
Roboception GmbH | Januar 2026

rc_reason_stack
3D Vision Software Platform
INSTALLATIONS- UND BEDIENUNGSANLEITUNG

Revisionen

Dieses Produkt kann bei Bedarf jederzeit ohne Vorankündigung geändert werden, um es zu verbessern, zu op-
timieren oder an eine überarbeitete Spezifikation anzupassen. Werden solche Änderungen vorgenommen, wird
auch das vorliegende Handbuch überarbeitet. Beachten Sie die angegebene Versionsnummer.

DOKUMENTATIONSVERSION 26.01.4 30.01.2026

Gültig für rc_reason_stack Firmware 26.01.x

HERSTELLER

Roboception GmbH

Kaflerstraße 2

81241 München

Deutschland

KUNDENSUPPORT: support@roboception.de | +49 89 889 50 79-0 (09:00-17:00 CET)

Betriebsanleitung bitte vollständig lesen und produktnah aufbewahren.

COPYRIGHT

Das vorliegende Handbuch und das darin beschriebene Produkt sind durch Urheberrechte geschützt. Sofern das
deutsche Urheber- und Leistungsschutzrecht nichts anderes vorschreibt, darf der Inhalt dieses Handbuchs nur mit
dem vorherigen Einverständnis von Roboception bzw. des Inhabers des Schutzrechts verwendet und verbreitet
werden. Das vorliegende Handbuch und das darin beschriebene Produkt dürfen ohne das vorherige Einverständ-
nis von Roboception weder für Verkaufs- noch für andere Zwecke weder teilweise noch vollständig vervielfältigt
werden.

Die in diesem Dokument bereitgestellten Informationen sind nach bestem Wissen und Gewissen zusammengestellt
worden. Roboception haftet jedoch nicht für deren Verwendung.

Wurden nach Redaktionsschluss noch Änderungen am Produkt vorgenommen, kann es vorkommen, dass das
Produkt vom Handbuch abweicht. Die im vorliegenden Dokument enthaltenen Informationen können sich ohne
Vorankündigung ändern.

Roboception GmbH
Handbuch: rc_reason_stack

1 Rev: 26.01.4
Status: 30.01.2026

mailto:support@roboception.de

Inhaltsverzeichnis

Inhaltsverzeichnis

1 Einführung 5
1.1 Überblick . 5

2 Sicherheit 6
2.1 Allgemeine Sicherheitshinweise . 6
2.2 Bestimmungsgemäße Verwendung . 6

3 Installation 8
3.1 Offline Installationsanleitung . 8

3.1.1 Voraussetzungen . 8
3.1.2 Installation von Ubuntu 24.04 . 8
3.1.3 NVIDIA-Treiberinstallation . 9
3.1.4 Docker-Installation . 10
3.1.5 Installation des NVIDIA Container Toolkit . 10
3.1.6 Begrenzung der Docker Logdateigröße . 11
3.1.7 Installation der WIBU CodeMeter Runtime . 11
3.1.8 Erstellen von Netzwerkinterfaces . 11
3.1.9 Netzwerkeinstellungen für GigE Vision sicherstellen 13
3.1.10 Laden der Container-Images . 13
3.1.11 Starten des Docker-Stacks . 13
3.1.12 Zugriff auf die Web GUI . 13
3.1.13 Fehlerbehebung . 14

3.2 Softwarelizenz . 14
3.3 Anschluss von Kameras . 14

4 Messprinzipien 15
4.1 Stereovision . 15
4.2 Allgemeine Informationen zu 3D Daten . 16

4.2.1 Berechnung von Disparitätsbildern . 16
4.2.2 Berechnung von Tiefenbildern und Punktwolken 17
4.2.3 Konfidenz- und Fehlerbilder . 18

5 Kamerapipelines 19
5.1 Konfiguration der Kamerapipelines . 19
5.2 Konfiguration der verbundenen Kameras . 20

6 Softwaremodule 23
6.1 Kamera Modul . 24

6.1.1 Rektifizierung . 24
6.1.2 Anzeigen und Herunterladen von Bildern . 24
6.1.3 Pipelinetypen rc_visard und rc_core . 24
6.1.4 Pipelinetyp stereo_ace . 33
6.1.5 Pipelinetyp orbbec . 44
6.1.6 Pipelinetyp zivid . 48

6.2 3D-Module . 53
6.2.1 Anzeigen und Herunterladen von Tiefenbildern und Punktwolken 53

Roboception GmbH
Handbuch: rc_reason_stack

2 Rev: 26.01.4
Status: 30.01.2026

Inhaltsverzeichnis

6.2.2 Stereo-Matching Modul . 54
6.2.3 Zivid Modul . 62
6.2.4 Orbbec Modul . 67

6.3 Detektions- und Messmodule . 71
6.3.1 Measure . 71
6.3.2 LoadCarrier . 77
6.3.3 TagDetect . 92
6.3.4 ItemPick und ItemPickAI . 106
6.3.5 BoxPick . 130
6.3.6 SilhouetteMatch und SilhouetteMatchAI . 164
6.3.7 CADMatch . 207

6.4 Konfigurationsmodule . 248
6.4.1 Hand-Auge-Kalibrierung . 248
6.4.2 CollisionCheck . 271
6.4.3 Kamerakalibrierung . 280
6.4.4 IOControl und Projektor-Kontrolle . 288

6.5 Datenbankmodule . 293
6.5.1 LoadCarrierDB . 293
6.5.2 RoiDB . 301
6.5.3 GripperDB . 309

7 Schnittstellen 320
7.1 Web GUI . 320

7.1.1 Zugriff auf die Web GUI . 320
7.1.2 Kennenlernen der Web GUI . 321
7.1.3 Web GUI Zugriffskontrolle . 322
7.1.4 Herunterladen von Kamerabildern . 322
7.1.5 Herunterladen von Tiefenbildern und Punktwolken 323

7.2 REST-API-Schnittstelle . 323
7.2.1 Allgemeine Struktur der Programmierschnittstelle (API) 324
7.2.2 Verfügbare Ressourcen und Anfragen . 325
7.2.3 Datentyp-Definitionen . 350
7.2.4 Swagger UI . 357

7.3 Generic Robot Interface . 360
7.3.1 Job Definition . 360
7.3.2 Hand-Auge-Kalibrierung . 363
7.3.3 Spezifikation des Binären GRI Protokolls . 363
7.3.4 Integration mit einem Roboter . 370
7.3.5 Job und HEC_config API . 371

7.4 OPC UA Interface . 376
7.5 KUKA Ethernet KRL Schnittstelle . 376

7.5.1 Konfiguration der Ethernet-Verbindung . 377
7.5.2 Allgemeine XML-Struktur . 377
7.5.3 Services . 378
7.5.4 Parameter . 382
7.5.5 Beispielanwendungen . 384
7.5.6 Fehlerbehebung . 384

7.6 gRPC Bilddatenschnittstelle . 384
7.6.1 gRPC Servicedefinition . 385
7.6.2 Beispielclient . 388

8 Wartung 389
8.1 Backup der Einstellungen . 389
8.2 Aktualisierung der Softwarelizenz . 389
8.3 Download der Logdateien . 390

9 Fehlerbehebung 391
9.1 Probleme mit den Kamerabildern . 391
9.2 Probleme mit Tiefen-/Disparitäts-, Fehler- oder Konfidenzbildern 392

Roboception GmbH
Handbuch: rc_reason_stack

3 Rev: 26.01.4
Status: 30.01.2026

Inhaltsverzeichnis

10 Kontakt 394
10.1 Support . 394
10.2 Downloads . 394
10.3 Adresse . 394

11 Anhang 395
11.1 Formate für Posendaten . 395

11.1.1 Rotationsmatrix und Translationsvektor . 396
11.1.2 ABB Posenformat . 396
11.1.3 FANUC XYZ-WPR Format . 397
11.1.4 Franka Emika Posenformat . 397
11.1.5 Fruitcore HORST Posenformat . 399
11.1.6 Kawasaki XYZ-OAT Format . 399
11.1.7 KUKA XYZ-ABC Format . 400
11.1.8 Mitsubishi XYZ-ABC Format . 401
11.1.9 Universal Robots Posenformat . 401
11.1.10 Yaskawa Posenformat . 402

HTTP Routing Table 404

Stichwortverzeichnis 406

Roboception GmbH
Handbuch: rc_reason_stack

4 Rev: 26.01.4
Status: 30.01.2026

1 Einführung

Hinweise im Handbuch

Um Schäden an der Ausrüstung zu vermeiden und die Sicherheit der Benutzer zu gewährleisten, enthält
das vorliegende Handbuch Sicherheitshinweise, die mit dem Symbol Warnung gekennzeichnet werden.
Zusätzliche Informationen sind als Bemerkung gekennzeichnet.

Warnung: Die mit Warnung gekennzeichneten Sicherheitshinweise geben Verfahren und Maßnah-
men an, die befolgt bzw. ergriffen werden müssen, um Verletzungsgefahren für Bediener/Benutzer
oder Schäden am Gerät zu vermeiden. Beziehen sich die angegebenen Sicherheitshinweise auf
Softwaremodule, dann weisen diese auf Verfahren hin, die befolgt werden müssen, um Störungen
oder ein Fehlverhalten der Software zu vermeiden.

Bemerkung: Bemerkungen werden in diesem Handbuch eingesetzt, um zusätzliche relevante Infor-
mationen zu vermitteln.

1.1 Überblick

Der rc_reason_stack ist ein Docker Software Stack zur performanten 3D-Bildverarbeitung. Er erweitert
die Rechenkapazitäten der Roboception Stereokamera rc_visard und unterstützt den rc_viscore, die
Basler Stereo ace, die Orbbec Kamera und die zivid Kamera.

Der rc_reason_stack stellt Echtzeit-Kamerabilder und Tiefenbilder bereit, die zur Berechnung von 3D-
Punktwolken verwendet werden können. Zudem erstellt er Konfidenz- und Fehlerbilder, mit denen sich
die Qualität der Bilderfassung messen lässt. Dank der standardisierten Schnittstellen ist er mit allen
großen Bildverarbeitungsbibliotheken kompatibel und bietet darüber hinaus eine intuitive, web-basierte
Bedienoberfläche an.

Mit optional erhältlichen Softwaremodulen bietet der rc_reason_stack Standardlösungen für Anwen-
dungen in der Objekterkennung oder für robotische Pick-and-Place-Applikationen.

Bemerkung: Das vorliegende Handbuch nutzt das metrische System und verwendet vorrangig die
Maßeinheiten Meter und Millimeter. Sofern nicht anders angegeben, sind Abmessungen in techni-
schen Zeichnungen in Millimetern angegeben.

Roboception GmbH
Handbuch: rc_reason_stack

5 Rev: 26.01.4
Status: 30.01.2026

2 Sicherheit

Warnung: Vor Inbetriebnahme des rc_reason_stack -Produkts muss der Bediener alle Anweisun-
gen in diesem Handbuch gelesen und verstanden haben.

Warnung: Wird der rc_reason_stack zusammen mit rc_visard-Produkten betrieben, muss der Be-
diener alle Anweisungen zur Sicherheit, Inbetriebnahme und Wartung im rc_visard-Bedienhandbuch
gelesen und verstanden haben.

Bemerkung: Der Begriff „Bediener“ bezieht sich auf jede Person, die in Verbindung mit dem
rc_reason_stack mit einer der folgenden Aufgaben betraut ist:

• Installation
• Wartung
• Inspektion
• Kalibrierung
• Programmierung
• Außerbetriebnahme

Das vorliegende Handbuch geht auf die verschiedenen Softwaremodule des rc_reason_stack ein und
erläutert allgemeine Aspekte zum Lebenszyklus des Produkts: von der Installation über die Verwendung
bis hin zur Außerbetriebnahme.

Die im vorliegenden Handbuch enthaltenen Zeichnungen und Fotos sind Beispiele zur Veranschauli-
chung. Das ausgelieferte Produkt kann hiervon abweichen.

2.1 Allgemeine Sicherheitshinweise

Bemerkung: Wird der rc_reason_stack entgegen den hierin angegebenen Sicherheitshinweisen
verwendet, so kann dies zu Personen- oder Sachschäden sowie zum Verlust der Garantie führen.

2.2 Bestimmungsgemäße Verwendung

Warnung: Der rc_reason_stack ist NICHT für sicherheitskritische Anwendungen bestimmt.

Der vom rc_reason_stack verwendete Schnittstellenstandard GigE Vision® unterstützt weder Authen-
tifizierung noch Verschlüsselung. Alle von diesem und an dieses Gerät gesandten Daten werden ohne
Authentifizierung und Verschlüsselung übermittelt und könnten daher von einem Dritten abgefangen

Roboception GmbH
Handbuch: rc_reason_stack

6 Rev: 26.01.4
Status: 30.01.2026

2.2. Bestimmungsgemäße Verwendung

oder manipuliert werden. Es liegt in der Verantwortung des Bedieners, den rc_reason_stack nur an ein
gesichertes internes Netzwerk anzuschließen.

Warnung: Der rc_reason_stack muss an gesicherte interne Netzwerke angeschlossen werden.

Der rc_reason_stack darf nur im Rahmen seiner technischen Spezifikation verwendet werden. Jede
andere Verwendung des Produkts gilt als nicht bestimmungsgemäße Verwendung. Roboception haftet
nicht für Schäden, die aus unsachgemäßer oder nicht bestimmungsgemäßer Verwendung entstehen.

Warnung: Die lokalen und/oder nationalen Gesetze, Vorschriften und Richtlinien zu Automationssi-
cherheit und allgemeiner Maschinensicherheit sind stets einzuhalten.

Roboception GmbH
Handbuch: rc_reason_stack

7 Rev: 26.01.4
Status: 30.01.2026

3 Installation

Warnung: Vor Installation müssen die Hinweise zur Sicherheit (Abschnitt 2) des rc_reason_stack
gelesen und verstanden werden.

Der rc_reason_stack ist ein Docker-basierter Software-Stack, der auf Rechnern installiert werden kann,
die die unter Voraussetzungen genannten Systemvoraussetzungen erfüllen. Dieses Kapitel enthält de-
taillierte Informationen zur Installation der rc_reason_stack -Software.

3.1 Offline Installationsanleitung

Dieser Abschnitt beschreibt die manuelle Installation des rc_reason_stack auf einem Hostsystem. Im
Gegensatz zum automatisierten Docker-Compose-Workflow werden die Docker-Images zunächst auf
den Hostrechner kopiert und anschließend manuell in Docker geladen. Führen Sie die folgenden Schrit-
te aus, um den Stack für Ihre Entwicklungs- oder Produktionsumgebung einzurichten und auszuführen.

Alle Befehle müssen auf dem Host-Rechner ausgeführt werden (nicht innerhalb eines Containers).

3.1.1 Voraussetzungen

Komponente Minimalversion
Ubuntu 24.04 LTS
NVIDIA GPU Jede RTX mit mindestens 8GB VRAM, oder besser [1]
Docker 20.10+
NVIDIA Driver 535+ (diese Anleitung nutzt nvidia-driver-575-server)

[1] Getestet mit Nvidia RTX A4000, RTX 4000 Ada, RTX 3080, RTX 4070, RTX 4080

Die folgenden Dateien werden von Roboception bereitgestellt und werden für die Installation benötigt.

