ///< actual matrix data, size is (step * height)
Gpios gpios = 11; ///< GPIOs as of acquisition timestamp
float exposure_time = 12; ///< exposure time in seconds
float gain = 13; ///< gain factor in decibel
float noise = 14; ///< noise
float out1_reduction = 16; ///< Fraction of reduction (0.0 - 1.0) of exposure time for

→˓images with GPIO Out1=Low in exp_auto_mode=AdaptiveOut1
float brightness = 17; ///< Current brightness of the image as value between 0 and 1

}

message DisparityImage
{

Time timestamp = 1; ///< Acquisition timestamp of the image
float scale = 2; ///< scale factor
float offset = 3; ///< offset in pixels (in our case 0)
float invalid_data_value = 4; ///< value used to mark pixels as invalid (in our case 0)
float baseline = 5; ///< baseline in meters
float delta_d = 6; ///< Smallest allowed disparity increment. The smallest

→˓achievable depth range resolution is delta_Z = (Z^2/image.focal_length*baseline)*delta_d.
Image image = 7; ///< disparity image

}

message Mesh
{

Time timestamp = 1; ///< Acquisition timestamp of disparity image from which the mesh
→˓is computed
string format = 2; ///< currently only "ply" is supported
bytes data = 3; ///< actual mesh data

}

message ImageSet
{

Time timestamp = 1;
Image left = 2;
Image right = 3;
DisparityImage disparity = 4;
Image disparity_error = 5;
Image confidence = 6;
Mesh mesh = 7;

}

message MeshOptions
{

uint32 max_points = 1; ///< limit maximum number of points, zero means default (up
→˓to 3.1MP), minimum is 1000

(continues on next page)

Roboception GmbH
Manual: rc_reason_stack

374 Rev: 26.01.4
Status: Jan 30, 2026

7.6. gRPC image stream interface

(continued from previous page)

enum BinningMethod {
AVERAGE = 0; ///< average over all points in bin
MIN_DEPTH = 1; ///< use point with minimum depth (i.e. closest to camera) in

→˓bin
}
BinningMethod binning_method = 2; ///< method used for binning if limited by max_points
bool watertight = 3; ///< connect all edges and fill all holes, e.g. for collision

→˓checking
bool textured = 4; ///< add texture information to mesh

}

message ImageSetRequest
{

bool left_enabled = 1;
bool right_enabled = 2;
bool disparity_enabled = 3;
bool disparity_error_enabled = 4;
bool confidence_enabled = 5;
bool mesh_enabled = 6;
MeshOptions mesh_options = 7;
bool color = 8; ///< send left/right image as color (rgb8) images

}

service ImageInterface
{

// A server-to-client streaming RPC.
rpc StreamImageSets(ImageSetRequest) returns (stream ImageSet) {}

}

message Event
{

Time timestamp = 1; ///< timestamp of the event
string message = 2; ///< optional message of the event

}

message ImageEvents
{

Time imageset_timestamp = 1; ///< timestamp of the ImageSet that the event belongs to
Event depth_acquisition_done = 2; ///< Depth image acquisition is done (e.g. stereo images

→˓captured)
}

message ImageEventsRequest
{

bool depth_acquisition_done_enabled = 1; ///< send event when depth acquisition is done
}

service ImageEventsInterface
{

// A server-to-client streaming RPC.
rpc StreamImageEvents(ImageEventsRequest) returns (stream ImageEvents) {}

}

7.6.1.1 Image stream conversions

The disparity image contains 16 bit unsigned integer values. These values must be multiplied by the
scale value given in the DisparityImage message to get the disparity values 𝑑 in pixels. To compute the
3D object coordinates from the disparity values, the baseline and the focal length as well as the principal
point are required. These parameters are transmitted as baseline = 𝑡 in the DisparityImage message,
and focal_length = 𝑓 , principal_point_u = 𝑐𝑥 and principal_point_v = 𝑐𝑦 in the ImageData mes-

Roboception GmbH
Manual: rc_reason_stack

375 Rev: 26.01.4
Status: Jan 30, 2026

7.6. gRPC image stream interface

sage. The focal length and principal point depend on the resolution of the camera image and need
to be scaled to the resolution of the disparity image. Knowing these values, the pixel coordinates and
the disparities can be transformed into 3D object coordinates in the camera coordinate frame using the
equations described in Computing depth images and point clouds (Section 4.2.2).

Assuming that 𝑑16𝑖𝑘 is the 16 bit disparity value at column 𝑖 and row 𝑘 of a disparity image, the float
disparity in pixels 𝑑𝑖𝑘 is given by

𝑑𝑖𝑘 = 𝑑16𝑖𝑘 · scale

The 3D reconstruction in meters can be written as:

𝑃𝑥 = (𝑖+ 0.5− 𝑐𝑥)
𝑡

𝑑𝑖𝑘
,

𝑃𝑦 = (𝑘 + 0.5− 𝑐𝑦)
𝑡

𝑑𝑖𝑘
,

𝑃𝑧 = 𝑓
𝑡

𝑑𝑖𝑘
.

The confidence image contains 8 bit unsigned integer values. These values have to be divided by 255
to get the confidence as value between 0 an 1.

The error image contains 8 bit unsigned integer values. The error 𝑒𝑖𝑘 must be multiplied by the scale
value given in the DisparityImage message to get the disparity-error values 𝑑𝑒𝑝𝑠 in pixels. According
to the description in Confidence and error images (Section 4.2.3), the depth error 𝑧𝑒𝑝𝑠 in meters can be
computed as

𝑑𝑖𝑘 = 𝑑16𝑖𝑘 · scale,

𝑧𝑒𝑝𝑠 =
𝑒𝑖𝑘 · scale · 𝑓 · 𝑡

(𝑑𝑖𝑘)2
.

For more information about disparity, error, and confidence images, please refer to Stereo matching
module (Section 6.2.2).

7.6.2 Example client

A simple example C++ client can be found at https://github.com/roboception/grpc_image_client_
example.

Roboception GmbH
Manual: rc_reason_stack

376 Rev: 26.01.4
Status: Jan 30, 2026

https://github.com/roboception/grpc_image_client_example
https://github.com/roboception/grpc_image_client_example

8 Maintenance

8.1 Creating and restoring backups of settings

The rc_reason_stack offers the possibility to download the current settings as backup or for transferring
them to a different rc_visard or rc_cube.

The current settings of the rc_reason_stack can be downloaded on the Web GUI’s (Section 7.1) System
page in the rc_reason_stack Settings section. They can also be downloaded via the rc_reason_stack ’s
REST-API interface (Section 7.2) using the GET /system/backup request.

For downloading a backup, the user can choose which settings to include:

• nodes: the settings of all modules (parameters, preferred orientations and sorting strategies)

• load_carriers: the configured load carriers

• regions_of_interest: the configured 2D and 3D regions of interest

• grippers: the configured grippers (without the CAD elements)

The returned backup should be stored as a .json file.

The templates of the SilhouetteMatch and CADMatch modules are not included in the backup but can
be downloaded manually using the REST-API or the Web GUI (see Template API, Section 6.3.6.14 and
Template API, Section 6.3.7.13).

A backup can be restored to the rc_reason_stack on the Web GUI’s (Section 7.1) System page in
the rc_reason_stack Settings section by uploading the backup .json file. In the Web GUI the settings
included in the backup are shown and can be chosen for restore. The corresponding REST-API inter-
face (Section 7.2) call is POST /system/backup.

Warning: When restoring load carriers, all existing load carriers on the rc_reason_stack will get
lost and will be replaced by the content of the backup. The same applies to restoring grippers and
regions of interest.

When restoring a backup, only the settings which are applicable to the rc_reason_stack are restored.
Parameters for modules that do not exist on the device or do not have a valid license will be skipped. If
a backup can only be restored partially, the user will be notified by warnings.

8.2 Updating the software license

Licenses can be purchased from Roboception for enabling additional features.

Roboception GmbH
Manual: rc_reason_stack

377 Rev: 26.01.4
Status: Jan 30, 2026

8.3. Downloading log files

8.3 Downloading log files

During operation, the rc_reason_stack logs important information, warnings, and errors into files. If the
rc_reason_stack exhibits unexpected or erroneous behavior, the log files can be used to trace its origin.
Log messages can be viewed and filtered using the Web GUI’s (Section 7.1) System → Logs page. If
contacting the support (Contact , Section 10), the log files are very useful for tracking possible problems.
To download them as a .tar.gz file, click on Download all logs on the Web GUI’s System → Logs page.

Aside from the Web GUI, the logs are also accessible via the rc_reason_stack ’s REST-API inter-
face (Section 7.2) using the GET /logs and GET /logs/{log} requests.

Roboception GmbH
Manual: rc_reason_stack

378 Rev: 26.01.4
Status: Jan 30, 2026

9 Troubleshooting

9.1 Camera-image issues

The camera image is too bright

• If the camera is in manual exposure mode, decrease the exposure time, or

• switch to auto-exposure mode.

The camera image is too dark

• If the camera is in manual exposure mode, increase the exposure time, or

• switch to auto-exposure mode.

The camera image is too noisy

Large gain factors cause high-amplitude image noise. To decrease the image noise,

• use an additional light source to increase the scene’s light intensity, or

• choose a greater maximal auto-exposure time.

The camera image is out of focus

• Check whether the object is too close to the lens and increase the distance between the object
and the lens if it is.

• Check whether the camera lenses are dirty and clean them if they are.

• If none of the above applies, a severe hardware problem might exist. Please contact sup-
port (Section 10).

The camera image is blurred

Fast motions in combination with long exposure times can cause blur. To reduce motion blur,

• decrease the motion speed of the camera,

• decrease the motion speed of objects in the field of view of the camera, or

• decrease the exposure time of the camera.

The camera image frame rate is too low

• Increase the image frame rate.

• The maximal frame rate of the cameras is 25 Hz.

9.2 Depth/Disparity, error, and confidence image issues

All these guidelines also apply to error and confidence images, because they correspond directly to the
disparity image.

The disparity image is too sparse or empty

Roboception GmbH
Manual: rc_reason_stack

379 Rev: 26.01.4
Status: Jan 30, 2026

9.2. Depth/Disparity, error, and confidence image issues

• Check whether the camera images are well exposed and sharp. Follow the instructions in Camera-
image issues (Section 9.1) if applicable.

• Check whether the scene has enough texture and install an external pattern projector if required.

• Decrease the Minimum Distance (Section 6.2.2.1).

• Increase the Maximum Distance (Section 6.2.2.1).

• Check whether the object is too close to the cameras. Consider the different depth ranges of the
camera variants.

• Decrease the Minimum Confidence (Section 6.2.2.1).

• Increase the Maximum Depth Error (Section 6.2.2.1).

• Choose a lesser Disparity Image Quality (Section 6.2.2.1). Lower resolution disparity images are
generally less sparse.

• Check the cameras’ calibration and recalibrate if required (see Camera calibration, Section 6.4.3).

The disparity images’ frame rate is too low

• Check and increase the frame rate of the camera images. The frame rate of the disparity image
cannot be greater than the frame rate of the camera images.

• Choose a lesser Disparity Image Quality (Section 6.2.2.1).

• Increase the Minimum Distance (Section 6.2.2.1) as much as possible for the application.

The disparity image does not show close objects

• Check whether the object is too close to the cameras. Consider the depth ranges of the camera
variants.

• Decrease the Minimum Distance (Section 6.2.2.1).

The disparity image does not show distant objects

• Increase the Maximum Distance (Section 6.2.2.1).

• Increase the Maximum Depth Error (Section 6.2.2.1).

• Decrease the Minimum Confidence (Section 6.2.2.1).

The disparity image is too noisy

• Increase the Segmentation value (Section 6.2.2.1).

• Increase the Fill-In value (Section 6.2.2.1).

The disparity values or the resulting depth values are too inaccurate

• Decrease the distance between the camera and the scene. Depth-measurement error grows
quadratically with the distance from the cameras.

• Check whether the scene contains repetitive patterns and remove them if it does. They could
cause wrong disparity measurements.

The disparity image is too smooth

• Decrease the Fill-In value (Section 6.2.2.1).

The disparity image does not show small structures

• Decrease the Segmentation value (Section 6.2.2.1).

• Decrease the Fill-In value (Section 6.2.2.1).

Roboception GmbH
Manual: rc_reason_stack

380 Rev: 26.01.4
Status: Jan 30, 2026

10 Contact

10.1 Support

For support issues, please see http://www.roboception.com/support or contact sup-
port@roboception.de.

10.2 Downloads

Software SDKs, etc. can be downloaded from http://www.roboception.com/download.

10.3 Address

Roboception GmbH
Kaflerstrasse 2
81241 Munich
Germany

Web: http://www.roboception.com
Email: info@roboception.de
Phone: +49 89 889 50 79-0

Roboception GmbH
Manual: rc_reason_stack

381 Rev: 26.01.4
Status: Jan 30, 2026

http://www.roboception.com/support
mailto:support@roboception.de
mailto:support@roboception.de
http://www.roboception.com/download
http://www.roboception.com
mailto:info@roboception.de

11 Appendix

11.1 Pose formats

A pose consists of a translation and rotation. The translation defines the shift along the 𝑥, 𝑦 and 𝑧 axes.
The rotation can be defined in many different ways. The rc_reason_stack uses quaternions to define
rotations and translations are given in meters. This is called the XYZ+quaternion format. This chapter
explains the conversion between different common conventions and the XYZ+quaternion format.

It is quite common to define rotations in 3D by three angles that define rotations around the three
coordinate axes. Unfortunately, there are many different ways to do that. The most common conventions
are Euler and Cardan angles (also called Tait-Bryan angles). In both conventions, the rotations can be
applied to the previously rotated axis (intrinsic rotation) or to the axis of a fixed coordinate system
(extrinsic rotation).

We use 𝑥, 𝑦 and 𝑧 to denote the three coordinate axes. 𝑥′, 𝑦′ and 𝑧′ refer to the axes that have been
rotated one time. Similarly, 𝑥′′, 𝑦′′ and 𝑧′′ are the axes after two rotations.

In the (original) Euler angle convention, the first and the third axis are always the same. The rotation
order 𝑧-𝑥′-𝑧′′ means rotating around the 𝑧-axis, then around the already rotated 𝑥-axis and finally around
the (two times) rotated 𝑧-axis. In the Cardan angle convention, three different rotation axes are used,
e.g. 𝑧-𝑦′-𝑥′′. Cardan angles are often also just called Euler angles.

For each intrinsic rotation order, there is an equivalent extrinsic rotation order, which is inverted, e.g.
the intrinsic rotation order 𝑧-𝑦′-𝑥′′ is equivalent to the extrinsic rotation order 𝑥-𝑦-𝑧.