Datei Beschreibung
rc_container-xx.yy.zz.tar rc_container docker image
tritonserver-xx.yy.tar Tritonserver Docker Image
docker-compose.yml Die Docker-Compose-Datei
docker-compose.json Die Docker-Compose-Datei im JSON-Format

xx.yy.zz steht für die gewünschten Versionen von rc_container und tritonserver.

3.1.2 Installation von Ubuntu 24.04

Dieser Abschnitt kann übersprungen werden, wenn eine funktionierende Ubuntu 24.04-Installation vor-
handen ist.

Roboception GmbH
Handbuch: rc_reason_stack

8 Rev: 26.01.4
Status: 30.01.2026

3.1. Offline Installationsanleitung

Folgen Sie zur Installation von Ubuntu der offiziellen Ubuntu-Installationsanleitung unter https://ubuntu.
com/download/desktop oder https://ubuntu.com/download/server.

3.1.3 NVIDIA-Treiberinstallation

Der NVIDIA-Treiber ist erforderlich, damit der Host die GPU für Docker-Container freigeben kann. Nach
der Installation des Treibers sollten die GPU und ihre Funktionen mit nvidia-smi sichtbar sein. Ist
der Treiber nicht installiert oder nicht korrekt geladen, findet nvidia-smi die GPU entweder nicht oder
meldet „No devices were found“.

Update package lists
sudo apt update

run nvidia-detector to find the correct driver
sudo nvidia-detector

Install the latest NVIDIA driver (replace 570 with the version that matches your GPU)
sudo apt install -y nvidia-driver-570-server

Reboot to load the driver
sudo reboot

Überprüfen Sie nach dem Neustart, ob der Treiber aktiv ist:

$ nvidia-smi
+---+
| NVIDIA-SMI 570.195.03 Driver Version: 570.195.03 CUDA Version: 12.8 |
|---+------------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===+========================+======================		
0 NVIDIA RTX A4000 Off	00000000:06:00.0 Off	Off
41% 60C P0 37W / 140W	10719MiB / 16376MiB	9% Default
		N/A
+---+------------------------+----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
|...
+---+

Die Tabelle zeigt:

• GPU: die Geräte-ID (0, 1, . . .)

• Name: das GPU Modell (z.B., GeForce RTX 3080)

• Driver Version: der installierte NVIDIA-Treiber

• CUDA Version: das CUDA Toolkit, das mit dem Treiber ausgeliefert wurde

• Memory-Usage: dem Grafikprozessor zugewiesener Gesamtspeicher

• GPU-Util: aktueller Prozentsatz der GPU-Auslastung

Wenn diese Ausgabe angezeigt wird, ist der Treiber korrekt installiert und die GPU kann vom NVIDIA
Container Toolkit und den Containern verwendet werden.

Roboception GmbH
Handbuch: rc_reason_stack

9 Rev: 26.01.4
Status: 30.01.2026

https://ubuntu.com/download/desktop
https://ubuntu.com/download/desktop
https://ubuntu.com/download/server

3.1. Offline Installationsanleitung

3.1.4 Docker-Installation

Update the apt package index and install packages to allow apt to use a repository over HTTPS
sudo apt-get update
sudo apt-get install \

ca-certificates \
curl \
gnupg \
lsb-release

Add Docker’s official GPG key
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /usr/share/
→˓keyrings/docker-archive-keyring.gpg

Set up the stable repository
echo \
"deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/docker-archive-keyring.gpg]
→˓https://download.docker.com/linux/ubuntu \
$(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

Install Docker Engine
sudo apt-get update
sudo apt-get install -y docker-ce docker-ce-cli docker-compose-plugin containerd.io

Verify Docker installation
sudo docker --version

3.1.5 Installation des NVIDIA Container Toolkit

Das NVIDIA Container Toolkit ermöglicht Docker, NVIDIA-GPUs innerhalb von Containern zu er-
kennen, bereitzustellen und in einer Sandbox auszuführen. Ohne dieses Toolkit können CUDA-
Workloads nicht im Container ausgeführt werden. Es bildet die Brücke zwischen der Docker-Container-
Laufzeitumgebung und dem NVIDIA-Treiberstack auf dem Hostsystem.

Add the NVIDIA GPG key
sudo curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | \

sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg

Add the NVIDIA Container Toolkit repository
sudo curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.
→˓list | \

sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg]
→˓https://#g' | \

sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list

Update package lists and install
sudo apt update && sudo apt install -y nvidia-container-toolkit

Restart Docker to apply changes
sudo systemctl restart docker

Modify /etc/docker/daemon.json. This is necessary for older docker versions
sudo nvidia-ctk runtime configure --runtime=docker

Verify that nvidia is now available as docker runtime
docker info | grep -i runtime

Um ein Problem zu beheben, das dazu führt, dass die GPU nach einiger Zeit im Container
ausfällt (erkennbar an einem Fehler von nvidia-smi im Container), öffnen Sie die Datei /etc/
nvidia-container-runtime/config.toml und setzen Sie no-cgroups = false. Starten Sie Docker
nach der Konfigurationsänderung mit folgendem Befehl:

Roboception GmbH
Handbuch: rc_reason_stack

10 Rev: 26.01.4
Status: 30.01.2026

3.1. Offline Installationsanleitung

sudo systemctl restart docker

Testen Sie, ob Docker auf die GPU zugreifen kann:

sudo docker run --rm --gpus all nvidia/cuda:12.1.1-base-ubuntu22.04 nvidia-smi

3.1.6 Begrenzung der Docker Logdateigröße

Docker verwendet standardmäßig den JSON-Datei-Logging-Treiber ohne Beschränkung der Logda-
teigröße. Wir empfehlen, auf den lokalen Logging-Treiber (https://docs.docker.com/engine/logging/
drivers/local/) umzusteigen, der die maximale Logdateigröße standardmäßig begrenzt.

Dazu muss in /etc/docker/daemon.json folgendes hinzugefügt werden:

{
"log-driver": "local",
}

3.1.7 Installation der WIBU CodeMeter Runtime

Installieren Sie die CodeMeter Runtime (https://www.wibu.com/de/support/anwendersoftware/
anwendersoftware.html) auf dem Hostsystem.

Nach der Installation, stoppen Sie die Runtime:

sudo service codemeter stop

Aktivieren Sie die Netzwerklizenzierung, indem Sie IsNetworkServer in der Datei /etc/wibu/
CodeMeter/Server.ini auf 1 setzen.

Starten Sie die Runtime:

sudo service codemeter start

Um zu verhindern, dass der WIBU-Netzwerklizenzserver im externen Netzwerk (WIBU verwendet die
Ports 22350-22352) sichtbar ist, kann eine Firewall verwendet werden, da der Lizenzserver nur für den
Docker-Container sichtbar sein darf.

3.1.8 Erstellen von Netzwerkinterfaces

Dieses Beispiel zeigt eine Netzwerkkonfiguration mit einem separatem Ethernet-Port (enp9s0) für die
sensor0-Schnittstelle über macvlan. Passen Sie den Namen des Ethernet-Ports entsprechend an; in
diesem Beispiel wird Port enp9s0 verwendet. Für mehrere Kameras (z.B. den rc_viscore oder mehrere
|rc_visard|s) muss ein separates Netzwerk für jede Kamera erstellt werden.

Erstellen Sie /etc/netplan/40-sensor0.yaml mit dem Inhalt

network:
version: 2
renderer: networkd
ethernets:

enp9s0:
dhcp4: false
dhcp6: false
addresses:
- 172.23.42.1/28

Roboception GmbH
Handbuch: rc_reason_stack

11 Rev: 26.01.4
Status: 30.01.2026

https://docs.docker.com/engine/logging/drivers/local/
https://docs.docker.com/engine/logging/drivers/local/
https://www.wibu.com/de/support/anwendersoftware/anwendersoftware.html
https://www.wibu.com/de/support/anwendersoftware/anwendersoftware.html

3.1. Offline Installationsanleitung

Eine alternative Netzwerkkonfiguration für mehrere Kameras wie folgt erfolgen. In diesem Beispiel wer-
den die Schnittstellen enp7s0 für einen rc_visard und die Schnittstellen ens4f0 und ens4f1 für einen
rc_viscore verwendet.

network:
version: 2
renderer: networkd
ethernets:

enp7s0:
dhcp4: false
dhcp6: false
addresses:
- 172.23.42.1/28

ens4f0:
dhcp4: false
dhcp6: false
addresses:
- 172.23.43.1/28

ens4f1:
dhcp4: false
dhcp6: false
addresses:
- 172.23.44.1/28

Berechtigungen ändern und anwenden mit

sudo chmod 600 /etc/netplan/40-sensor0.yaml
sudo netplan apply

Docker-Netzwerk mit dem macvlan-Treiber erstellen:

sudo docker network create -d macvlan --subnet=172.23.42.0/28 --gateway=172.23.42.1 --ip-
→˓range=172.23.42.8/29 -o parent=enp9s0 sensor0
or for multiple interfaces
sudo docker network create -d macvlan --subnet=172.23.42.0/28 --gateway=172.23.42.1 --ip-
→˓range=172.23.42.8/29 -o parent=enp7s0 sensor0
sudo docker network create -d macvlan --subnet=172.23.43.0/28 --gateway=172.23.43.1 --ip-
→˓range=172.23.43.8/29 -o parent=ens4f0 sensor1
sudo docker network create -d macvlan --subnet=172.23.44.0/28 --gateway=172.23.44.1 --ip-
→˓range=172.23.44.8/29 -o parent=ens4f1 sensor2

Überprüfen Sie dies in der docker-compose.yml (oder docker-compose.json):

docker-compose.yml with multiple sensor interfaces
#... config truncated - for readability
networks:
back-tier:

driver: bridge
sensor0:

external: true
name: sensor0

#... config truncated - for readability
services:
rc-container:
#... config truncated - for readability

networks:
- back-tier
- sensor0

#... config truncated - for readability

Die docker-compose.yml für mehrere Schnittstellen lautet wie folgt:

Roboception GmbH
Handbuch: rc_reason_stack

12 Rev: 26.01.4
Status: 30.01.2026

3.1. Offline Installationsanleitung

3.1.9 Netzwerkeinstellungen für GigE Vision sicherstellen

GigE-Vision-Kameras streamen Bilder mit hoher Bandbreite über UDP-Pakete. Paketverluste führen
zu Bildausfällen und beeinträchtigen die Anwendungsleistung. Um dies zu vermeiden, sollten die
Ethernet-Lesepuffer auf dem Host erhöht werden. Erstellen Sie unter Ubuntu die Datei /etc/sysctl.d/
10-gev-perf.conf mit folgendem Inhalt:

Increase readbuffer size for GigE Vision
net.core.rmem_max=33554432

Übernehmen Sie die Einstellungen mit

sudo sysctl -p /etc/sysctl.d/10-gev-perf.conf

3.1.10 Laden der Container-Images

replace xx.yy.zz with the desired rc_container and tritonserver version
gunzip -c ./rc_container-xx.yy.zz.tar.gz | docker load
gunzip -c ./tritonserver-xx.yy.tar.gz | docker load

3.1.11 Starten des Docker-Stacks

Die bevorzugte Art, den Docker-Compose Stack zu starten, ist

cd /path/to/rc_container/
use docker-compose.yml
docker compose up -d --pull never

Falls das Hostsystem eine Docker-Compose Datei im JSON-Format benötigt, kann der folgende Befehl
genutzt werden.

cd /path/to/rc_container/
use docker-compose.json
docker compose -f docker-compose.json up -d --pull never

Warten Sie einige Minuten, bis alle Container gestartet sind. Der Status kann wie folgt überwacht wer-
den:

docker compose ps

3.1.12 Zugriff auf die Web GUI

Sobald der Stack läuft, kann die Web GUI wie folgt aufgerufen werden:

http://<host-ip>:8080/

Roboception GmbH
Handbuch: rc_reason_stack

13 Rev: 26.01.4
Status: 30.01.2026

3.2. Softwarelizenz

3.1.13 Fehlerbehebung

Symptom Wahrscheinliche
Ursache

Fehlerbehebung

docker: Fehler: Der Treiber
nvidia unterstützt das ange-
forderte Gerät nicht.

NVIDIA-Treiber-
/ Docker-
Integrationskonflikt

Führen Sie die Installation des NVIDIA Con-
tainer Toolkits erneut aus und starten Sie den
Computer neu.

Container starten nicht Falscher Netz-
werkname

Stellen Sie sicher, dass ein Docker-Netzwerk
mit dem Namen sensor0 existiert

Web GUI nicht erreichbar Container laufen
nicht

docker compose logs um Fehler zu untersu-
chen

Sehr niedrige Bildwiederhol-
frequenz

GPU funktioniert
nicht im Contai-
ner

Überprüfen, indem nvidia-smi auf dem Host
und innerhalb des Containers ausgeführt wird,
und Probleme beheben [2].

[2] Falls nvidia-smi auf dem Host fehlschlägt, stellen Sie sicher, dass die Pakete konsistent sind,
da ein unbeaufsichtigtes Upgrade unter Ubuntu möglicherweise den Nvidia-Treiber, aber nicht das
Nvidia-Toolkit aktualisiert. Dies lässt sich beheben, indem Sie manuell sudo apt update && sudo apt
upgrade ausführen. Unbeaufsichtigte Upgrades können deaktiviert werden. Falls nvidia-smi im Con-
tainer fehlschlägt, stellen Sie sicher, dass no-cgroups = false in /etc/nvidia-container-runtime/
config.toml gesetzt ist, und starten Sie Docker neu, falls die Konfiguration geändert werden musste.
Diese Konfigurationsdatei wurde möglicherweise durch ein Update des Nvidia-Container-Toolkits über-
schrieben.

3.2 Softwarelizenz

Jeder rc_reason_stack wird mit einem USB-Dongle zur Lizenzierung und zum Schutz der installierten
Softwarepakete ausgeliefert. Die erworbenen Lizenzen sind auf diesem Dongle installiert und somit an
ihn und seine ID gebunden.

Die Funktionalität des rc_reason_stack kann jederzeit durch ein Upgrade der Lizenz (Abschnitt 8.2)
erweitert werden – zum Beispiel für zusätzlich erhältliche, optionale Softwaremodule.

Bemerkung: Der rc_reason_stack muss neu gestartet werden, sobald die Softwarelizenz geändert
wurde.

Bemerkung: Der Status der Softwarelizenz kann über die verschiedenen Schnittstellen des
rc_reason_stack abgefragt werden, zum Beispiel über die Seite System → Firmware & Lizenz in
der Web GUI (Abschnitt 7.1).

Bemerkung: Damit die Lizenzierung der Softwaremodule ordnungsgemäß funktioniert, muss der
USB-Dongle an den rc_reason_stack angesteckt werden, bevor dieser gestartet wird.

Bemerkung: Der rc_reason_stack muss neu gestartet werden, sobald der Dongle eingesteckt oder
abgezogen wurde.