Rotations around the 𝑥, 𝑦 and 𝑧 axes can be defined by quaternions as

𝑟𝑥(𝛼) =

⎛⎜⎜⎝
sin 𝛼

2
0
0

cos 𝛼
2

⎞⎟⎟⎠ , 𝑟𝑦(𝛽) =

⎛⎜⎜⎝
0

sin 𝛽
2

0

cos 𝛽
2

⎞⎟⎟⎠ , 𝑟𝑧(𝛾) =

⎛⎜⎜⎝
0
0

sin 𝛾
2

cos 𝛾
2

⎞⎟⎟⎠ ,

or by rotation matrices as

𝑟𝑥(𝛼) =

⎛⎝ 1 0 0
0 cos𝛼 − sin𝛼
0 sin𝛼 cos𝛼

⎞⎠ ,

𝑟𝑦(𝛽) =

⎛⎝ cos𝛽 0 sin𝛽
0 1 0

− sin𝛽 0 cos𝛽

⎞⎠ ,

𝑟𝑧(𝛾) =

⎛⎝ cos 𝛾 − sin 𝛾 0
sin 𝛾 cos 𝛾 0
0 0 1

⎞⎠ .

The extrinsic rotation order 𝑥-𝑦-𝑧 can be computed by multiplying the individual rotations in inverse
order, i.e. 𝑟𝑧(𝛾)𝑟𝑦(𝛽)𝑟𝑥(𝛼).

Based on these definitions, the following sections explain the conversion between common conventions
and the XYZ+quaternion format.

Roboception GmbH
Manual: rc_reason_stack

382 Rev: 26.01.4
Status: Jan 30, 2026

11.1. Pose formats

Note: Please be aware of units for positions and orientations. rc_reason_stack devices always
specify positions in meters, while most robot manufacturers use millimeters or inches. Angles are
typically specified in degrees, but may sometimes also be given in radians.

11.1.1 Rotation matrix and translation vector

A pose can also be defined by a rotation matrix 𝑅 and a translation vector 𝑇 .

𝑅 =

⎛⎝ 𝑟00 𝑟01 𝑟02
𝑟10 𝑟11 𝑟12
𝑟20 𝑟21 𝑟22

⎞⎠ , 𝑇 =

⎛⎝ 𝑋
𝑌
𝑍

⎞⎠ .

The pose transformation can be applied to a point 𝑃 by

𝑃 ′ = 𝑅𝑃 + 𝑇.

11.1.1.1 Conversion from rotation matrix to quaternion

The conversion from a rotation matrix (with 𝑑𝑒𝑡(𝑅) = 1) to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) can be
done as follows.

𝑥 = sign(𝑟21 − 𝑟12)
1

2

√︀
max(0, 1 + 𝑟00 − 𝑟11 − 𝑟22)

𝑦 = sign(𝑟02 − 𝑟20)
1

2

√︀
max(0, 1− 𝑟00 + 𝑟11 − 𝑟22)

𝑧 = sign(𝑟10 − 𝑟01)
1

2

√︀
max(0, 1− 𝑟00 − 𝑟11 + 𝑟22)

𝑤 =
1

2

√︀
max(0, 1 + 𝑟00 + 𝑟11 + 𝑟22)

The sign operator returns -1 if the argument is negative. Otherwise, 1 is returned. It is used to recover
the sign for the square root. The max function ensures that the argument of the square root function is
not negative, which can happen in practice due to round-off errors.

11.1.1.2 Conversion from quaternion to rotation matrix

The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) with ||𝑞|| = 1 to a rotation matrix can be done as
follows.

𝑅 = 2

⎛⎝ 1
2 − 𝑦2 − 𝑧2 𝑥𝑦 − 𝑧𝑤 𝑥𝑧 + 𝑦𝑤
𝑥𝑦 + 𝑧𝑤 1

2 − 𝑥2 − 𝑧2 𝑦𝑧 − 𝑥𝑤
𝑥𝑧 − 𝑦𝑤 𝑦𝑧 + 𝑥𝑤 1

2 − 𝑥2 − 𝑦2

⎞⎠

11.1.2 ABB pose format

ABB robots use a position 𝑋, 𝑌 , 𝑍 and a quaternion 𝑄1, 𝑄2, 𝑄3, 𝑄4 for describing a pose, similar to
rc_reason_stack devices. However, the position must be given in millimeters and the quaternion order
is as follows:

𝑞 = (𝑥 𝑦 𝑧 𝑤) = (𝑄2 𝑄3 𝑄4 𝑄1).

11.1.3 FANUC XYZ-WPR format

The pose format that is used by FANUC robots consists of a position 𝑋𝑌 𝑍 in millimeters and an orien-
tation 𝑊𝑃𝑅 that is given by three angles in degrees, with 𝑊 rotating around 𝑥-axis, 𝑃 rotating around

Roboception GmbH
Manual: rc_reason_stack

383 Rev: 26.01.4
Status: Jan 30, 2026

11.1. Pose formats

𝑦-axis and 𝑅 rotating around 𝑧-axis. The rotation order is 𝑥-𝑦-𝑧 and computed by 𝑟𝑧(𝑅)𝑟𝑦(𝑃)𝑟𝑥(𝑊).

11.1.3.1 Conversion from FANUC-WPR to quaternion

The conversion from the 𝑊𝑃𝑅 angles in degrees to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) can be done by
first converting all angles to radians

𝑊𝑟 = 𝑊
𝜋

180
,

𝑃𝑟 = 𝑃
𝜋

180
,

𝑅𝑟 = 𝑅
𝜋

180
,

and then calculating the quaternion with

𝑥 = cos (𝑅𝑟/2) cos (𝑃𝑟/2) sin (𝑊𝑟/2)− sin (𝑅𝑟/2) sin (𝑃𝑟/2) cos (𝑊𝑟/2),
𝑦 = cos (𝑅𝑟/2) sin (𝑃𝑟/2) cos (𝑊𝑟/2) + sin (𝑅𝑟/2) cos (𝑃𝑟/2) sin (𝑊𝑟/2),
𝑧 = sin (𝑅𝑟/2) cos (𝑃𝑟/2) cos (𝑊𝑟/2)− cos (𝑅𝑟/2) sin (𝑃𝑟/2) sin (𝑊𝑟/2),
𝑤 = cos (𝑅𝑟/2) cos (𝑃𝑟/2) cos (𝑊𝑟/2) + sin (𝑅𝑟/2) sin (𝑃𝑟/2) sin (𝑊𝑟/2).

11.1.3.2 Conversion from quaternion to FANUC-WPR

The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) with ||𝑞|| = 1 to the 𝑊𝑃𝑅 angles in degrees can
be done as follows.

𝑅 = atan2(2(𝑤𝑧 + 𝑥𝑦), 1− 2(𝑦2 + 𝑧2))
180

𝜋

𝑃 = asin(2(𝑤𝑦 − 𝑧𝑥))
180

𝜋

𝑊 = atan2(2(𝑤𝑥+ 𝑦𝑧), 1− 2(𝑥2 + 𝑦2))
180

𝜋

11.1.4 Franka Emika Pose Format

Franka Emika robots use a transformation matrix 𝑇 to define a pose. A transformation matrix combines
a rotation matrix 𝑅 and a translation vector 𝑡 = (𝑥 𝑦 𝑧)𝑇 .