3.3 Anschluss von Kameras

Der rc_reason_stack bietet bis zu vier Software-Kamerapipelines für die Prozessierung der Daten der
angeschlossenen Sensoren. Die Konfiguration der Kamerapipelines wird in Kamerapipelines (siehe Ab-
schnitt 4.2.3) beschrieben.

Roboception GmbH
Handbuch: rc_reason_stack

14 Rev: 26.01.4
Status: 30.01.2026

4 Messprinzipien

Der rc_reason_stack ist ein performanter 3D-Bildverarbeitungs-Software-Stack, der zusammen mit ei-
ner oder mehreren 3D-Kameras wie dem rc_visard oder rc_viscore von Roboception betrieben wird.
Gemeinsam erstellen und verarbeiten sie rektifizierte Bilder, sowie Disparitäts-, Konfidenz- und Fehler-
bilder, mit denen sich die Tiefenwerte der Aufnahme berechnen lassen.

Im Folgenden sind die zugrunde liegenden Messprinzipien genauer dargestellt.

4.1 Stereovision

Bei der Stereovision werden 3D-Informationen gewonnen, indem zwei aus verschiedenen Blickwin-
keln aufgenommene Bilder miteinander verglichen werden. Das zugrunde liegende Prinzip ist darin
begründet, dass Objektpunkte je nach Abstand vom Kamerapaar an unterschiedlichen Stellen in bei-
den Kameras erscheinen. Während sehr weit entfernte Objektpunkte in beiden Kamerabildern etwa
an der gleichen Position erscheinen, liegen sehr nahe Objektpunkte an unterschiedlichen Stellen im
linken und rechten Kamerabild. Dieser Versatz der Objektpunkte in beiden Kamerabildern wird auch
„Disparität“ genannt. Je größer die Disparität, desto näher ist das Objekt der Kamera. Das Prinzip der
Stereovision wird in Abb. 4.1 genauer dargestellt.

Image plane

Left camera Right camera

Left image

Right image

d1 d2

Abb. 4.1: Schematische Darstellung des Prinzips der Stereovision: Die Disparität 𝑑2 des weiter entfern-
ten (schwarzen) Objekts ist kleiner als die Disparität 𝑑1 des nahe liegenden (grauen) Objekts.

Stereovision beruht auf passiver Wahrnehmung. Dies bedeutet, dass keine Licht- oder sonstigen Si-
gnale zur Distanzmessung ausgesandt werden, sondern nur das von der Umgebung ausgehende oder
reflektierte Licht genutzt wird. Dadurch können die Roboception-Sensoren sowohl im Innen- als auch im
Außenbereich eingesetzt werden. Zudem können problemlos mehrere Sensoren störungsfrei zusam-
men auf engem Raum betrieben werden.

Roboception GmbH
Handbuch: rc_reason_stack

15 Rev: 26.01.4
Status: 30.01.2026

4.2. Allgemeine Informationen zu 3D Daten

Um die 3D-Informationen berechnen zu können, muss der Stereo-Matching-Algorithmus die zusam-
mengehörenden Objektpunkte im linken und rechten Kamerabild finden. Hierfür bedient er sich der
Bildtextur, d.h. der durch Muster oder Oberflächenstrukturen der Objekte verursachten Schwankungen
in der Bildintensität. Das Stereo-Matching-Verfahren kann bei Oberflächen ohne jede Textur, wie z.B. bei
glatten, weißen Wänden, keine Werte liefern. Das Stereo-Matching-Verfahren, das der rc_reason_stack
verwendet, ist SGM (Semi-Global Matching), welches selbst bei feineren Strukturen den bestmöglichen
Kompromiss aus Laufzeit und Genauigkeit bietet.

Für die Berechnung der 3D-Informationen werden folgende Softwaremodule benötigt:

• Kamera Modul : Dieses Modul dient dazu, synchronisierte Bildpaare aufzunehmen und diese in
Bilder umzuwandeln, die weitestgehend den Aufnahmen einer idealen Kamera entsprechen (Rek-
tifizierung).

• Stereo-Matching Modul : Dieses Modul errechnet mithilfe des Stereo-Matching-Verfahrens SGM
die Disparitäten der rektifizierten Stereo-Bildpaare (Abschnitt 6.2.2).

4.2 Allgemeine Informationen zu 3D Daten

Während auf Stereo-Pipelines, wie rc_visard, rc_viscore und stereo_ace Disparitätsbilder durch das
Matching aus linkem und rechtem Kamerabild berechnet werden, werden 3D Daten auf Pipelines vom
Typ zivid oder orbbec intern in Disparitätsbilder umgerechnet, die dann mit Hilfe eines virtuellen Ba-
sisabstands zur Berechnung von Tiefendaten verwendet werden können.

Die folgenden Abschnitte beschreiben, wie Disparitätsbilder aus Stereobildpaaren berechnet werden,
und wie Disparitäts-, Fehler- und Konfidenzbilder verwendet werden können, um daraus Tiefendaten
und -fehler zu berechnen.

4.2.1 Berechnung von Disparitätsbildern

Nach der Rektifizierung haben das linke und das rechte Kamerabild die Eigenschaft, dass ein Objekt-
punkt in beiden Bildern auf die gleiche Pixelreihe projiziert wird. Die Pixelspalte des Objektpunkts ist im
rechten Bild maximal so groß wie die Pixelspalte des Objektpunkts im linken Bild. Der Begriff Disparität
bezeichnet den Unterschied zwischen den Pixelspalten im rechten und linken Bild und gibt indirekt die
Tiefe des Objektpunkts, d.h. dessen Abstand zur Kamera an. Das Disparitätsbild speichert die Dispari-
tätswerte aller Pixel des linken Kamerabilds.

Je größer die Disparität, desto näher liegt der Objektpunkt. Beträgt die Disparität 0, bedeutet dies, dass
die Projektionen des Objektpunkts in der gleichen Bildspalte liegen und der Objektpunkt sich in un-
endlicher Distanz befindet. Häufig gibt es Pixel, für welche die Disparität nicht bestimmt werden kann.
Dies ist der Fall bei Verdeckungen auf der linken Seite von Objekten, da diese Bereiche von der rech-
ten Kamera nicht eingesehen werden können. Zudem lässt sich die Disparität auch bei texturlosen
Bereichen nicht bestimmen. Pixel, für welche die Disparität nicht bestimmt werden kann, werden mit
dem besonderen Disparitätswert 0 als ungültig markiert. Um zwischen ungültigen Disparitätsmessun-
gen und Messungen, bei denen die Disparität aufgrund der unendlich weit entfernten Objekte 0 beträgt,
unterscheiden zu können, wird der Disparitätswert für den letztgenannten Fall auf den kleinstmöglichen
Disparitätswert über 0 gesetzt.

Um Disparitätswerte zu berechnen, muss der Stereo-Matching-Algorithmus die zugehörigen Objekt-
punkte im linken und rechten Kamerabild finden. Diese Punkte stellen jeweils den gleichen Objektpunkt
in der Szene dar. Für das Stereo-Matching nutzt der rc_reason_stack SGM (Semi-Global Matching).
Dieser Algorithmus zeichnet sich durch eine kurze Laufzeit aus und bietet, insbesondere an Objekträn-
dern, bei feinen Strukturen und in schwach texturierten Bereichen, eine hohe Genauigkeit.

Unabhängig vom eingesetzten Verfahren ist es beim Stereo-Matching wichtig, dass das Bild über ei-
ne gewisse Textur verfügt, durch Muster oder Oberflächenstrukturen. Bei einer gänzlich untexturierten
Szene, wie einer weißen Wand ohne jede Struktur, können Disparitätswerte entweder nicht berech-
net werden, oder aber die Ergebnisse sind fehlerhaft oder von geringer Konfidenz (siehe Konfidenz-
und Fehlerbilder , Abschnitt 4.2.3). Bei der Textur in der Szene sollte es sich nicht um ein künstliches,

Roboception GmbH
Handbuch: rc_reason_stack

16 Rev: 26.01.4
Status: 30.01.2026

4.2. Allgemeine Informationen zu 3D Daten

regelmäßig wiederkehrendes Muster handeln, da diese Strukturen zu Mehrdeutigkeiten und damit zu
falschen Disparitätsmessungen führen können.

Für schwach texturierte Objekte oder in untexturierten Umgebungen lässt sich mithilfe eines externen
Musterprojektors eine statische künstliche Struktur auf die Szene projizieren. Dieses projizierte Mus-
ter sollte zufällig sein und keine wiederkehrenden Strukturen enthalten. Der rc_reason_stack bietet
das IOControl-Modul als optionales Softwaremodul (siehe IOControl und Projektor-Kontrolle, Abschnitt
6.4.4), das einen Musterprojektor ansteuern kann.

4.2.2 Berechnung von Tiefenbildern und Punktwolken

Die folgenden Gleichungen zeigen, wie sich die tatsächlichen 3D-Koordinaten 𝑃𝑥, 𝑃𝑦, 𝑃𝑧 eines Objekt-
punkts bezogen auf das Kamera-Koordinatensystem aus den Pixelkoordinaten 𝑝𝑥, 𝑝𝑦 des Disparitäts-
bilds und dem Disparitätswert 𝑑 in Pixeln berechnen lassen:

𝑃𝑥 =
𝑝𝑥 · 𝑡
𝑑

𝑃𝑦 =
𝑝𝑦 · 𝑡
𝑑

𝑃𝑧 =
𝑓 · 𝑡
𝑑

,

(4.1)

wobei 𝑓 die Brennweite nach der Rektifizierung (in Pixeln) und 𝑡 der während der Kalibrierung ermittelte
Stereo-Basisabstand (in Metern) ist.

Bemerkung: Der rc_reason_stack stellt über seine verschiedenen Schnittstellen einen Brennwei-
tenfaktor bereit. Er bezieht sich auf die Bildbreite, um verschiedene Bildauflösungen zu unterstützen.
Die Brennweite 𝑓 in Pixeln lässt sich leicht bestimmen, indem der Brennweitenfaktor mit der Bildbrei-
te (in Pixeln) multipliziert wird.

Es ist zu beachten, dass für Gleichungen (4.1) davon ausgegangen wird, dass das Bildkoordinaten-
system im Bildhauptpunkt zentriert ist, der üblicherweise in der Bildmitte liegt, und dass sich 𝑝𝑥, 𝑝𝑦
auf die Mitte des Pixels bezieht, durch Addieren von 0.5 auf die ganzzahligen Pixelkoordinaten. In der
folgenden Abbildung ist die Definition des Bildkoordinatensystems dargestellt.

Abb. 4.2: Bildkoordinatensystem: Der Ursprung des Bildkoordinatensystems befindet sich in der Bild-
mitte – 𝑤 ist die Bildbreite und ℎ die Bildhöhe.

Die Gesamtheit aller aus dem Disparitätsbild errechneten Objektpunkte ergibt eine Punktwolke, die
für 3D-Modellierungsanwendungen verwendet werden kann. Das Disparitätsbild kann in ein Tiefenbild
umgewandelt werden, indem der Disparitätswert jedes Pixels durch den Wert 𝑃𝑧 ersetzt wird.

Bemerkung: Auf der Homepage von Roboception (http://www.roboception.com/download) ste-
hen Software und Beispiele zur Verfügung, um Disparitätsbilder, welche über GigE Vision vom
rc_reason_stack empfangen werden, in Tiefenbilder und Punktwolken umzuwandeln.

Roboception GmbH
Handbuch: rc_reason_stack

17 Rev: 26.01.4
Status: 30.01.2026

http://www.roboception.com/download

4.2. Allgemeine Informationen zu 3D Daten

4.2.3 Konfidenz- und Fehlerbilder

Für jedes Disparitätsbild wird zusätzlich ein Fehler- und ein Konfidenzbild zur Verfügung gestellt, um
die Unsicherheit jedes einzelnen Disparitätswerts anzugeben. Fehler- und Konfidenzbilder besitzen die
gleiche Auflösung und Bildwiederholrate wie das Disparitätsbild. Im Fehlerbild ist der Disparitätsfehler
𝑑𝑒𝑝𝑠 in Pixeln angegeben. Er bezieht sich auf den Disparitätswert an der gleichen Bildkoordinate im
Disparitätsbild. Das Konfidenzbild gibt den entsprechenden Konfidenzwert 𝑐 zwischen 0 und 1 an. Die
Konfidenz gibt an, wie wahrscheinlich es ist, dass der wahre Disparitätswert innerhalb des Intervalls
des dreifachen Fehlers um die gemessene Disparität 𝑑 liegt, d.h. [𝑑 − 3𝑑𝑒𝑝𝑠, 𝑑 + 3𝑑𝑒𝑝𝑠]. So lässt sich
das Disparitätsbild mit Fehler- und Konfidenzwerten in Anwendungen einsetzen, für die probabilistische
Folgerungen nötig sind. Die Konfidenz- und Fehlerwerte für eine ungültige Disparitätsmessung betragen
0.

Der Disparitätsfehler 𝑑𝑒𝑝𝑠 (in Pixeln) lässt sich mithilfe der Brennweite 𝑓 (in Pixeln), des Basisabstands
𝑡 (in Metern) und des Disparitätswerts 𝑑 (in Pixeln) desselben Pixels im Disparitätsbild in einen Tiefen-
fehler 𝑧𝑒𝑝𝑠 (in Metern) umrechnen:

𝑧𝑒𝑝𝑠 =
𝑑𝑒𝑝𝑠 · 𝑓 · 𝑡

𝑑2
. (4.2)

Durch Kombination der Gleichungen (4.1) und (4.2) kann der Tiefenfehler zur Tiefe in Bezug gebracht
werden:

𝑧𝑒𝑝𝑠 =
𝑑𝑒𝑝𝑠 · 𝑃𝑧

2

𝑓 · 𝑡
.

Roboception GmbH
Handbuch: rc_reason_stack

18 Rev: 26.01.4
Status: 30.01.2026

5 Kamerapipelines

Der rc_reason_stack unterstützt mehrere Kameras zur selben Zeit. Dazu bietet er bis zu vier Kamera-
pipelines, die vom Benutzer konfiguriert werden können.

Eine Kamerapipeline beinhaltet verschiedene Softwaremodule für die Datenaufnahme der mit der Pipe-
line verbundenen Kamera, für Detektionen und für die Konfiguration der Module in dieser Pipeline, z.B.
durch eine Hand-Auge-Kalibrierung.

Der rc_reason_stack unterstützt Kameras vom Typ rc_visard, rc_viscore, zivid, Orbbec und Stereo ace.
Der Typ der zugehörigen Kamerapipeline muss so konfiguriert werden, dass er zum angeschlossenen
Gerät passt.

5.1 Konfiguration der Kamerapipelines

Die Kamerapipelines können über die Web GUI (Abschnitt 7.1) unter System → Kamera Pipelines
konfiguriert werden. Diese Seite zeigt die laufenden Pipelines mit ihrem Typ und dem verbundenen
Gerät an.

Abb. 5.1: Beispiel der Seite Kamera Pipelines auf einem rc_reason_stack mit zwei laufenden Pipelines
vom Typ rc_visard

Durch Klick auf Pipelines konfigurieren kann die Anzahl und der Typ der laufenden Kamerapipelines
wie in der nächsten Abbildung gezeigt konfiguriert werden.

Roboception GmbH
Handbuch: rc_reason_stack

19 Rev: 26.01.4
Status: 30.01.2026

5.2. Konfiguration der verbundenen Kameras

Abb. 5.2: Konfiguration der Kamerapipelines

Der Typ einer laufenden Pipeline kann geändert werden, indem ein anderer Typ im Dropdown-Feld
der jeweiligen Pipeline ausgewählt wird. Eine laufende Pipeline kann entfernt werden, indem man auf
Pipeline entfernen klickt. Einzig die Pipeline 0 kann nie gelöscht werden, da sie die primäre Pipeline ist.
Durch Klick auf + Pipeline hinzufügen und anschließendes Auswählen des Pipelinetyps kann eine neue
Pipeline erstellt werden.

Sobald alle Pipelines wie gewünscht konfiguriert sind, können die Änderungen durch Klick auf Anwen-
den angewendet werden. Danach muss der rc_reason_stack neugestartet werden, damit die Änderun-
gen wirksam werden.

5.2 Konfiguration der verbundenen Kameras

Eine Pipeline eines bestimmten Typs kann nur Geräte desselben Typs erkennen. Das bedeutet, dass
eine Pipeline vom Typ rc_visard nur mit einem rc_visard verbunden werden kann. Falls mehrere Ka-
meras desselben Typs am rc_reason_stack angeschlossen sind, kann durch Setzen eines Filtertexts
eine bestimmte Kamera für jede Pipeline ausgewählt werden. Der aktuelle Filtertext wird für jede lau-
fende Pipeline angezeigt, wie in Abb. 5.1 dargestellt. Standardmäßig ist der Filtertext auf * gesetzt, was
bedeutet, dass jedes Gerät, das zum Pipelinetyp passt, automatisch verbunden wird, aber nur, wenn es
eindeutig ist. Andernfalls wird keine Kamera mit dieser Pipeline verbunden und ein Fehler angezeigt.

Um den Filtertext anzupassen und eine Kamera für eine Pipeline auszuwählen, klickt man auf Kame-
raverbindung konfigurieren auf der Seite Kamera Pipelines, oder wählt die entsprechende Pipeline im
Menü unter, z.B., System → Kamera Pipelines → Pipeline 1. Diese Seite zeigt den aktuellen Filtertext
und weitere Informationen über die verbundene Kamera an.

Roboception GmbH
Handbuch: rc_reason_stack

20 Rev: 26.01.4
Status: 30.01.2026

5.2. Konfiguration der verbundenen Kameras

Abb. 5.3: Konfigurieren der Kameraverbindung von Pipeline 0

Ein Klick auf Kamera auswählen öffnet einen Dialog zum Editieren des Filtertexts.

Abb. 5.4: Auswahl der Kamera durch Setzen eines Filtertexts

Dieser Dialog zeigt weiterhin eine Liste aller erkannten Geräte, die zum Pipelinetyp passen, und mar-
kiert diejenigen, die zum aktuell eingetragenen Filtertext passen. Es wird auch angezeigt, ob die Geräte
bereits von einer anderen Pipeline verwendet werden. Filtertexte können durch Klicken auf das Inter-
face, den Namen oder die Seriennummer des gewünschten Geräts ausgewählt werden. Die folgende
Tabelle zeigt mögliche Filtertexte.

Roboception GmbH
Handbuch: rc_reason_stack

21 Rev: 26.01.4
Status: 30.01.2026

5.2. Konfiguration der verbundenen Kameras

Tab. 5.1: Mögliche Kamera-Filtertexte
Filtertext Beschreibung
* wählt jedes Gerät aus, das zum Pipelinetyp passt
sensor<n>:* wählt jedes Gerät aus, das über das sensor<n> Interface

angeschlossen ist und dem Pipelinetyp entspricht.
<Name> wählt das Gerät mit diesem benutzerdefinierten Namen aus
<Seriennummer> wählt das Gerät mit dieser Seriennummer aus
sensor<n>:<Seriennummer> wählt das Gerät aus, das über das sensor<n> Interface

angeschlossen sind, und diese Seriennummer hat
sensor<n>:<Name> wählt das Gerät aus, das über das sensor<n> Interface

angeschlossen sind, und diesen benutzerdefinierten Namen hat
falls leer, wird keine Kamera verbunden

Durch Klick auf Speichern wird der eingegebene Filtertext angewendet und eine passende Kame-
ra mit dieser Pipeline verbunden, wenn möglich. Das Ändern des Filtertext ist ohne Neustart des
rc_reason_stack möglich.

Roboception GmbH
Handbuch: rc_reason_stack

22 Rev: 26.01.4
Status: 30.01.2026

6 Softwaremodule

Der rc_reason_stack beinhaltet eine Reihe von Softwaremodulen mit verschiedenen Funktionalitä-
ten. Jedes Softwaremodul bietet über seine zugehörige Node eine Schnittstelle über REST-API-
Schnittstelle (Abschnitt 7.2) oder das Generic Robot Interface (Abschnitt 7.3) an.

Der rc_reason_stack bietet die Möglichkeit, mehrere 3D Kameras wie den rc_visard anzuschließen.
Die Bilddaten jedes Geräts werden in separaten Kamerapipelines verarbeitet, welche jeweils aus meh-
reren verschiedenen Softwaremodulen bestehen. Die Module, die innerhalb einer Pipeline laufen, sind
pipelinespezifisch. Das heißt, sie können verschiedene Parameterwerte für jede Pipeline haben. Die
Softwaremodule, die außerhalb der Pipelines laufen, sind global und stellen globale Daten für alle Pipe-
lines bereit. Eine Übersicht ist in Abb. 6.1 dargestellt. Die Portnummern sind für die Standardinstallation
wie in Installation (Abschnitt ??) beschrieben angegeben und können in der Docker Compose-Datei
geändert werden.

rc_reason_stack

3D Camera
Modules

Detection
Modules

Datenbank
Module

Pipeline 0

Kamera & 3D
Module

Detektions-
module

Konfigurations-
module

3D Kamera 0

3D Kamera 1
3D Camera

Modules
Detection
Modules

Pipeline 1

Kamera & 3D
Module

Detektions-
module

Konfigurations-
module

… Pipeline 2 ...

… Pipeline 3 ...

3D Kamera 2

3D Kamera 3

gRPC (Port 50052)

EKI (Port 7000)

gRPC (Port 50051)

EKI (Port 7001)

gRPC (Port 50053)
EKI (Port 7002)

gRPC (Port 50054)
EKI (Port 7003)

Generic Robot Interface
(Port 7100)

Rest API
(Port 8080)

Abb. 6.1: Übersicht über die pipelinespezifischen und globalen Softwaremodule auf dem
rc_reason_stack

Die pipelinespezifischen Softwaremodule des rc_reason_stack können unterteilt werden in

• Kamera Modul (Abschnitt 6.1) erfasst Bildpaare und führt die planare Rektifizierung durch, wo-
durch die Kamera als Messinstrument verwendet werden kann. In Abhängigkeit vom ausge-
wählten Kamerapipelinetyp bietet dieses Modul unterschiedliche Laufzeitparameter.

• 3D-Module (Abschnitt 6.2) welche 3D Tiefeninformationen, wie Disparitäts-, Fehler- und Konfi-
denzbilder, bereitstellen,

• Detektions- und Messmodule (Abschnitt 6.3) welche eine Vielzahl verschiedener Detektions-
funktionen, wie Greifpunktberechnungen und Objekterkennung anbieten.

Roboception GmbH
Handbuch: rc_reason_stack

23 Rev: 26.01.4
Status: 30.01.2026

6.1. Kamera Modul

• Konfigurationsmodule (Abschnitt 6.4) welche es dem Nutzer ermöglichen, Kalibrierungen
durchzuführen und den rc_reason_stack für spezielle Anwendungen zu konfigurieren.

Die Softwaremodule, die global für alle Kamerapipelines auf dem rc_reason_stack laufen, sind

• Datenbankmodule (Abschnitt 6.5) welche dem Nutzer die Konfiguration globaler Daten ermög-
lichen, die in allen anderen Modulen verfügbar sind, wie Load Carrier, Regions of Interest
und Greifer.

6.1 Kamera Modul

Das Kameramodul ist ein Basismodul welches auf jedem rc_reason_stack verfügbar ist. Es ist für die
Bildakquise und die Rektifizierung der Bilder verantwortlich. Das Modul bietet diverse Parameter um
z.B. die Belichtungszeit oder die Bildwiederholrate zu verändern.

Bemerkung: In Abhängigkeit vom ausgewählten Kamerapipelinetyp bietet dieses Modul unter-
schiedliche Laufzeitparameter.

6.1.1 Rektifizierung

Um die Bildverarbeitung zu vereinfachen rektifiziert das Modul alle Kamerabilder basierend auf der
Kamerakalibrierung. Dies bedeutet, dass die Verzeichnung entfernt und der Bildhauptpunkt genau in
die Mitte des Bildes gelegt wird.

Eine rektifizierte Kamera kann mit der Brennweite als einzigen Modellparameter beschrieben werden.
Der rc_reason_stack stellt über seine verschiedenen Schnittstellen einen Brennweitenfaktor bereit. Er
bezieht sich auf die Bildbreite, um verschiedene Bildauflösungen zu unterstützen. Die Brennweite 𝑓 in
Pixeln lässt sich leicht bestimmen, indem der Brennweitenfaktor mit der Bildbreite (in Pixeln) multipliziert
wird.

Im Fall einer Stereokamera richtet die Rektifizierung die Bilder so aus, dass Objektpunkte in beiden
Bildern immer in die gleiche Bildzeile projiziert werden. Die optischen Achsen der Kameras werden
dadurch exakt parallel ausgerichtet.

Bemerkung: Falls ein zivid oder orbbec Sensor statt einer Stereokamera benutzt wird, dann steht
nur ein Kamerabild zur Verfügung. Dieses Kamerabild ist allerdings ebenfalls rektifiziert, d.h. es ist
verzeichnungsfrei und der Bildhauptpunkt befindet sich in der Bildmitte.

6.1.2 Anzeigen und Herunterladen von Bildern

Der rc_reason_stack bietet über gRPC Bilddatenschnittstelle (siehe Abschnitt 7.6) zeitgestempelte rek-
tifizierte Kamerabilder.

Live-Streams in geringerer Qualität werden in der Web GUI (Abschnitt 7.1) bereitgestellt.

Die Web GUI bietet weiterhin die Möglichkeit, einen Schnappschuss der aktuellen Szene als .tar.gz-
Datei zu speichern, wie in Herunterladen von Kamerabildern (Abschnitt 7.1.4) beschrieben wird.

6.1.3 Pipelinetypen rc_visard und rc_core

6.1.3.1 Parameter

Das Kamera-Modul wird in der REST-API als rc_camera bezeichnet und in der Web GUI (Abschnitt 7.1)
auf der Seite Kamera in der gewünschten Pipeline dargestellt. Der Benutzer kann die Stereo-Matching-
Parameter entweder dort oder über die REST-API (REST-API-Schnittstelle, Abschnitt 7.2) ändern.

Roboception GmbH
Handbuch: rc_reason_stack

24 Rev: 26.01.4
Status: 30.01.2026

6.1. Kamera Modul

Übersicht über die Parameter

Bemerkung: Das Minimum, Maximum und die Defaultwerte in der Tabelle unten zeigen Werte des
rc_visard. Diese Werte unterscheiden sich bei anderen Kameramodellen und bei einer rc_viscore
Pipeline.

Dieses Softwaremodul bietet folgende Laufzeitparameter:

Tab. 6.1: Laufzeitparameter des rc_camera-Moduls für eine Pipe-
line vom Typ rc_visard

Name Typ Min. Max. Default Beschreibung
acquisition_mode string - - Continuous Aufnahmemodus: [Continuous,

Trigger]
exp_auto bool false true true Umschalten zwischen automati-

scher und manueller Belichtung
(veraltet, nutzen Sie stattdessen
exp_control)

exp_auto_average_max float64 0.0 1.0 0.75 Maximaler Belichtungsmittelwert im
Auto Belichtungsmodus

exp_auto_average_min float64 0.0 1.0 0.25 Maximaler Belichtungsmittelwert im
Auto Belichtungsmodus

exp_auto_mode string - - Normal Modus für automatische Belichtung:
[Normal, Out1High, AdaptiveOut1]

exp_control string - - Auto Art der Belichtungsregelung: [Ma-
nual, Auto, HDR]

exp_height int32 0 959 0 Höhe der Region für automatische
Belichtung, 0 für das ganze Bild

exp_max float64 6.6e-05 0.018 0.018 Maximale Belichtungszeit in Sekun-
den im Auto Belichtungsmodus

exp_offset_x int32 0 1279 0 Erste Spalte der Region für automa-
tische Belichtung

exp_offset_y int32 0 959 0 Erste Zeile der Region für automati-
sche Belichtung

exp_value float64 6.6e-05 0.018 0.005 Maximale Belichtungszeit in Sekun-
den im Auto Belichtungsmodus

exp_width int32 0 1279 0 Breite der Region für automatische
Belichtung, 0 für das ganze Bild

fps float64 1.0 25.0 25.0 Bildwiederholrate in Hertz
gain_value float64 0.0 18.0 0.0 Verstärkung in Dezibel, wenn nicht

im Auto Belichtungsmodus
gamma float64 0.1 10.0 1.0 Gammafaktor
trigger_activation string - - RisingEdge Triggeraktivierung: [RisingEdge,

FallingEdge, AnyEdge]
trigger_source string - - Software Triggerquelle: [Software, In1, In2,

In3, In4]
wb_auto bool false true true Ein- und Ausschalten des manuel-

len Weißabgleichs (nur für Farbka-
meras)

wb_ratio_blue float64 0.125 8.0 2.4 Blau-zu-Grün-Verhältnis, falls
wb_auto auf false gesetzt ist (nur
für Farbkameras)

wb_ratio_red float64 0.125 8.0 1.2 Rot-zu-Grün-Verhältnis, falls
wb_auto auf false gesetzt ist
(nur für Farbkameras)

Roboception GmbH
Handbuch: rc_reason_stack

25 Rev: 26.01.4
Status: 30.01.2026

6.1. Kamera Modul

Beschreibung der Laufzeitparameter

Jeder Laufzeitparameter ist durch eine eigene Zeile auf der Seite Tiefenbild der Web GUI repräsentiert.
Der Web GUI-Name des Parameters ist in Klammern hinter dem Namen des Parameters angegeben
und die Parameter werden in der Reihenfolge, in der sie in der Web GUI erscheinen, aufgelistet.