𝑇 =

⎛⎜⎜⎝
𝑟00 𝑟01 𝑟02 𝑥
𝑟10 𝑟11 𝑟12 𝑦
𝑟20 𝑟21 𝑟22 𝑧
0 0 0 1

⎞⎟⎟⎠
The pose given by Franka Emika’s “Measure Pose” App consists of a translation 𝑥, 𝑦, 𝑧 in millimeters
and a rotation 𝑥, 𝑦, 𝑧 in degrees. The rotation convention is 𝑧-𝑦′-𝑥′′ (i.e. 𝑥-𝑦-𝑧) and is computed by
𝑟𝑧(𝑧)𝑟𝑦(𝑦)𝑟𝑥(𝑥).

Roboception GmbH
Manual: rc_reason_stack

384 Rev: 26.01.4
Status: Jan 30, 2026

11.1. Pose formats

11.1.4.1 Conversion from transformation matrix to quaternion

The conversion from a rotation matrix (with 𝑑𝑒𝑡(𝑅) = 1) to a quaternion 𝑞 = (𝑞𝑥 𝑞𝑦 𝑞𝑧 𝑞𝑤) can be
done as follows:

𝑞𝑥 = sign(𝑟21 − 𝑟12)
1

2

√︀
max(0, 1 + 𝑟00 − 𝑟11 − 𝑟22)

𝑞𝑦 = sign(𝑟02 − 𝑟20)
1

2

√︀
max(0, 1− 𝑟00 + 𝑟11 − 𝑟22)

𝑞𝑧 = sign(𝑟10 − 𝑟01)
1

2

√︀
max(0, 1− 𝑟00 − 𝑟11 + 𝑟22)

𝑞𝑤 =
1

2

√︀
max(0, 1 + 𝑟00 + 𝑟11 + 𝑟22)

The sign operator returns -1 if the argument is negative. Otherwise, 1 is returned. It is used to recover
the sign for the square root. The max function ensures that the argument of the square root function is
not negative, which can happen in practice due to round-off errors.

11.1.4.2 Conversion from Rotation-XYZ to quaternion

The conversion from the 𝑥, 𝑦, 𝑧 angles in degrees to a quaternion 𝑞 = (𝑞𝑥 𝑞𝑦 𝑞𝑧 𝑞𝑤) can be done
by first converting all angles to radians

𝑋𝑟 = 𝑥
𝜋

180
,

𝑌𝑟 = 𝑦
𝜋

180
,

𝑍𝑟 = 𝑧
𝜋

180
,

and then calculating the quaternion with

𝑞𝑥 = cos (𝑍𝑟/2) cos (𝑌𝑟/2) sin (𝑋𝑟/2)− sin (𝑍𝑟/2) sin (𝑌𝑟/2) cos (𝑋𝑟/2),
𝑞𝑦 = cos (𝑍𝑟/2) sin (𝑌𝑟/2) cos (𝑋𝑟/2) + sin (𝑍𝑟/2) cos (𝑌𝑟/2) sin (𝑋𝑟/2),
𝑞𝑧 = sin (𝑍𝑟/2) cos (𝑌𝑟/2) cos (𝑋𝑟/2)− cos (𝑍𝑟/2) sin (𝑌𝑟/2) sin (𝑋𝑟/2),
𝑞𝑤 = cos (𝑍𝑟/2) cos (𝑌𝑟/2) cos (𝑋𝑟/2) + sin (𝑍𝑟/2) sin (𝑌𝑟/2) sin (𝑋𝑟/2).

11.1.4.3 Conversion from quaternion and translation to transformation

The conversion from a quaternion 𝑞 = (𝑞𝑥 𝑞𝑦 𝑞𝑧 𝑞𝑤) and a translation vector 𝑡 = (𝑥 𝑦 𝑧)𝑇 to
a transformation matrix 𝑇 can be done as follows:

𝑇 =

⎛⎜⎜⎝
1− 2𝑠(𝑞2𝑦 + 𝑞2𝑧) 2𝑠(𝑞𝑥𝑞𝑦 − 𝑞𝑧𝑞𝑤) 2𝑠(𝑞𝑥𝑞𝑧 + 𝑞𝑦𝑞𝑤) 𝑥
2𝑠(𝑞𝑥𝑞𝑦 + 𝑞𝑧𝑞𝑤) 1− 2𝑠(𝑞2𝑥 + 𝑞2𝑧) 2𝑠(𝑞𝑦𝑞𝑧 − 𝑞𝑥𝑞𝑤) 𝑦
2𝑠(𝑞𝑥𝑞𝑧 − 𝑞𝑦𝑞𝑤) 2𝑠(𝑞𝑦𝑞𝑧 + 𝑞𝑥𝑞𝑤) 1− 2𝑠(𝑞2𝑥 + 𝑞2𝑦) 𝑧

0 0 0 1

⎞⎟⎟⎠
where 𝑠 = ||𝑞||−2 = 1

𝑞2𝑥+𝑞2𝑦+𝑞2𝑧+𝑞2𝑤
and 𝑠 = 1 if 𝑞 is a unit quaternion.

Roboception GmbH
Manual: rc_reason_stack

385 Rev: 26.01.4
Status: Jan 30, 2026

11.1. Pose formats

11.1.4.4 Conversion from quaternion to Rotation-XYZ

The conversion from a quaternion 𝑞 = (𝑞𝑥 𝑞𝑦 𝑞𝑧 𝑞𝑤) with ||𝑞|| = 1 to the 𝑥, 𝑦, 𝑧 angles in degrees
can be done as follows.

𝑥 = atan2(2(𝑞𝑤𝑞𝑧 + 𝑞𝑥𝑞𝑦), 1− 2(𝑞2𝑦 + 𝑞2𝑧))
180

𝜋

𝑦 = asin(2(𝑞𝑤𝑞𝑦 − 𝑞𝑧𝑞𝑥))
180

𝜋

𝑧 = atan2(2(𝑞𝑤𝑞𝑥 + 𝑞𝑦𝑞𝑧), 1− 2(𝑞2𝑥 + 𝑞2𝑦))
180

𝜋

11.1.4.5 Pose representation in RaceCom messages and state machines

In RaceCom messages and in state machines a pose is usually defined as one-dimensional array of
16 float values, representing the transformation matrix in column-major order. The indices of the matrix
entries below correspond to the array indices

𝑇 =

⎛⎜⎜⎝
𝑎0 𝑎4 𝑎8 𝑎12
𝑎1 𝑎5 𝑎9 𝑎13
𝑎2 𝑎6 𝑎10 𝑎14
𝑎3 𝑎7 𝑎11 𝑎15

⎞⎟⎟⎠

11.1.5 Fruitcore HORST pose format

Fruitcore HORST robots use a position in meters and a quaternion with 𝑞0 = 𝑤, 𝑞1 = 𝑥, 𝑞2 = 𝑦 and
𝑞3 = 𝑧 for describing a pose, like rc_reason_stack devices. There is no conversion needed.

11.1.6 Kawasaki XYZ-OAT format

The pose format that is used by Kawasaki robots consists of a position 𝑋𝑌 𝑍 in millimeters and an
orientation 𝑂𝐴𝑇 that is given by three angles in degrees, with 𝑂 rotating around 𝑧 axis, 𝐴 rotating
around the rotated 𝑦 axis and 𝑇 rotating around the rotated 𝑧 axis. The rotation convention is 𝑧-𝑦′-𝑧′′

(i.e. 𝑧-𝑦-𝑧) and computed by 𝑟𝑧(𝑂)𝑟𝑦(𝐴)𝑟𝑧(𝑇).