Abb. 6.2: Seite Kamera in der Web GUI

Roboception GmbH
Handbuch: rc_reason_stack

26 Rev: 26.01.4
Status: 30.01.2026

6.1. Kamera Modul

fps (Bildwiederholrate (Hz))

Dieser Wert bezeichnet die Bildwiederholrate der Kamera in Bildern pro Sekunde und be-
grenzt zugleich die Frequenz, mit der Tiefenbilder berechnet werden können. Die Bildwieder-
holrate entspricht auch der Frequenz, mit welcher der rc_reason_stack Bilder über GigE Vi-
sion bereitstellt. Wird diese Frequenz verringert, reduziert sich auch die zur Übertragung der
Bilder benötigte Bandbreite des Netzwerks.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?fps=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?fps=<value>

gamma (Gamma)

Der Gammawert bestimmt, wie das gemessene Licht auf die Helligkeit eines Pixels ab-
gebildet wird. Ein Gammawert von 1 entspricht einem linearen Zusammenhang. Kleinere
Gammawerte lassen dunkle Bildbereiche heller erscheinen. Ein Wert um 0.5 entspricht der
menschlichen Wahrnehmung.

Bemerkung: Für eine Pipeline vom Typ rc_visard kann dieser Wert nur geändert wer-
den, wenn der verbundene rc_visard mindestens die Firmwareversion 22.07 hat. Andern-
falls ist der Gammawert immer 1.0.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?gamma=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?gamma=<value>

exp_control (Belichtung Auto, HDR oder Manual)

Die Belichtungsregelung kann auf Auto, HDR oder Manual gesetzt werden. Dies ersetzt den
veralteten exp_auto Parameter.

Auto: Dies ist der Standard Modus der die die Belichtungszeit und Verstärkung automatisch
anpasst, um Unter- und Überbelichtung zu vermeiden. Wenn die Automatik abgeschaltet
wird, werden exp_value und gain_value auf die letzten von der Automatik ermittelten Werte
für Belichtungszeit und Verstärkung gesetzt.

HDR: Der HDR Modus berechnet Bilder mit hohem Dynamikbereich durch Kombination von
Bildern mit unterschiedlichen Belichtungszeiten um über- und unterbelichtete Bereiche zu
vermeiden. Dieser Modus verringert die Bildwiederholrate und ist nur für statische Szenen
geeignet.

Manual : Im manuellen Belichtungsmodus werden die Belichtungszeit und die Verstärkung
konstant gehalten unabhängig von der resultierenden Bildhelligkeit.

Bemerkung: Für eine Pipeline vom Typ rc_visard kann der HDR Modus nur genutzt
werden, wenn der verbundene rc_visard mindestens die Firmwareversion 23.01 hat.

Roboception GmbH
Handbuch: rc_reason_stack

27 Rev: 26.01.4
Status: 30.01.2026

6.1. Kamera Modul

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?exp_control=
→˓<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_control=<value>

exp_auto_mode (Modus Belichtungszeitautomatik)

Der Modus für automatische Belichtung kann auf Normal, Out1High oder AdaptiveOut1
gesetzt werden. Diese Modi sind nur relevant, wenn der rc_reason_stack mit einer exter-
nen Lichtquelle oder einem Projektor betrieben wird, der an den GPIO-Ausgang 1 der Ka-
mera angeschlossen ist. Dieser Ausgang kann durch das IOControl-Modul (IOControl und
Projektor-Kontrolle, Abschnitt 6.4.4) gesteuert werden.

Normal : Alle Bilder werden für die Regelung der Belichtungszeit in Betracht gezogen, au-
ßer wenn der IOControl-Modus für den GPIO-Ausgang 1 ExposureAlternateActive ist: Dann
werden nur Bilder berücksichtigt, bei denen GPIO-Ausgang 1 HIGH ist, da diese Bilder heller
sein können, falls dieser GPIO-Ausgang benutzt wird um einen externen Projektor auszulö-
sen.

Out1High: Die Belichtungszeit wird nur anhand der Bilder mit GPIO-Ausgang 1 HIGH ange-
passt. Bilder bei denen GPIO-Ausgang 1 LOW ist, werden für die Belichtungszeitregelung
nicht berücksichtigt. Das bedeutet, die Belichtungszeit ändert sich nicht, solange nur Bilder
mit GPIO-Ausgang 1 LOW aufgenommen werden. Dieser Modus wird für die Benutzung mit
dem Single+Out1 Tiefenbild Aufnahmemodus (siehe Stereo Matching Parameters, 6.2.2.1
und externem Projektor empfohlen, wenn die Helligkeit der Szene nur zu den Zeitpunkten
berücksichtigt werden soll, wenn GPIO-Ausgang 1 HIGH ist. Das ist zum Beispiel der Fall,
wenn kurz vor einer Objekterkennung ein heller Teil des Roboters durch das Bild fährt, der
die Belichtungseinstellungen jedoch nicht beeinflussen soll.

AdaptiveOut1: Dieser Modus nutzt alle Kamerabilder und speichert die Differenz der Be-
lichtung zwischen Bildern mit GPIO Ausgang 1 HIGH und LOW. Während der IOControl-
Modus für GPIO-Ausgang 1 LOW ist, werden die Bilder um diese Differenz unterbelichtet,
um eine Überbelichtung zu verhindern, sobald der externe Projektor über GPIO-Ausgang
1 ausgelöst wird. Die Differenz der Belichtung wird als Out1 Reduktion unter den Livebil-
dern angezeigt. Dieser Modus wird empfohlen, wenn im Stereo-Matching-Modul der Pa-
rameter acquisition_mode auf SingleFrameOut1 (Einzelbild+Out1) gesetzt ist (Parameter
des Stereo-Matching-Moduls, Abschnitt 6.2.2.1), und ein externer Projektor an den GPIO-
Ausgang 1 angeschlossen ist, und wenn die Helligkeit der Szene zu jeder Zeit zur Belich-
tungszeitregelung berücksichtigt werden soll.Das ist zum Beispiel in Anwendungen mit ver-
änderlichen äußeren Lichtbedingungen der Fall.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?exp_auto_mode=
→˓<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_auto_mode=<value>

Roboception GmbH
Handbuch: rc_reason_stack

28 Rev: 26.01.4
Status: 30.01.2026

6.1. Kamera Modul

exp_max (Maximale Belichtungszeit)

Dieser Wert gibt die maximale Belichtungszeit im automatischen Modus in Sekunden an. Die
tatsächliche Belichtungszeit wird automatisch angepasst, sodass das Bild korrekt belichtet
wird. Sind die Bilder trotz maximaler Belichtungszeit noch immer unterbelichtet, erhöht der
rc_reason_stack schrittweise die Verstärkung, um die Helligkeit der Bilder zu erhöhen. Es
ist sinnvoll, die Belichtungszeit zu begrenzen, um die bei schnellen Bewegungen auftreten-
de Bildunschärfe zu vermeiden oder zu verringern. Jedoch führt eine höhere Verstärkung
auch zu mehr Bildrauschen. Welcher Kompromiss der beste ist, hängt immer auch von der
Anwendung ab.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?exp_max=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_max=<value>

exp_auto_average_max (Maximale Helligkeit) und exp_auto_average_min (Minimale Helligkeit)

Die automatische Belichtungszeitsteuerung versucht die Belichtungszeit und den Verstär-
kungsfaktor so einzustellen, dass die mittlere Bildhelligkeit im Bild oder im Bereich zur Re-
gelung zwischen der maximalen und minimalen Helligkeit liegt. Die maximale Helligkeit wird
benutzt, wenn keine Bildteile in der Sättigung sind, d.h. keine Überbelichtung durch helle
Oberflächen oder Reflexionen vorhanden sind. Falls Sättigungen auftreten, werden die Be-
lichtungszeit und der Verstärkungsfaktor verringert, aber nur bis zur eingestellten minimalen
Helligkeit.

Der Parameter für die maximale Helligkeit hat Vorrang über den Parameter der minimalen
Helligkeit. Falls die minimale Helligkeit größer als die maximale ist, versucht die automati-
sche Belichtungszeitsteuerung die mittlere Bildhelligkeit auf die maximale Helligkeit zu set-
zen.

Die aktuelle Helligkeit wird in der Statuszeile unter den Bildern angezeigt.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?<exp_auto_

→˓average_max|exp_auto_average_min>=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?<exp_auto_average_max|exp_auto_

→˓average_min>=<value>

exp_offset_x, exp_offset_y, exp_width, exp_height (Bereich zur Regelung)

Diese Werte definieren eine rechteckige Region im linken rektifizierten Bild, um den von
der automatischen Belichtung überwachten Bereich zu limitieren. Die Belichtungszeit und
der Verstärkungsfaktor werden so gewählt, dass die definierte Region optimal belichtet wird.
Dies kann zu Über- oder Unterbelichtung in anderen Bildbereichen führen. Falls die Breite
oder Höhe auf 0 gesetzt werden, dann wird das gesamte linke und rechte Bild von der
automatischen Belichtungsfunktion berücksichtigt. Dies ist die Standardeinstellung.

Roboception GmbH
Handbuch: rc_reason_stack

29 Rev: 26.01.4
Status: 30.01.2026

6.1. Kamera Modul

Die Region wird in der Web GUI mit einem Rechteck im linken rektifizierten Bild visuali-
siert. Sie kann über Slider oder direkt im Bild mithilfe der Schaltfläche Bereich im Bild
auswählen verändert werden.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?<exp_offset_

→˓x|exp_offset_y|exp_width|exp_height>=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?<exp_offset_x|exp_offset_y|exp_

→˓width|exp_height>=<value>

exp_value (Belichtungszeit)

Dieser Wert gibt die Belichtungszeit im manuellen Modus in Sekunden an. Diese
Belichtungszeit wird konstant gehalten, auch wenn die Bilder unterbelichtet sind.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?exp_value=
→˓<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_value=<value>

gain_value (Verstärkungsfaktor (dB))

Dieser Wert gibt den Verstärkungsfaktor im manuellen Modus in Dezibel an. Höhere Ver-
stärkungswerte reduzieren die Belichtungszeit, führen aber zu Rauschen.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?gain_value=
→˓<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?gain_value=<value>

wb_auto (Weißabgleich Auto oder Manuell)

Dieser Wert kann auf true gesetzt werden, um den automatischen Weißabgleich anzuschal-
ten. Bei false kann das Verhältnis der Farben manuell mit wb_ratio_red und wb_ratio_blue
gesetzt werden. wb_ratio_red und wb_ratio_blue werden auf die letzten von der Automatik
ermittelten Werte gesetzt, wenn diese abgeschaltet wird. Der Weißabgleich ist bei mono-
chromen Kameras ohne Funktion und wird in diesem Fall in der Web GUI nicht angezeigt.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

Roboception GmbH
Handbuch: rc_reason_stack

30 Rev: 26.01.4
Status: 30.01.2026

6.1. Kamera Modul

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?wb_auto=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?wb_auto=<value>

wb_ratio_blue und wb_ratio_red (Blau | Grün and Rot | Grün)

Mit diesen Werten kann das Verhältnis von Blau zu Grün bzw. Rot zu Grün für einen manuellen Weiß-
abgleich gesetzt werden. Der Weißabgleich ist bei monochromen Kameras ohne Funktion und wird in
diesem Fall in der Web GUI nicht angezeigt.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?<wb_ratio_blue|wb_ratio_

→˓red>=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?<wb_ratio_blue|wb_ratio_red>=<value>

6.1.3.2 Statuswerte

Dieses Modul meldet folgende Statuswerte:

Roboception GmbH
Handbuch: rc_reason_stack

31 Rev: 26.01.4
Status: 30.01.2026

6.1. Kamera Modul

Tab. 6.2: Statuswerte des rc_camera-Moduls
Name Beschreibung
baseline Basisabstand 𝑡 der Stereokamera in Metern
brightness Aktuelle Helligkeit als Wert zwischen 0 und 1
color 0 für monochrome Kameras, 1 für Farbkameras
exp Aktuelle Belichtungszeit in Sekunden. Dieser Wert wird unter der

Bildvorschau in der Web GUI als Belichtung (ms) angezeigt.
device_trigger_sources Angabe der verfügbaren Triggerquellen für den Fall, dass das Gerät

getriggert werden kann
focal Brennweitenfaktor, normalisiert auf eine Bildbreite von 1
fps Aktuelle Bildwiederholrate der Kamerabilder in Hertz. Dieser Wert wird

unter der Bildvorschau in der Web GUI als FPS (Hz) angezeigt.
gain Aktueller Verstärkungsfaktor in Dezibel. Dieser Wert wird unter der

Bildvorschau in der Web GUI als Verstärkung (dB) angezeigt.
gamma Aktueller Gammawert
height Höhe des Kamerabilds in Pixeln. Dieser Wert wird unter der

Bildvorschau in der Web GUI als zweiter Teil von Auflösung (px)
angezeigt.

last_timestamp_grabbed Zeitstempel des letzten aufgenommenen Bildes, wenn die Kamera im
Triggermodus ist

out1_reduction Anteil der Helligkeits-Reduktion (0.0 - 1.0) für Bilder mit GPIO-Ausgang
1=LOW, wenn exp_auto_mode=AdaptiveOut1 oder
exp_auto_mode=Out1High. Dieser Wert wird unter der Bildvorschau in
der Web GUI als Out1 Reduktion (%) angezeigt.

params_override_active 1 wenn die Parameter temporär durch einen laufenden
Kalibrierprozess überschrieben werden

selfcalib_counter Wie oft eine Korrektur durch die Selbstkalibrierung vorgenommen
wurde

selfcalib_offset Aktueller Offset, der durch die Selbstkalibrierung bestimmt wurde
test 0 for Live-Bilder und 1 für Test-Bilder
width Breite des Kamerabilds in Pixeln. Dieser Wert wird unter der

Bildvorschau in der Web GUI als erster Teil von Auflösung (px)
angezeigt.

6.1.3.3 Services

Das Kamera-Modul bietet folgende Services.

reset_defaults

stellt die Werkseinstellungen der Parameter dieses Moduls wieder her und wendet sie an
(„factory reset“).

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/services/reset_defaults

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/services/reset_defaults

Request

Roboception GmbH
Handbuch: rc_reason_stack

32 Rev: 26.01.4
Status: 30.01.2026

6.1. Kamera Modul

Dieser Service hat keine Argumente.

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.1.4 Pipelinetyp stereo_ace

6.1.4.1 Parameter

Das Kamera-Modul auf einer Pipeline vom Typ stereo_ace wird in der REST-API als rc_camera bezeich-
net und in der Web GUI (Abschnitt 7.1) auf der Seite Kamera in der gewünschten Pipeline dargestellt.
Der Benutzer kann die Stereo-Matching-Parameter entweder dort oder über die REST-API (REST-API-
Schnittstelle, Abschnitt 7.2) ändern.

Übersicht über die Parameter

Dieses Softwaremodul bietet folgende Laufzeitparameter:

Roboception GmbH
Handbuch: rc_reason_stack

33 Rev: 26.01.4
Status: 30.01.2026

6.1. Kamera Modul

Tab. 6.3: Das rc_camera-Modul meldet folgende Statuswerte für
eine Pipeline vom Typ stereo_ace:

Name Typ Min. Max. Default Beschreibung
acquisition_mode string - - Continuous Aufnahmemodus: [Continuous,

Trigger]
brightness float64 -1.0 1.0 0.0 Helligkeit
contrast float64 -1.0 1.0 0.0 Kontrast
contrast_mode string - - Linear Kontrastmodus [Linear, SCurve]
exp_auto bool false true false Umschalten zwischen automati-

scher und manueller Belichtung
(veraltet, nutzen Sie stattdessen
exp_control)

exp_auto_average_max float64 0.0 1.0 0.75 Maximaler Belichtungsmittelwert im
Auto Belichtungsmodus

exp_auto_average_min float64 0.0 1.0 0.25 Maximaler Belichtungsmittelwert im
Auto Belichtungsmodus

exp_auto_mode string - - Normal Modus für automatische Belichtung:
[Normal, Out1High, AdaptiveOut1]

exp_control string - - Manual Art der Belichtungsregelung: [Ma-
nual, Auto, HDR]

exp_height int32 0 2047 0 Höhe der Region für automatische
Belichtung, 0 für das ganze Bild

exp_max float64 6.6e-05 0.1 0.018 Maximale Belichtungszeit in Sekun-
den im Auto Belichtungsmodus

exp_offset_x int32 0 2447 0 Erste Spalte der Region für automa-
tische Belichtung

exp_offset_y int32 0 2047 0 Erste Zeile der Region für automati-
sche Belichtung

exp_value float64 6.6e-05 0.1 0.005 Maximale Belichtungszeit in Sekun-
den im Auto Belichtungsmodus

exp_width int32 0 2447 0 Breite der Region für automatische
Belichtung, 0 für das ganze Bild

fps float64 1.0 50.0 25.0 Bildwiederholrate in Hertz
gain_value float64 0.0 48.0 0.0 Verstärkung in Dezibel, wenn nicht

im Auto Belichtungsmodus
gamma float64 0.1 3.99998 1.0 Gammafaktor
light_source_preset string - - Daylight6500K Voreinstellung der Lichtquelle

[Off, Tungsten, Daylight5000K,
Daylight6500K, FactoryLED6000K]

saturation‘ float64 0.0 2.0 1.0 Sättigung
trigger_activation string - - RisingEdge Triggeraktivierung: [RisingEdge,

FallingEdge, AnyEdge]
trigger_source string - - Software Triggerquelle: [Software, In1, In2,

In3, In4]
wb_auto bool false true true Ein- und Ausschalten des manuel-

len Weißabgleichs (nur für Farbka-
meras)

wb_ratio_blue float64 0.125 16.0 2.4 Blauanteil, falls wb_auto auf false
gesetzt ist (nur für Farbkameras)

wb_ratio_green float64 0.125 16.0 1.0 Grünanteil, falls wb_auto auf false
gesetzt ist (nur für Farbkameras)

wb_ratio_red float64 0.125 16.0 1.2 Rotanteil, falls wb_auto auf false ge-
setzt ist (nur für Farbkameras)

Roboception GmbH
Handbuch: rc_reason_stack

34 Rev: 26.01.4
Status: 30.01.2026

6.1. Kamera Modul

Beschreibung der Laufzeitparameter

Jeder Laufzeitparameter ist durch eine eigene Zeile auf der Seite Tiefenbild der Web GUI repräsentiert.
Der Web GUI-Name des Parameters ist in Klammern hinter dem Namen des Parameters angegeben
und die Parameter werden in der Reihenfolge, in der sie in der Web GUI erscheinen, aufgelistet.

acquisition_mode (Aufnahmemodus)

Dieser Wert bestimmt den Aufnahmemodus der Kamera. Im Modus Kontinuierlich
(Continuous) nimmt die Kamera Bilder mit der in fps angegebenen Bildwiederholrate auf.
Im Modus Trigger (Trigger) werden nur Bilder aufgenommen, wenn die Kamera ein Trig-
gersignal empfängt.

Bemerkung: Dieser Parameter hat nur eine Auswirkung, wenn er in einer Pipeline mit
einem rc_viscore oder rc_visard NG verwendet wird.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?acquisition_

→˓mode=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?acquisition_mode=<value>

trigger_source (Triggerquelle)

Dieser Wert wird nur verwendet, wenn der Aufnahmemodus auf Trigger gesetzt
ist und bestimmt die Triggerquelle. Im Software-Modus kann ein Trigger über den
rc_camera/acquisition_trigger Service gesendet werden. Wenn der Aufnahmemodus
acquisition_mode für die Tiefenbilder auf SingleFrame oder SingleFrameOut1 gesetzt ist
(siehe Parameter , Abschnitt 6.2.2.1), wird der Kamera-Softwaretrigger automatisch bei je-
der Tiefenbildaufnahme gesendet. Die Modi In1 und In2 sind Hardwaretriggermodi. Ein Bild
wird aufgenommen, sobald ein Signal auf dem jeweiligen Eingang empfangen wird.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?trigger_

→˓source=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?trigger_source=<value>

trigger_activation (Triggeraktivierung)

Dieser Wert wird nur verwendet, wenn der Aufnahmemodus auf Trigger gesetzt ist und die
Triggerquelle auf In1 oder In2 steht. Er bestimmt die Signalflanke, die genutzt werden soll,
um eine Bildaufnahme auszulösen. Mögliche Werte sind RisingEdge (steigende Flanke),
FallingEdge (fallende Flanke) oder AnyEdge (steigende und fallende Flanke).

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

Roboception GmbH
Handbuch: rc_reason_stack

35 Rev: 26.01.4
Status: 30.01.2026

6.1. Kamera Modul

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?trigger_

→˓activation=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?trigger_activation=<value>

fps (Bildwiederholrate (Hz))

Dieser Wert bezeichnet die Bildwiederholrate der Kamera in Bildern pro Sekunde und be-
grenzt zugleich die Frequenz, mit der Tiefenbilder berechnet werden können. Die Bildwieder-
holrate entspricht auch der Frequenz, mit welcher der rc_reason_stack Bilder über GigE Vi-
sion bereitstellt. Wird diese Frequenz verringert, reduziert sich auch die zur Übertragung der
Bilder benötigte Bandbreite des Netzwerks.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?fps=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?fps=<value>

gamma (Gamma)

Der Gammawert bestimmt, wie das gemessene Licht auf die Helligkeit eines Pixels ab-
gebildet wird. Ein Gammawert von 1 entspricht einem linearen Zusammenhang. Kleinere
Gammawerte lassen dunkle Bildbereiche heller erscheinen. Ein Wert um 0.5 entspricht der
menschlichen Wahrnehmung.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?gamma=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?gamma=<value>

contrast_mode (Kontrastmodus)

Der Kontrastmodus kann auf „Linear“ (Linear) oder „SCurve“ (S-Curve) eingestellt werden
und bestimmt, wie die Bildintensitätswerte skaliert werden, wenn der Kontrast angepasst
wird. Im Modus Linear verwendet die Kamera eine lineare Funktion zur Anpassung des
Kontrasts. Durch Erhöhen oder Verringern des Kontrasts wird der Gradient der linearen
Funktion erhöht oder verringert. Wenn der Kontrast erhöht wird, erscheinen die dunkels-
ten und hellsten Bereiche des Bildes vollständig schwarz oder vollständig weiß, die anderen
Bereiche erscheinen jedoch definierter. Eine Verringerung des Kontrasts hat den gegentei-
ligen Effekt.Im Modus SCurve nutzt die Kamera eine S-Kurven-Funktion zur Anpassung des
Kontrasts. Durch Erhöhen des Kontrasts werden dunkle Pixel abgedunkelt und helle Pixel
aufgehellt, der Dynamikumfang des Bildes bleibt jedoch erhalten.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

Roboception GmbH
Handbuch: rc_reason_stack

36 Rev: 26.01.4
Status: 30.01.2026

6.1. Kamera Modul

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?contrast_mode=
→˓<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?contrast_mode=<value>

contrast (Kontrast)

Durch Anpassen des Kontrasts wird der Unterschied zwischen hellen und dunklen Berei-
chen im Bild erhöht oder verringert. Die Art und Weise, wie sich die hellen und dunklen
Bereiche beim Anpassen des Kontrasts ändern, hängt vom ausgewählten Kontrastmodus
(contrast_mode) ab.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?contrast=
→˓<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?contrast=<value>

exp_control (Belichtung Auto, HDR oder Manual)

Die Belichtungsregelung kann auf Auto, HDR oder Manual gesetzt werden.

Auto: Dies ist der Standard Modus der die die Belichtungszeit und Verstärkung automatisch
anpasst, um Unter- und Überbelichtung zu vermeiden. Wenn die Automatik abgeschaltet
wird, werden exp_value und gain_value auf die letzten von der Automatik ermittelten Werte
für Belichtungszeit und Verstärkung gesetzt.

HDR: Der HDR Modus berechnet Bilder mit hohem Dynamikbereich durch Kombination von
Bildern mit unterschiedlichen Belichtungszeiten um über- und unterbelichtete Bereiche zu
vermeiden. Dieser Modus verringert die Bildwiederholrate und ist nur für statische Szenen
geeignet.

Manual : Im manuellen Belichtungsmodus werden die Belichtungszeit und die Verstärkung
konstant gehalten unabhängig von der resultierenden Bildhelligkeit.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?exp_control=
→˓<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_control=<value>

exp_auto_mode (Modus Belichtungszeitautomatik)

Der Modus für automatische Belichtung kann auf Normal, Out1High oder AdaptiveOut1
gesetzt werden. Diese Modi sind nur relevant, wenn der rc_reason_stack mit einer exter-
nen Lichtquelle oder einem Projektor betrieben wird, der an den GPIO-Ausgang 1 der Ka-

Roboception GmbH
Handbuch: rc_reason_stack

37 Rev: 26.01.4
Status: 30.01.2026

6.1. Kamera Modul

mera angeschlossen ist. Dieser Ausgang kann durch das IOControl-Modul (IOControl und
Projektor-Kontrolle, Abschnitt 6.4.4) gesteuert werden.

Normal : Alle Bilder werden für die Regelung der Belichtungszeit in Betracht gezogen, au-
ßer wenn der IOControl-Modus für den GPIO-Ausgang 1 ExposureAlternateActive ist: Dann
werden nur Bilder berücksichtigt, bei denen GPIO-Ausgang 1 HIGH ist, da diese Bilder heller
sein können, falls dieser GPIO-Ausgang benutzt wird um einen externen Projektor auszulö-
sen.

Out1High: Die Belichtungszeit wird nur anhand der Bilder mit GPIO-Ausgang 1 HIGH ange-
passt. Bilder bei denen GPIO-Ausgang 1 LOW ist, werden für die Belichtungszeitregelung
nicht berücksichtigt. Das bedeutet, die Belichtungszeit ändert sich nicht, solange nur Bilder
mit GPIO-Ausgang 1 LOW aufgenommen werden. Dieser Modus wird für die Benutzung mit
dem Single+Out1 Tiefenbild Aufnahmemodus (siehe Stereo Matching Parameters, 6.2.2.1
und externem Projektor empfohlen, wenn die Helligkeit der Szene nur zu den Zeitpunkten
berücksichtigt werden soll, wenn GPIO-Ausgang 1 HIGH ist. Das ist zum Beispiel der Fall,
wenn kurz vor einer Objekterkennung ein heller Teil des Roboters durch das Bild fährt, der
die Belichtungseinstellungen jedoch nicht beeinflussen soll.

AdaptiveOut1: Dieser Modus nutzt alle Kamerabilder und speichert die Differenz der Be-
lichtung zwischen Bildern mit GPIO Ausgang 1 HIGH und LOW. Während der IOControl-
Modus für GPIO-Ausgang 1 LOW ist, werden die Bilder um diese Differenz unterbelichtet,
um eine Überbelichtung zu verhindern, sobald der externe Projektor über GPIO-Ausgang
1 ausgelöst wird. Die Differenz der Belichtung wird als Out1 Reduktion unter den Livebil-
dern angezeigt. Dieser Modus wird empfohlen, wenn im Stereo-Matching-Modul der Pa-
rameter acquisition_mode auf SingleFrameOut1 (Einzelbild+Out1) gesetzt ist (Parameter
des Stereo-Matching-Moduls, Abschnitt 6.2.2.1), und ein externer Projektor an den GPIO-
Ausgang 1 angeschlossen ist, und wenn die Helligkeit der Szene zu jeder Zeit zur Belich-
tungszeitregelung berücksichtigt werden soll.Das ist zum Beispiel in Anwendungen mit ver-
änderlichen äußeren Lichtbedingungen der Fall.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?exp_auto_mode=
→˓<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_auto_mode=<value>

exp_max (Maximale Belichtungszeit)

Dieser Wert gibt die maximale Belichtungszeit im automatischen Modus in Sekunden an. Die
tatsächliche Belichtungszeit wird automatisch angepasst, sodass das Bild korrekt belichtet
wird. Sind die Bilder trotz maximaler Belichtungszeit noch immer unterbelichtet, erhöht der
rc_reason_stack schrittweise die Verstärkung, um die Helligkeit der Bilder zu erhöhen. Es
ist sinnvoll, die Belichtungszeit zu begrenzen, um die bei schnellen Bewegungen auftreten-
de Bildunschärfe zu vermeiden oder zu verringern. Jedoch führt eine höhere Verstärkung
auch zu mehr Bildrauschen. Welcher Kompromiss der beste ist, hängt immer auch von der
Anwendung ab.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?exp_max=<value>

API Version 1 (veraltet)

Roboception GmbH
Handbuch: rc_reason_stack

38 Rev: 26.01.4
Status: 30.01.2026

6.1. Kamera Modul

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_max=<value>

exp_auto_average_max (Maximale Helligkeit) und exp_auto_average_min (Minimale Helligkeit)

Die automatische Belichtungszeitsteuerung versucht die Belichtungszeit und den Verstär-
kungsfaktor so einzustellen, dass die mittlere Bildhelligkeit im Bild oder im Bereich zur Re-
gelung zwischen der maximalen und minimalen Helligkeit liegt. Die maximale Helligkeit wird
benutzt, wenn keine Bildteile in der Sättigung sind, d.h. keine Überbelichtung durch helle
Oberflächen oder Reflexionen vorhanden sind. Falls Sättigungen auftreten, werden die Be-
lichtungszeit und der Verstärkungsfaktor verringert, aber nur bis zur eingestellten minimalen
Helligkeit.

Der Parameter für die maximale Helligkeit hat Vorrang über den Parameter der minimalen
Helligkeit. Falls die minimale Helligkeit größer als die maximale ist, versucht die automati-
sche Belichtungszeitsteuerung die mittlere Bildhelligkeit auf die maximale Helligkeit zu set-
zen.

Die aktuelle Helligkeit wird in der Statuszeile unter den Bildern angezeigt.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?<exp_auto_

→˓average_max|exp_auto_average_min>=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?<exp_auto_average_max|exp_auto_

→˓average_min>=<value>

exp_offset_x, exp_offset_y, exp_width, exp_height (Bereich zur Regelung)

Diese Werte definieren eine rechteckige Region im linken rektifizierten Bild, um den von
der automatischen Belichtung überwachten Bereich zu limitieren. Die Belichtungszeit und
der Verstärkungsfaktor werden so gewählt, dass die definierte Region optimal belichtet wird.
Dies kann zu Über- oder Unterbelichtung in anderen Bildbereichen führen. Falls die Breite
oder Höhe auf 0 gesetzt werden, dann wird das gesamte linke und rechte Bild von der
automatischen Belichtungsfunktion berücksichtigt. Dies ist die Standardeinstellung.