11.1.6.1 Conversion from Kawasaki-OAT to quaternion

The conversion from the 𝑂𝐴𝑇 angles in degrees to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) can be done by
first converting all angles to radians

𝑂𝑟 = 𝑂
𝜋

180
,

𝐴𝑟 = 𝐴
𝜋

180
,

𝑇𝑟 = 𝑇
𝜋

180
,

and then calculating the quaternion with

𝑥 = cos (𝑂𝑟/2) sin (𝐴𝑟/2) sin (𝑇𝑟/2)− sin (𝑂𝑟/2) sin (𝐴𝑟/2) cos (𝑇𝑟/2),
𝑦 = cos (𝑂𝑟/2) sin (𝐴𝑟/2) cos (𝑇𝑟/2) + sin (𝑂𝑟/2) sin (𝐴𝑟/2) sin (𝑇𝑟/2),
𝑧 = sin (𝑂𝑟/2) cos (𝐴𝑟/2) cos (𝑇𝑟/2) + cos (𝑂𝑟/2) cos (𝐴𝑟/2) sin (𝑇𝑟/2),
𝑤 = cos (𝑂𝑟/2) cos (𝐴𝑟/2) cos (𝑇𝑟/2)− sin (𝑂𝑟/2) cos (𝐴𝑟/2) sin (𝑇𝑟/2).

Roboception GmbH
Manual: rc_reason_stack

386 Rev: 26.01.4
Status: Jan 30, 2026

11.1. Pose formats

11.1.6.2 Conversion from quaternion to Kawasaki-OAT

The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) with ||𝑞|| = 1 to the 𝑂𝐴𝑇 angles in degrees can
be done as follows.

If 𝑥 = 0 and 𝑦 = 0 the conversion is

𝑂 = atan2(2(𝑧 − 𝑤), 2(𝑧 + 𝑤))
180

𝜋

𝐴 = acos(𝑤2 + 𝑧2)
180

𝜋

𝑇 = atan2(2(𝑧 + 𝑤), 2(𝑤 − 𝑧))
180

𝜋

If 𝑧 = 0 and 𝑤 = 0 the conversion is

𝑂 = atan2(2(𝑦 − 𝑥), 2(𝑥+ 𝑦))
180

𝜋

𝐴 = acos(−1.0)
180

𝜋

𝑇 = atan2(2(𝑦 + 𝑥), 2(𝑦 − 𝑥))
180

𝜋

In all other cases the conversion is

𝑂 = atan2(2(𝑦𝑧 − 𝑤𝑥), 2(𝑥𝑧 + 𝑤𝑦))
180

𝜋

𝐴 = acos(𝑤2 − 𝑥2 − 𝑦2 + 𝑧2)
180

𝜋

𝑇 = atan2(2(𝑦𝑧 + 𝑤𝑥), 2(𝑤𝑦 − 𝑥𝑧))
180

𝜋

11.1.7 KUKA XYZ-ABC format

KUKA robots use the so called XYZ-ABC format. 𝑋𝑌 𝑍 is the position in millimeters. 𝐴𝐵𝐶 are angles
in degrees, with 𝐴 rotating around 𝑧 axis, 𝐵 rotating around 𝑦 axis and 𝐶 rotating around 𝑥 axis. The
rotation convention is 𝑧-𝑦′-𝑥′′ (i.e. 𝑥-𝑦-𝑧) and computed by 𝑟𝑧(𝐴)𝑟𝑦(𝐵)𝑟𝑥(𝐶).

11.1.7.1 Conversion from KUKA-ABC to quaternion

The conversion from the 𝐴𝐵𝐶 angles in degrees to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) can be done by
first converting all angles to radians

𝐴𝑟 = 𝐴
𝜋

180
,

𝐵𝑟 = 𝐵
𝜋

180
,

𝐶𝑟 = 𝐶
𝜋

180
,

and then calculating the quaternion with

𝑥 = cos (𝐴𝑟/2) cos (𝐵𝑟/2) sin (𝐶𝑟/2)− sin (𝐴𝑟/2) sin (𝐵𝑟/2) cos (𝐶𝑟/2),
𝑦 = cos (𝐴𝑟/2) sin (𝐵𝑟/2) cos (𝐶𝑟/2) + sin (𝐴𝑟/2) cos (𝐵𝑟/2) sin (𝐶𝑟/2),
𝑧 = sin (𝐴𝑟/2) cos (𝐵𝑟/2) cos (𝐶𝑟/2)− cos (𝐴𝑟/2) sin (𝐵𝑟/2) sin (𝐶𝑟/2),
𝑤 = cos (𝐴𝑟/2) cos (𝐵𝑟/2) cos (𝐶𝑟/2) + sin (𝐴𝑟/2) sin (𝐵𝑟/2) sin (𝐶𝑟/2).

Roboception GmbH
Manual: rc_reason_stack

387 Rev: 26.01.4
Status: Jan 30, 2026

11.1. Pose formats

11.1.7.2 Conversion from quaternion to KUKA-ABC

The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) with ||𝑞|| = 1 to the 𝐴𝐵𝐶 angles in degrees can
be done as follows.

𝐴 = atan2(2(𝑤𝑧 + 𝑥𝑦), 1− 2(𝑦2 + 𝑧2))
180

𝜋

𝐵 = asin(2(𝑤𝑦 − 𝑧𝑥))
180

𝜋

𝐶 = atan2(2(𝑤𝑥+ 𝑦𝑧), 1− 2(𝑥2 + 𝑦2))
180

𝜋

11.1.8 Mitsubishi XYZ-ABC format

The pose format that is used by Mitsubishi robots is the same as that for KUKA robots (see KUKA
XYZ-ABC format , Section 11.1.7), except that 𝐴 is a rotation around 𝑥 axis and 𝐶 is a rotation around
𝑧 axis. Thus, the rotation is computed by 𝑟𝑧(𝐶)𝑟𝑦(𝐵)𝑟𝑥(𝐴).

11.1.8.1 Conversion from Mitsubishi-ABC to quaternion

The conversion from the 𝐴𝐵𝐶 angles in degrees to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) can be done by
first converting all angles to radians

𝐴𝑟 = 𝐴
𝜋

180
,

𝐵𝑟 = 𝐵
𝜋

180
,

𝐶𝑟 = 𝐶
𝜋

180
,

and then calculating the quaternion with

𝑥 = cos (𝐶𝑟/2) cos (𝐵𝑟/2) sin (𝐴𝑟/2)− sin (𝐶𝑟/2) sin (𝐵𝑟/2) cos (𝐴𝑟/2),
𝑦 = cos (𝐶𝑟/2) sin (𝐵𝑟/2) cos (𝐴𝑟/2) + sin (𝐶𝑟/2) cos (𝐵𝑟/2) sin (𝐴𝑟/2),
𝑧 = sin (𝐶𝑟/2) cos (𝐵𝑟/2) cos (𝐴𝑟/2)− cos (𝐶𝑟/2) sin (𝐵𝑟/2) sin (𝐴𝑟/2),
𝑤 = cos (𝐶𝑟/2) cos (𝐵𝑟/2) cos (𝐴𝑟/2) + sin (𝐶𝑟/2) sin (𝐵𝑟/2) sin (𝐴𝑟/2).

11.1.8.2 Conversion from quaternion to Mitsubishi-ABC

The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) with ||𝑞|| = 1 to the 𝐴𝐵𝐶 angles in degrees can
be done as follows.