Die Region wird in der Web GUI mit einem Rechteck im linken rektifizierten Bild visuali-
siert. Sie kann über Slider oder direkt im Bild mithilfe der Schaltfläche Bereich im Bild
auswählen verändert werden.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?<exp_offset_

→˓x|exp_offset_y|exp_width|exp_height>=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?<exp_offset_x|exp_offset_y|exp_

→˓width|exp_height>=<value>

Roboception GmbH
Handbuch: rc_reason_stack

39 Rev: 26.01.4
Status: 30.01.2026

6.1. Kamera Modul

exp_value (Belichtungszeit)

Dieser Wert gibt die Belichtungszeit im manuellen Modus in Sekunden an. Diese
Belichtungszeit wird konstant gehalten, auch wenn die Bilder unterbelichtet sind.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?exp_value=
→˓<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_value=<value>

gain_value (Verstärkungsfaktor (dB))

Dieser Wert gibt den Verstärkungsfaktor im manuellen Modus in Dezibel an. Höhere Ver-
stärkungswerte reduzieren die Belichtungszeit, führen aber zu Rauschen.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?gain_value=
→˓<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?gain_value=<value>

brightness (Helligkeit)

Das Anpassen der Helligkeit hellt das gesamte Bild auf oder verdunkelt es.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?brightness=
→˓<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?brightness=<value>

wb_auto (Weißabgleich Auto oder Manuell, nur verfügbar für Farbkameras)

Dieser Wert kann auf true gesetzt werden, um den automatischen Weißabgleich anzuschal-
ten. Bei false kann das Verhältnis der Farben manuell mit wb_ratio_red und wb_ratio_blue
gesetzt werden. wb_ratio_red und wb_ratio_blue werden auf die letzten von der Automatik
ermittelten Werte gesetzt, wenn diese abgeschaltet wird. Der Weißabgleich ist bei mono-
chromen Kameras ohne Funktion und wird in diesem Fall in der Web GUI nicht angezeigt.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

Roboception GmbH
Handbuch: rc_reason_stack

40 Rev: 26.01.4
Status: 30.01.2026

6.1. Kamera Modul

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?wb_auto=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?wb_auto=<value>

wb_ratio_blue, wb_ratio_red and wb_ratio_green (Blauanteil, Rotanteil und Grünanteil, nur ver-
fügbar für Farbkameras)

Mit diesen Werten können der Blau-, Rot- und Grünanteil für einen manuellen Weißabgleich gesetzt
werden. Der Weißabgleich ist bei monochromen Kameras ohne Funktion und wird in diesem Fall in der
Web GUI nicht angezeigt.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?<wb_ratio_blue|wb_ratio_

→˓red|wb_ratio_green>=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?<wb_ratio_blue|wb_ratio_red|wb_ratio_green>=
→˓<value>

light_source_preset (Voreinstellung Lichtquelle, nur verfügbar für Farbkameras)

Mit dem Parameter light_source_preset können Farbverschiebungen korrigiert werden,
die durch bestimmte Lichtquellen verursacht werden. Abhängig von der Farbtemperatur
kann das für die Bildaufnahme verwendete Licht Farbverschiebungen im Bild verursachen.
Diese Farbverschiebungen können durch Auswahl der entsprechenden Voreinstellung für
die Lichtquelle korrigiert werden. Mögliche Werte sind: Off, Tungsten, Daylight5000K, Day-
light6500K und FactoryLED6000K.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?light_source_

→˓preset=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?light_source_preset=<value>

saturation (Sättigung, nur verfügbar für Farbkameras)

Durch Anpassen der Sättigung ändert sich die Buntheit (Intensität) der Farben. Eine höhere
Sättigung erleichtert beispielsweise die Unterscheidung von Farben.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?saturation=
→˓<value>

API Version 1 (veraltet)

Roboception GmbH
Handbuch: rc_reason_stack

41 Rev: 26.01.4
Status: 30.01.2026

6.1. Kamera Modul

PUT http://<host>/api/v1/nodes/rc_camera/parameters?saturation=<value>

6.1.4.2 Statuswerte

Das rc_camera-Modul meldet folgende Statuswerte für eine Pipeline vom Typ stereo_ace:

Tab. 6.4: Statuswerte des rc_camera-Moduls
Name Beschreibung
baseline Basisabstand 𝑡 der Stereokamera in Metern
brightness Aktuelle Helligkeit des Bildes als Wert zwischen 0 und 1
color 0 für monochrome Kameras, 1 für Farbkameras
exp Aktuelle Belichtungszeit in Sekunden. Dieser Wert wird unter der

Bildvorschau in der Web GUI als Belichtung (ms) angezeigt.
device_trigger_sources Angabe der verfügbaren Triggerquellen für den Fall, dass das Gerät

getriggert werden kann
focal Brennweitenfaktor, normalisiert auf eine Bildbreite von 1
fps Aktuelle Bildwiederholrate der Kamerabilder in Hertz. Dieser Wert wird

unter der Bildvorschau in der Web GUI als FPS (Hz) angezeigt.
gain Aktueller Verstärkungsfaktor in Dezibel. Dieser Wert wird unter der

Bildvorschau in der Web GUI als Verstärkung (dB) angezeigt.
gamma Aktueller Gammawert
height Höhe des Kamerabilds in Pixeln. Dieser Wert wird unter der

Bildvorschau in der Web GUI als zweiter Teil von Auflösung (px)
angezeigt.

last_timestamp_grabbed Zeitstempel des letzten aufgenommenen Bildes, wenn die Kamera im
Triggermodus ist

out1_reduction Anteil der Helligkeits-Reduktion (0.0 - 1.0) für Bilder mit GPIO-Ausgang
1=LOW, wenn exp_auto_mode=AdaptiveOut1 oder
exp_auto_mode=Out1High. Dieser Wert wird unter der Bildvorschau in
der Web GUI als Out1 Reduktion (%) angezeigt.

params_override_active 1 wenn die Parameter temporär durch einen laufenden
Kalibrierprozess überschrieben werden

selfcalib_counter Wie oft eine Korrektur durch die Selbstkalibrierung vorgenommen
wurde

selfcalib_offset Aktueller Offset, der durch die Selbstkalibrierung bestimmt wurde
test 0 for Live-Bilder und 1 für Test-Bilder
width Breite des Kamerabilds in Pixeln. Dieser Wert wird unter der

Bildvorschau in der Web GUI als erster Teil von Auflösung (px)
angezeigt.

6.1.4.3 Services

Das rc_camera-Modul bietet folgende Services für eine Pipeline vom Typ stereo_ace.

acquisition_trigger

triggert eine Bildaufnahme, wenn der Aufnahmemodus auf Trigger und die Triggerquelle
auf Software gesetzt sind.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

Roboception GmbH
Handbuch: rc_reason_stack

42 Rev: 26.01.4
Status: 30.01.2026

6.1. Kamera Modul

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/acquisition_trigger

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/services/acquisition_trigger

Request

Dieser Service hat keine Argumente.

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "acquisition_trigger",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

reset_defaults

stellt die Werkseinstellungen der Parameter dieses Moduls wieder her und wendet sie an
(„factory reset“).

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/services/reset_defaults

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/services/reset_defaults

Request

Dieser Service hat keine Argumente.

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

Roboception GmbH
Handbuch: rc_reason_stack

43 Rev: 26.01.4
Status: 30.01.2026

6.1. Kamera Modul

6.1.5 Pipelinetyp orbbec

Bemerkung: Die Firmwareversion der angeschlossenen Orbbec Kamera muss mindestens 1.6.00
sein, damit die Kamera genutzt werden kann.

6.1.5.1 Parameter

Das Kamera-Modul auf einer Pipeline vom Typ orbbec wird in der REST-API als rc_camera bezeichnet
und in der Web GUI (Abschnitt 7.1) auf der Seite Kamera in der gewünschten Pipeline dargestellt.
Der Benutzer kann die Stereo-Matching-Parameter entweder dort oder über die REST-API (REST-API-
Schnittstelle, Abschnitt 7.2) ändern.

Übersicht über die Parameter

Dieses Softwaremodul bietet folgende Laufzeitparameter:

Tab. 6.5: Laufzeitparameter des rc_camera-Moduls für eine Pipe-
line vom Typ orbbec

Name Typ Min. Max. Default Beschreibung
exp_control string - - Auto Art der Belichtungsregelung: [Ma-

nual, Auto]
exp_height int32 0 799 0 Höhe der Region für automatische

Belichtung, 0 für das ganze Bild
exp_max float64 1.0 1999.0 665.0 Maximale Belichtungszeit in Sekun-

den im Auto Belichtungsmodus
exp_offset_x int32 0 1279 0 Erste Spalte der Region für automa-

tische Belichtung
exp_offset_y int32 0 799 0 Erste Zeile der Region für automati-

sche Belichtung
exp_value float64 1.0 1999.0 156.0 Maximale Belichtungszeit in Sekun-

den im Auto Belichtungsmodus
exp_width int32 0 1279 0 Breite der Region für automatische

Belichtung, 0 für das ganze Bild
gain_value float64 0.0 128.0 16.0 Verstärkung in Dezibel, wenn nicht

im Auto Belichtungsmodus
gamma float64 100.0 500.0 300.0 Gammafaktor
wb_auto bool false true true Ein- und Ausschalten des manuel-

len Weißabgleichs (nur für Farbka-
meras)

wb_value float64 2800.0 6500.0 4600.0 Weißabgleich Wert

Beschreibung der Laufzeitparameter

Jeder Laufzeitparameter ist durch eine eigene Zeile auf der Seite Tiefenbild der Web GUI repräsentiert.
Der Web GUI-Name des Parameters ist in Klammern hinter dem Namen des Parameters angegeben
und die Parameter werden in der Reihenfolge, in der sie in der Web GUI erscheinen, aufgelistet.

gamma (Gamma)

Der Gammawert bestimmt, wie das gemessene Licht auf die Helligkeit eines Pixels abgebil-
det wird. Kleinere Gammawerte lassen dunkle Bildbereiche heller erscheinen.

Roboception GmbH
Handbuch: rc_reason_stack

44 Rev: 26.01.4
Status: 30.01.2026

6.1. Kamera Modul

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?gamma=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?gamma=<value>

exp_control (Belichtung Auto oder Manual)

Die Belichtungsregelung kann auf Auto oder Manual gesetzt werden.

Auto: Dies ist der Standard Modus der die die Belichtungszeit und Verstärkung automatisch
anpasst, um Unter- und Überbelichtung zu vermeiden. Wenn die Automatik abgeschaltet
wird, werden exp_value und gain_value auf die letzten von der Automatik ermittelten Werte
für Belichtungszeit und Verstärkung gesetzt.

Manual : Im manuellen Belichtungsmodus werden die Belichtungszeit und die Verstärkung
konstant gehalten unabhängig von der resultierenden Bildhelligkeit.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?exp_control=
→˓<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_control=<value>

exp_max (Maximale Belichtung)

Dieser Wert gibt die maximale Belichtung im automatischen Modus in Sekunden an.
Die tatsächliche Belichtung wird automatisch angepasst, sodass das Bild korrekt belich-
tet wird. Sind die Bilder trotz maximaler Belichtung noch immer unterbelichtet, erhöht der
rc_reason_stack schrittweise die Verstärkung, um die Helligkeit der Bilder zu erhöhen. Es
ist sinnvoll, die Belichtung zu begrenzen, um die bei schnellen Bewegungen auftretende Bil-
dunschärfe zu vermeiden oder zu verringern. Jedoch führt eine höhere Verstärkung auch zu
mehr Bildrauschen. Welcher Kompromiss der beste ist, hängt immer auch von der Anwen-
dung ab.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?exp_max=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_max=<value>

exp_offset_x, exp_offset_y, exp_width, exp_height (Bereich zur Regelung)

Diese Werte definieren eine rechteckige Region im linken rektifizierten Bild, um den von
der automatischen Belichtung überwachten Bereich zu limitieren. Die Belichtungszeit und
der Verstärkungsfaktor werden so gewählt, dass die definierte Region optimal belichtet wird.

Roboception GmbH
Handbuch: rc_reason_stack

45 Rev: 26.01.4
Status: 30.01.2026

6.1. Kamera Modul

Dies kann zu Über- oder Unterbelichtung in anderen Bildbereichen führen. Falls die Breite
oder Höhe auf 0 gesetzt werden, dann wird das gesamte linke und rechte Bild von der
automatischen Belichtungsfunktion berücksichtigt. Dies ist die Standardeinstellung.

Die Region wird in der Web GUI mit einem Rechteck im linken rektifizierten Bild visuali-
siert. Sie kann über Slider oder direkt im Bild mithilfe der Schaltfläche Bereich im Bild
auswählen verändert werden.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?<exp_offset_

→˓x|exp_offset_y|exp_width|exp_height>=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?<exp_offset_x|exp_offset_y|exp_

→˓width|exp_height>=<value>

exp_value (Belichtungszeit)

Dieser Wert gibt die Belichtung im manuellen Modus an. Diese Belichtung wird
konstant gehalten, auch wenn die Bilder unterbelichtet sind.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?exp_value=
→˓<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_value=<value>

gain_value (Verstärkungsfaktor)

Dieser Wert gibt den Verstärkungsfaktor im manuellen Modus an. Höhere Verstärkungswer-
te reduzieren die Belichtungszeit, führen aber zu Rauschen.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?gain_value=
→˓<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?gain_value=<value>

wb_auto (Weißabgleich Auto oder Manuell)

Dieser Wert kann für den automatischen Weißabgleich auf true gesetzt werden. Ist dieser
Wert false, wird der Weißabgleich über wb_value bestimmt.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

Roboception GmbH
Handbuch: rc_reason_stack

46 Rev: 26.01.4
Status: 30.01.2026

6.1. Kamera Modul

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?wb_auto=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?wb_auto=<value>

wb_value (Weißabgleich Manuell Wert)

Dieser Wert bestimmt den Weißabgleich, wenn wb_auto auf false gesetzt ist.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?<wb_ratio_blue|wb_ratio_

→˓red>=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?<wb_ratio_blue|wb_ratio_red>=<value>

6.1.5.2 Statuswerte

Das rc_camera-Modul meldet die folgenden Statuswerte für eine Pipeline vom Typ orbbec:

Tab. 6.6: Statuswerte des rc_camera-Moduls
Name Beschreibung
baseline Intern angenommener Stereo-Basisabstand 𝑡 in Metern zur

Berechnung von Disparitätsbildern
brightness Aktuelle Helligkeit als Wert zwischen 0 und 1
color 0 für monochrome Kameras, 1 für Farbkameras
exp Aktuelle Belichtung. Dieser Wert wird unter der Bildvorschau in der

Web GUI als Belichtung angezeigt.
focal Brennweitenfaktor, normalisiert auf eine Bildbreite von 1
fps Aktuelle Bildwiederholrate der Kamerabilder in Hertz. Dieser Wert wird

unter der Bildvorschau in der Web GUI als FPS (Hz) angezeigt.
gain Aktueller Verstärkungsfaktor. Dieser Wert wird unter der Bildvorschau

in der Web GUI als Verstärkung angezeigt.
height Höhe des Kamerabilds in Pixeln. Dieser Wert wird unter der

Bildvorschau in der Web GUI als zweiter Teil von Auflösung (px)
angezeigt.

last_capture_ok 1 wenn die letzte Bildaufnahme erfolgreich war
last_timestamp_grabbed Zeitstempel des letzten aufgenommenen Bildes
test 0 for Live-Bilder und 1 für Test-Bilder
width Breite des Kamerabilds in Pixeln. Dieser Wert wird unter der

Bildvorschau in der Web GUI als erster Teil von Auflösung (px)
angezeigt.