𝐴 = atan2(2(𝑤𝑥+ 𝑦𝑧), 1− 2(𝑥2 + 𝑦2))
180

𝜋

𝐵 = asin(2(𝑤𝑦 − 𝑧𝑥))
180

𝜋

𝐶 = atan2(2(𝑤𝑧 + 𝑥𝑦), 1− 2(𝑦2 + 𝑧2))
180

𝜋

11.1.9 Universal Robots pose format

The pose format that is used by Universal Robots consists of a position 𝑋𝑌 𝑍 in millimeters and an
orientation in angle-axis format 𝑉 = (𝑅𝑋 𝑅𝑌 𝑅𝑍)𝑇 . The rotation angle 𝜃 in radians is the length

Roboception GmbH
Manual: rc_reason_stack

388 Rev: 26.01.4
Status: Jan 30, 2026

11.1. Pose formats

of the rotation axis 𝑈 .

𝑉 =

⎛⎝ 𝑅𝑋
𝑅𝑌
𝑅𝑍

⎞⎠ =

⎛⎝ 𝜃𝑢𝑥

𝜃𝑢𝑦

𝜃𝑢𝑧

⎞⎠
𝑉 is called a rotation vector.

11.1.9.1 Conversion from angle-axis format to quaternion

The conversion from a rotation vector 𝑉 to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) can be done as follows.

We first recover the angle 𝜃 in radians from the rotation vector 𝑉 by

𝜃 =
√︀
𝑅𝑋2 +𝑅𝑌 2 +𝑅𝑍2.

If 𝜃 = 0, then the quaternion is 𝑞 = (0 0 0 1), otherwise it is

𝑥 = 𝑅𝑋
sin(𝜃/2)

𝜃
,

𝑦 = 𝑅𝑌
sin(𝜃/2)

𝜃
,

𝑧 = 𝑅𝑍
sin(𝜃/2)

𝜃
,

𝑤 = cos(𝜃/2).

11.1.9.2 Conversion from quaternion to angle-axis format

The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) with ||𝑞|| = 1 to a rotation vector in angle-axis
form can be done as follows.

We first recover the angle 𝜃 in radians from the quaternion by

𝜃 = 2 · acos(𝑤).

If 𝜃 = 0, then the rotation vector is 𝑉 = (0 0 0)𝑇 , otherwise it is

𝑅𝑋 = 𝜃
𝑥√

1− 𝑤2
,

𝑅𝑌 = 𝜃
𝑦√

1− 𝑤2
,

𝑅𝑍 = 𝜃
𝑧√

1− 𝑤2
.

11.1.10 Yaskawa Pose Format

The pose format that is used by Yaskawa robots consists of a position 𝑋𝑌 𝑍 in millimeters and an
orientation that is given by three angles in degrees, with 𝑅𝑥 rotating around 𝑥-axis, 𝑅𝑦 rotating around
𝑦-axis and 𝑅𝑧 rotating around 𝑧-axis. The rotation order is 𝑥-𝑦-𝑧 and computed by 𝑟𝑧(𝑅𝑧)𝑟𝑦(𝑅𝑦)𝑟𝑥(𝑅𝑥).

Roboception GmbH
Manual: rc_reason_stack

389 Rev: 26.01.4
Status: Jan 30, 2026

11.1. Pose formats

11.1.10.1 Conversion from Yaskawa Rx, Ry, Rz to quaternion

The conversion from the 𝑅𝑥,𝑅𝑦,𝑅𝑧 angles in degrees to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) can be
done by first converting all angles to radians

𝑋𝑟 = 𝑅𝑥
𝜋

180
,

𝑌𝑟 = 𝑅𝑦
𝜋

180
,

𝑍𝑟 = 𝑅𝑧
𝜋

180
,

and then calculating the quaternion with

𝑥 = cos (𝑍𝑟/2) cos (𝑌𝑟/2) sin (𝑋𝑟/2)− sin (𝑍𝑟/2) sin (𝑌𝑟/2) cos (𝑋𝑟/2),
𝑦 = cos (𝑍𝑟/2) sin (𝑌𝑟/2) cos (𝑋𝑟/2) + sin (𝑍𝑟/2) cos (𝑌𝑟/2) sin (𝑋𝑟/2),
𝑧 = sin (𝑍𝑟/2) cos (𝑌𝑟/2) cos (𝑋𝑟/2)− cos (𝑍𝑟/2) sin (𝑌𝑟/2) sin (𝑋𝑟/2),
𝑤 = cos (𝑍𝑟/2) cos (𝑌𝑟/2) cos (𝑋𝑟/2) + sin (𝑍𝑟/2) sin (𝑌𝑟/2) sin (𝑋𝑟/2).

11.1.10.2 Conversion from quaternion to Yaskawa Rx, Ry, Rz

The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) with ||𝑞|| = 1 to the 𝑅𝑥,𝑅𝑦,𝑅𝑧 angles in degrees
can be done as follows.

𝑅𝑥 = atan2(2(𝑤𝑥+ 𝑦𝑧), 1− 2(𝑥2 + 𝑦2))
180

𝜋

𝑅𝑦 = asin(2(𝑤𝑦 − 𝑧𝑥))
180

𝜋

𝑅𝑧 = atan2(2(𝑤𝑧 + 𝑥𝑦), 1− 2(𝑦2 + 𝑧2))
180

𝜋

Roboception GmbH
Manual: rc_reason_stack

390 Rev: 26.01.4
Status: Jan 30, 2026

HTTP Routing Table

HTTP Routing Table

/cad
GET /cad/gripper_elements, 307
GET /cad/gripper_elements/{id}, 307
PUT /cad/gripper_elements/{id}, 308
DELETE /cad/gripper_elements/{id}, 309

/generic_robot_interface
GET /generic_robot_interface/hec_configs,

360
GET /generic_robot_interface/hec_configs/{pipeline},

361
GET /generic_robot_interface/jobs, 362
GET /generic_robot_interface/jobs/{job_id},

363
PUT /generic_robot_interface/hec_configs/{pipeline},

361
PUT /generic_robot_interface/jobs/{job_id},

363
DELETE /generic_robot_interface/hec_configs/{pipeline},

362
DELETE /generic_robot_interface/jobs/{job_id},

364

/logs
GET /logs, 333
GET /logs/{log}, 333

/nodes
GET /nodes, 317
GET /nodes/{node}, 318
GET /nodes/{node}/services, 318
GET /nodes/{node}/services/{service}, 319
GET /nodes/{node}/status, 320
PUT /nodes/{node}/services/{service}, 319

/pipelines
GET /pipelines, 330
GET /pipelines/{pipeline}, 330
GET /pipelines/{pipeline}/nodes, 321
GET /pipelines/{pipeline}/nodes/{node}, 322
GET /pipelines/{pipeline}/nodes/{node}/parameters,

323
GET /pipelines/{pipeline}/nodes/{node}/parameters/{param},

325
GET /pipelines/{pipeline}/nodes/{node}/services,

327
GET /pipelines/{pipeline}/nodes/{node}/services/{service},

328

GET /pipelines/{pipeline}/nodes/{node}/status,
329

PUT /pipelines/{pipeline}/nodes/{node}/parameters,
324

PUT /pipelines/{pipeline}/nodes/{node}/parameters/{param},
326

PUT /pipelines/{pipeline}/nodes/{node}/services/{service},
328

/presets
GET /presets/rc_zivid/2d_presets, 50
GET /presets/rc_zivid/2d_presets/{id}, 50
GET /presets/rc_zivid/3d_presets, 64
GET /presets/rc_zivid/3d_presets/{id}, 65
PUT /presets/rc_zivid/2d_presets/{id}, 51
PUT /presets/rc_zivid/3d_presets/{id}, 65
DELETE /presets/rc_zivid/2d_presets/{id}, 51
DELETE /presets/rc_zivid/3d_presets/{id}, 65

/system
GET /system, 334
GET /system/backup, 335
GET /system/disk_info, 336
GET /system/license, 336
GET /system/pipelines, 331
GET /system/pipelines/config/{pipeline}, 331
GET /system/ui_lock, 337
POST /system/backup, 336
POST /system/license, 337
POST /system/ui_lock, 338
PUT /system/pipelines/config/{pipeline}, 331
DELETE /system/pipelines/config/{pipeline},

332
DELETE /system/ui_lock, 338

/templates
GET /templates/rc_boxpick, 157
GET /templates/rc_boxpick/{id}, 158
GET /templates/rc_cadmatch, 237
GET /templates/rc_cadmatch/{id}, 238
GET /templates/rc_silhouettematch, 198
GET /templates/rc_silhouettematch/{id}, 199
PUT /templates/rc_boxpick/{id}, 158
PUT /templates/rc_cadmatch/{id}, 238
PUT /templates/rc_silhouettematch/{id}, 199
DELETE /templates/rc_boxpick/{id}, 159
DELETE /templates/rc_cadmatch/{id}, 239

Roboception GmbH
Manual: rc_reason_stack

391 Rev: 26.01.4
Status: Jan 30, 2026

HTTP Routing Table

DELETE /templates/rc_silhouettematch/{id},
200

Roboception GmbH
Manual: rc_reason_stack

392 Rev: 26.01.4
Status: Jan 30, 2026

Index

Index

Symbols
3D coordinates, 17

disparity image, 17
3D modeling, 17
3D object detection, 201

A
acquisition mode

disparity image, 54
stereo ace camera, 34

AdaptiveOut1
auto exposure mode, 28

AprilTag, 91
pose estimation, 94
re-identification, 95
return codes, 103
services, 97

auto
exposure, 28

auto exposure, 27, 28, 43, 44
auto exposure mode, 28

AdaptiveOut1, 28
Normal, 28
Out1High, 28
stereo ace camera, 36

B
backup

settings, 377
base-plane

SilhouetteMatch, 161
base-plane calibration

SilhouetteMatch, 161
baseline, 24
bin picking, 103, 127, 201
blue ratio

stereo ace camera, 39
BoxPick, 127

filling level, 76
grasp, 129
grasp sorting, 129
item models, 127
load carrier, 75, 283
parameters, 132
preferred orientation, 130
RECTANGLE, 128
region of interest, 291
return codes, 156

services, 139
status, 138
template api, 157
template deletion, 157
template download, 157
template upload, 157
texture, 128
TEXTURED_BOX, 128
views, 128

brightness
stereo ace camera, 37, 39

C
CADMatch, 201

collision check, 206
filling level, 76
grasp points, 202
load carrier, 75, 283
object detection, 203
object template, 202, 203
parameters, 206
pose priors, 202
preferred orientation, 202
region of interest, 291
return codes, 237
services, 211
sorting, 203
status, 211
template api, 237
template deletion, 237
template download, 237
template upload, 237

calibration
camera, 271
hand-eye calibration, 244
rectification, 24

calibration grid, 272
camera

calibration, 271
frame rate, 26, 48
gamma, 27, 43
parameters, 24
Web GUI, 24

camera calibration
monocalibration, 277
parameters, 278
services, 278
stereo calibration, 275

Roboception GmbH
Manual: rc_reason_stack

393 Rev: 26.01.4
Status: Jan 30, 2026

Index

camera connection
installation, 14

camera model, 24
Camera pipelines, 18, 23
collision check, 262, 298
CollisionCheck, 262

return codes, 271
compartment

load carrier, 286
confidence, 17

minimum, 58
contrast

Stereo ace camera, 35
contrast mode

linear, 35
scurve, 35
Stereo ace camera, 35

conversions
gRPC image stream, 375

D
data model

REST-API, 339
data-type

REST-API, 339
definition

load carrier, 284
depth acquisition mode

zivid, 62
depth error

maximum, 58
depth image, 16, 17, 17, 52, 61, 66

Web GUI, 52
depth measurement, 70
detection

load carrier, 75
tag, 90

dimensions
load carrier, 284

disparity, 15, 16, 24, 52
disparity error, 17
disparity image, 15, 16, 52

3D coordinates, 17
acquisition mode, 54
double_shot, 56
exposure adaptation timeout, 55
parameters, 52
quality, 55
smooth, 57, 67
static_scene, 56
Web GUI, 52

double_shot
disparity image, 56

download
images, 24
log files, 378
point cloud, 52
settings, 377

E
eki, 365
error, 17

hand-eye calibration, 250
exposure

auto, 27, 28, 43
HDR, 27, 43
manual, 27, 43
stereo ace camera, 36

exposure adaptation timeout
disparity image, 55

exposure region, 29, 44
stereo ace camera, 38

exposure time, 29, 44
maximum, 28, 44
stereo ace camera, 38

external reference frame
hand-eye calibration, 240

F
fill-in, 57, 67
filling level

BoxPick, 76
ItemPick, 76
LoadCarrier, 76
SilhouetteMatch, 76

focal length, 24
fps, see frame rate, see frame rate

stereo ace camera, 35
frame rate

camera, 26, 48
stereo ace camera, 35

G
gain

stereo ace camera, 38
gain factor, 28, 30, 44, 45
gamma

camera, 27, 43
stereo ace camera, 35

Generic Robot Interface, 349
grasp computation, 103, 127, 201
green ratio

stereo ace camera, 39
GRI, 349
gripper CAD element api, 307
gripper CAD element deletion, 307
gripper CAD element download, 307
gripper CAD element upload, 307
GripperDB, 298

return codes, 306
gRPC, 373
gRPC image stream

conversions, 375

H
hand-eye calibration

calibration, 244

Roboception GmbH
Manual: rc_reason_stack

394 Rev: 26.01.4
Status: Jan 30, 2026

Index

error, 250
external reference frame, 240
mounting, 241
parameters, 250
robot frame, 240
slot, 247

I
image

timestamp, 52
image acquisition mode

zivid, 48
image noise, 28, 44
images

download, 24
inner volume

load carrier, 284
installation, 8

camera connection, 14
ItemPick, 103

filling level, 76
grasp, 104
grasp sorting, 104
load carrier, 75, 283
preferred orientation, 105
region of interest, 291
return codes, 126
services, 112
status, 111

ItemPickAI, 103
grasp, 104
grasp sorting, 104
parameters, 107
preferred orientation, 105
return codes, 126
services, 112
status, 111

L
light source preset

stereo ace camera, 39
linear

contrast mode, 35
load carrier

BoxPick, 75, 283
compartment, 286
definition, 284
detection, 75
dimensions, 284
inner volume, 284
ItemPick, 75, 283
orientation prior, 284
pose, 284
rim, 284
SilhouetteMatch, 75, 283

load carrier detection, 75
load carrier model, 283
LoadCarrier, 75

filling level, 76
parameters, 78
return codes, 89
services, 80

LoadCarrierDB, 283
return codes, 291
services, 288

log files
download, 378

logs
REST-API, 333

M
manual exposure, 27, 29, 43, 44
max exposure

stereo ace camera, 37
maximum

depth error, 58
exposure time, 28, 44

maximum depth error, 58
maximum distance, 57, 67
Measure, 70

parameters, 71
return codes, 75
services, 71

minimum
confidence, 58

minimum confidence, 58
minimum distance, 57, 66
monocalibration

camera calibration, 277
motion blur, 28, 44
mounting

hand-eye calibration, 241

N
node

REST-API, 315, 330
Normal

auto exposure mode, 28

O
object detection, 159, 201
OPC UA, 365
orbbec, 66

parameters, 66
orientation prior

load carrier, 284
Out1High

auto exposure mode, 28

P
parameter

REST-API, 316
parameters

camera, 24
camera calibration, 278
disparity image, 52

Roboception GmbH
Manual: rc_reason_stack

395 Rev: 26.01.4
Status: Jan 30, 2026

Index

hand-eye calibration, 250
orbbec, 66
services, 31
stereo ace, 32
zivid, 61

point cloud, 17
download, 52

pose
load carrier, 284

pose estimation
AprilTag, 94
QR code, 94

preset name
zivid, 48, 62

Q
QR Code

return codes, 103
QR code, 91

pose estimation, 94
re-identification, 95
services, 97

quality
disparity image, 55

R
re-identification

AprilTag, 95
QR code, 95

rectification, 24
red ratio

stereo ace camera, 39
REST-API, 313

data model, 339
data-type, 339
entry point, 314
logs, 333
node, 315, 330
parameter, 316
services, 316
status value, 316
system, 333
UserSpace, 333
version, 314

restore
settings, 377

return codes
AprilTag, 103
BoxPick, 156
CADMatch, 237
CollisionCheck, 271
GripperDB, 306
ItemPick, 126
ItemPickAI, 126
LoadCarrier, 89
LoadCarrierDB, 291
Measure, 75
QR Code, 103

RoiDB, 298
SilhouetteMatch, 198

rim
load carrier, 284

robot frame
hand-eye calibration, 240

ROI, 291
RoiDB, 291

return codes, 298
services, 293

S
saturation

stereo ace camera, 40
scurve

contrast mode, 35
segmentation, 58, 68
Semi-Global Matching, see SGM
services

AprilTag, 97
camera calibration, 278
parameters, 31
QR code, 97
REST-API, 316
stereo ace camera, 41
tag detection, 97

settings
backup, 377
download, 377
restore, 377
upload, 377

SGM, 15, 16
silhouette, 159
SilhouetteMatch, 159

base-plane, 161
base-plane calibration, 161
collision check, 169
detection of objects, 165
filling level, 76
grasp points, 163
load carrier, 75, 283
object template, 163
parameters, 169
preferred orientation, 165
region of interest, 162, 291
return codes, 198
services, 175
sorting, 165
status, 175
template api, 198
template deletion, 198
template download, 198
template upload, 198

SilhouetteMatchAI, 159
slot

hand-eye calibration, 247
smooth

disparity image, 57, 67

Roboception GmbH
Manual: rc_reason_stack

396 Rev: 26.01.4
Status: Jan 30, 2026

Index

static_scene
disparity image, 56

status value
REST-API, 316

status values
stereo ace camera, 40

stereo ace
parameters, 32

Stereo ace camera
contrast, 35
contrast mode, 35

stereo ace camera
acquisition mode, 34
auto exposure mode, 36
blue ratio, 39
brightness, 37, 39
exposure, 36
exposure region, 38
exposure time, 38
fps, 35
frame rate, 35
gain, 38
gamma, 35
green ratio, 39
light source preset, 39
max exposure, 37
red ratio, 39
saturation, 40
services, 41
status values, 40
trigger activation, 34
white balance, 39

stereo calibration
camera calibration, 275

stereo camera, 24
stereo matching, 15
Swagger UI, 346
system

REST-API, 333

T
tag detection, 90

families, 91
pose estimation, 94
re-identification, 95
services, 97

texture, 16
timestamp

image, 52
trigger activation

stereo ace camera, 34

U
upload

settings, 377
UserSpace

REST-API, 333

V
version

REST-API, 314

W
Web GUI, 310

backup, 377
camera, 24
depth image, 52
disparity image, 52
logs, 378

white balance, 30, 45
stereo ace camera, 39

Z
zivid, 61

depth acquisition mode, 62
image acquisition mode, 48
parameters, 61
preset name, 48, 62

Roboception GmbH
Manual: rc_reason_stack

397 Rev: 26.01.4
Status: Jan 30, 2026

rc_reason_stack 3D Vision Software Platform
INSTALLATION AND OPERATING MANUAL

Roboception GmbH

Kaflerstrasse 2
81241 Munich info@roboception.de
Germany www.roboception.com

Tutorials: https://tutorials.roboception.com
GitHub: https://github.com/roboception
Documentation: https://doc.rc-visard.com

https://doc.rc-viscore.com
https://doc.rc-cube.com
https://doc.rc-randomdot.com

Shop: https://roboception.com/shop

For customer support, contact

+49 89 889 50 790
(09:00-17:00 CET) support@roboception.de

	Introduction
	Overview

	Safety
	General warnings
	Intended use

	Installation
	Offline installation guide
	Prerequisites
	Install Ubuntu 24.04
	Install NVIDIA driver
	Install Docker
	Install NVIDIA Container Toolkit
	Limit docker log file size
	Install WIBU CodeMeter runtime
	Create network interfaces
	Ensure network settings for GigE Vision
	Load container images
	Start the Docker stack
	Access the Web GUI
	Troubleshooting

	Software license
	Connection of cameras

	Measurement principles
	Stereo vision
	General information on 3D data
	Computing disparity images
	Computing depth images and point clouds
	Confidence and error images

	Camera pipelines
	Configuration of camera pipelines
	Configuration of connected cameras

	Software modules
	Camera module
	Rectification
	Viewing and downloading images
	Pipeline types rc_visard and rc_viscore
	Pipeline type stereo_ace
	Pipeline type orbbec
	Pipeline type zivid

	3D modules
	Viewing and downloading images and point clouds
	Stereo matching module
	Zivid module
	Orbbec module

	Detection & Measure modules
	Measure
	LoadCarrier
	TagDetect
	ItemPick and ItemPickAI
	BoxPick
	SilhouetteMatch and SilhouetteMatchAI
	CADMatch

	Configuration modules
	Hand-eye calibration
	CollisionCheck
	Camera calibration
	IO and Projector Control

	Database modules
	LoadCarrierDB
	RoiDB
	GripperDB

	Interfaces
	Web GUI
	Accessing the Web GUI
	Exploring the Web GUI
	Web GUI access control
	Downloading camera images
	Downloading depth images and point clouds

	REST-API interface
	General API structure
	Available resources and requests
	Data type definitions
	Swagger UI

	Generic Robot Interface
	Job definition
	Hand-Eye Calibration
	GRI binary protocol specification
	Integration with a robot
	Job and HEC_config API

	OPC UA interface
	KUKA Ethernet KRL Interface
	Ethernet connection configuration
	Generic XML structure
	Services
	Parameters
	Example applications
	Troubleshooting

	gRPC image stream interface
	gRPC service definition
	Example client

	Maintenance
	Creating and restoring backups of settings
	Updating the software license
	Downloading log files

	Troubleshooting
	Camera-image issues
	Depth/Disparity, error, and confidence image issues

	Contact
	Support
	Downloads
	Address

	Appendix
	Pose formats
	Rotation matrix and translation vector
	ABB pose format
	FANUC XYZ-WPR format
	Franka Emika Pose Format
	Fruitcore HORST pose format
	Kawasaki XYZ-OAT format
	KUKA XYZ-ABC format
	Mitsubishi XYZ-ABC format
	Universal Robots pose format
	Yaskawa Pose Format

	HTTP Routing Table
	Index