6.1.5.3 Services

In einer Pipeline vom Typ orbbec bietet das rc_camera Modul folgende Services.

Roboception GmbH
Handbuch: rc_reason_stack

47 Rev: 26.01.4
Status: 30.01.2026

6.1. Kamera Modul

reset_defaults

stellt die Werkseinstellungen der Parameter dieses Moduls wieder her und wendet sie an
(„factory reset“).

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/services/reset_defaults

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/services/reset_defaults

Request

Dieser Service hat keine Argumente.

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.1.6 Pipelinetyp zivid

Bemerkung: Die Firmwareversion der angeschlossenen zivid Kamera muss der vom
rc_reason_stack geforderten Firmwareversion entsprechen, sonst kann die zivid nicht verwendet
werden. Um die zivid Firmware auf die benötigte Version zu aktualisieren, öffnen Sie die Web
GUI (Abschnitt 7.1), navigieren Sie zu System → Kamerapipelines und wählen Sie die zivid Pipeline.
Danach wird das Update durch Klicken auf Zivid Firmware updaten durchgeführt.

6.1.6.1 Benutzerdefinierte Voreinstellungen

Die zivid Kamera verfügt über mehrere vorkonfigurierte Einstellungen für die Bildaufnahme, sogenannte
Presets. Die 2D-Presets sind speziell auf die 2D-Bildaufnahme zugeschnitten und beinhalten vor allem
Einstellungen wie Auflösung, Belichtungszeit, Helligkeit und Verstärkung. Sie sind für Anwendungen
optimiert, die detaillierte Farb- oder Monochrombilder erfordern.

Benutzer können mit der Software Zivid Studio (https://www.zivid.com/zivid-studio-software) auch eige-
ne 2D-Voreinstellungen erstellen und als .yml-Dateien speichern. Diese Voreinstellungsdateien kön-
nen auf der Seite Kamera der Web GUI auf den rc_reason_stack hochgeladen werden. Alternativ
können Voreinstellungen über die REST-API verwaltet werden, wie in Presets API beschrieben. Be-
nutzerdefinierte Voreinstellungen können dann wie die vordefinierten Voreinstellungen über den Lauf-
zeitparameter preset_name für die Bildaufnahme ausgewählt werden. Auch 3D-Voreinstellungen mit
2D-Einstellungen können hochgeladen und als 2D-Voreinstellung verwendet werden. In diesem Fall
werden nur die 2D-Einstellungen angewendet.

Roboception GmbH
Handbuch: rc_reason_stack

48 Rev: 26.01.4
Status: 30.01.2026

https://www.zivid.com/zivid-studio-software

6.1. Kamera Modul

6.1.6.2 Parameter

Das Kamera-Modul auf einer Pipeline vom Typ zivid wird in der REST-API als rc_camera bezeichnet
und in der Web GUI (Abschnitt 7.1) auf der Seite Kamera in der gewünschten Pipeline dargestellt.
Der Benutzer kann die Stereo-Matching-Parameter entweder dort oder über die REST-API (REST-API-
Schnittstelle, Abschnitt 7.2) ändern.

Übersicht über die Parameter

Dieses Softwaremodul bietet folgende Laufzeitparameter:

Tab. 6.7: Laufzeitparameter des rc_camera-Moduls in einer Pipeli-
ne vom Typ zivid

Name Typ Min. Max. Default Beschreibung
acquisition_mode string - - Trigger Aufnahmemodus: [Continuous,

Trigger]
fps float64 1.0 25.0 25.0 Bildwiederholrate in Hertz
preset_name string - - - Name der Voreinstellung

Beschreibung der Laufzeitparameter

Jeder Laufzeitparameter ist durch eine eigene Zeile auf der Seite Kamera der Web GUI repräsentiert.
Der Web GUI-Name des Parameters ist in Klammern hinter dem Namen des Parameters angegeben
und die Parameter werden in der Reihenfolge, in der sie in der Web GUI erscheinen, aufgelistet:

acquisition_mode (Aufnahmemodus)

Dieser Parameter bestimmt den Aufnahmemodus der 2D-Kamerabilder. Im Modus Kontinu-
ierlich (Continuous) nimmt die Kamera Bilder mit der in fps angegebenen Bildwiederholrate
auf. Im Modus Trigger (Trigger) werden nur Bilder aufgenommen, wenn die Kamera ein
Software-Triggersignal empfängt, entweder durch Drücken des Aufnehmen-Knopfes in der
Web GUI oder durch Aufrufen des Services rc_camera/acquisition_trigger (siehe Ser-
vices (Abschnitt 6.1.6.4)).

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?acquisition_

→˓mode=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?acquisition_mode=<value>

fps (FPS (Hz))

Dieser Wert bezeichnet die Bildwiederholrate der Kamera in Bildern pro Sekunde und be-
grenzt die Frequenz, mit der Kamerabilder aufgenommen werden können.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?fps=<value>

Roboception GmbH
Handbuch: rc_reason_stack

49 Rev: 26.01.4
Status: 30.01.2026

6.1. Kamera Modul

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?fps=<value>

preset_name (Voreinstellung)

Mit diesem Parameter kann eine Voreinstellung für die 2D-Bildaufnahme ausgewählt wer-
den. Die Voreinstellung kann eine der vorkonfigurierten zivid-Voreinstellungen sein, die vom
zivid-Modell abhängen und vom angeschlossenen Gerät gelesen werden, oder eine benut-
zerdefinierte Voreinstellung, die auf den rc_reason_stack hochgeladen wurde (siehe Benut-
zerdefinierte Voreinstellungen, Abschnitt 6.1.6.1).

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/parameters?preset_name=
→˓<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?preset_name=<value>

6.1.6.3 Statuswerte

Das rc_camera-Modul meldet die folgenden Statuswerte für eine Pipeline vom Typ zivid:

Tab. 6.8: Die Statuswerte des rc_camera-Moduls
Name Beschreibung
baseline Intern angenommener Stereo-Basisabstand 𝑡 in Metern zur

Berechnung von Disparitätsbildern
brightness Aktuelle Helligkeit des Bildes als Wert zwischen 0 und 1
color 0 für monochrome Kameras, 1 für Farbkameras
exp Aktuelle Belichtungszeit in Sekunden. Dieser Wert wird unter der

Bildvorschau in der Web GUI als Belichtung (ms) angezeigt.
focal Brennweitenfaktor, normalisiert auf eine Bildbreite von 1
fps Aktuelle Bildwiederholrate der Kamerabilder in Hertz. Dieser Wert wird

unter der Bildvorschau in der Web GUI als FPS (Hz) angezeigt.
height Höhe des Kamerabilds in Pixeln. Dieser Wert wird unter der

Bildvorschau in der Web GUI als zweiter Teil von Auflösung (px)
angezeigt.

last_capture_ok 1 wenn die letzte Bildaufnahme erfolgreich war
last_timestamp_grabbed Zeitstempel des letzten aufgenommenen Bildes
test 0 for Live-Bilder und 1 für Test-Bilder
width Breite des Kamerabilds in Pixeln. Dieser Wert wird unter der

Bildvorschau in der Web GUI als erster Teil von Auflösung (px)
angezeigt.

6.1.6.4 Services

In einer Pipeline vom Typ zivid bietet das rc_camera Modul folgende Services.

acquisition_trigger

triggert eine Bildaufnahme, wenn der Aufnahmemodus auf Trigger gesetzt sind.

Roboception GmbH
Handbuch: rc_reason_stack

50 Rev: 26.01.4
Status: 30.01.2026

6.1. Kamera Modul

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/acquisition_trigger

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/services/acquisition_trigger

Request

Dieser Service hat keine Argumente.

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "acquisition_trigger",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

reset_defaults‘

stellt die Werkseinstellungen der Parameter dieses Moduls wieder her und wendet sie an
(„factory reset“).

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_camera/services/reset_defaults

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_camera/services/reset_defaults

Request

Dieser Service hat keine Argumente.

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

Roboception GmbH
Handbuch: rc_reason_stack

51 Rev: 26.01.4
Status: 30.01.2026

6.1. Kamera Modul

6.1.6.5 Presets API

Die 2D Voreinstellungen können über die folgenden REST-API Endpunkte gesetzt, abgefragt und ge-
löscht werden.

GET /presets/rc_zivid/2d_presets
Listet zivid 2D Voreinstellungen.

Musteranfrage

GET /api/v2/presets/rc_zivid/2d_presets HTTP/1.1

Antwort-Header

• Content-Type – application/json

Statuswerte

• 200 OK – Erfolgreiche Verarbeitung

GET /presets/rc_zivid/2d_presets/{id}
Gibt eine zivid 2D Voreinstellungsdatei (yml) zurück.

Musteranfrage

GET /api/v2/presets/rc_zivid/2d_presets/<id> HTTP/1.1

Parameter

• id (string) – ID/Dateiname ohne Endung (obligatorisch)

Antwort-Header

• Content-Type – application/octet-stream

Statuswerte

• 200 OK – Erfolgreiche Verarbeitung

• 404 Not Found – yml Datei nicht gefunden

PUT /presets/rc_zivid/2d_presets/{id}
Erstellt oder aktualisiert eine zivid 2D Voreinstellungsdatei.

Musteranfrage

PUT /api/v2/presets/rc_zivid/2d_presets/<id> HTTP/1.1
Accept: multipart/form-data application/json

Parameter

• id (string) – ID/Dateiname ohne Endung (obligatorisch)

Formularparameter

• file – yml Voreinstellungsdatei (obligatorisch)

Anfrage-Header

• Accept – multipart/form-data application/json

Antwort-Header

• Content-Type – application/json

Statuswerte

• 200 OK – Erfolgreiche Verarbeitung

Roboception GmbH
Handbuch: rc_reason_stack

52 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

6.2. 3D-Module

• 400 Bad Request – yml ist ungültig oder maximale Anzahl von Elementen er-
reicht

• 413 Request Entity Too Large – Datei zu groß

DELETE /presets/rc_zivid/2d_presets/{id}
Entfernt eine zivid 2D Voreinstellungsdatei

Musteranfrage

DELETE /api/v2/presets/rc_zivid/2d_presets/<id> HTTP/1.1
Accept: application/json

Parameter

• id (string) – ID/Dateiname ohne Endung (obligatorisch)

Anfrage-Header

• Accept – application/json

Antwort-Header

• Content-Type – application/json

Statuswerte

• 200 OK – Erfolgreiche Verarbeitung

• 404 Not Found – Element nicht gefunden

6.2 3D-Module

Die 3D-Kamera-Software des rc_reason_stack enthält die folgenden Module:

• Stereo-Matching Modul (rc_stereomatching, Abschnitt 6.2.2) nutzt die rektifizierten Bildpaa-
re der verbundenen Stereokamera, z.B. des rc_visard, um 3D-Tiefeninformationen, z.B. für
Disparitäts-, Fehler- und Konfidenzbilder, zu berechnen. Dieses Modul läuft nur auf Pipelines
für Stereokameras, d.h. rc_visard, rc_viscore und stereo_ace.

• Zivid Modul (rc_zivid, Abschnitt 6.2.3) stellt 3D-Tiefeninformationen, z.B. Disparitäts-, Fehler-
und Konfidenzbilder, der angeschlossenen zivid Structured Light Kamera zur Verfügung. Die-
ses Modul läuft nur auf Pipelines vom Typ zivid.

• Orbbec Modul (rc_orbbec, Abschnitt 6.2.4) stellt 3D-Tiefeninformationen, z.B. Disparitäts-,
Fehler- und Konfidenzbilder, der angeschlossenen Orbbec Gemini 335Le Stereokamera zur
Verfügung. Dieses Modul läuft nur auf Pipelines vom Typ orbbec.

Diese Softwaremodule sind pipelinespezifisch, was heißt, dass sie innerhalb jeder Kamerapipeline lau-
fen. Änderungen ihrer Einstellungen oder Parameter gelten nur für die zugehörige Pipeline und haben
keinen Einfluss auf andere Kamerapipelines auf dem rc_reason_stack.

6.2.1 Anzeigen und Herunterladen von Tiefenbildern und Punktwolken

Der rc_reason_stack stellt zeitgestempelte Disparitäts-, Fehler- und Konfidenzbilder über gRPC Bild-
datenschnittstelle (siehe Abschnitt 7.6) zur Verfügung.

Live-Streams in geringerer Qualität werden auf der Tiefenbild Seite in der gewünschten Pipeline in der
Web GUI (Abschnitt 7.1) bereitgestellt.

Die Web GUI bietet weiterhin die Möglichkeit, einen Schnappschuss der aktuellen Szene mit den Tiefen-
, Fehler und Konfidenzbildern, sowie der Punktwolke als .tar.gz-Datei zu speichern, wie in Herunterla-
den von Kamerabildern (Abschnitt 7.1.5) beschrieben wird.

Roboception GmbH
Handbuch: rc_reason_stack

53 Rev: 26.01.4
Status: 30.01.2026

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.2. 3D-Module

6.2.2 Stereo-Matching Modul

Das Stereo-Matching-Modul ist ein Basismodul, das auf jedem rc_reason_stack verfügbar ist, und be-
rechnet auf Grundlage des rektifizierten Stereobildpaars Disparitäts-, Fehler- und Konfidenzbilder.

Bemerkung: Dieses Modul ist nicht verfügbar in Kamerapipelines vom Typ zivid oder orbbec.

Um Disparitäts-, Fehler- und Konfidenzbilder in voller Auflösung zu berechnen, wird eine gesonderte
StereoPlus Lizenz (Abschnitt 8.2) benötigt. Diese Lizenz ist auf jedem rc_reason_stack vorhanden, der
nach dem 31.01.2019 gekauft wurde.

6.2.2.1 Parameter

Das Stereo-Matching-Modul wird in der REST-API als rc_stereomatching bezeichnet und in der Web
GUI (Abschnitt 7.1) auf der Seite Tiefenbild in der gewünschten Pipeline dargestellt. Der Benutzer kann
die Stereo-Matching-Parameter entweder dort oder über die REST-API (REST-API-Schnittstelle, Ab-
schnitt 7.2) ändern.

Übersicht über die Parameter

Dieses Softwaremodul bietet folgende Laufzeitparameter:

Tab. 6.9: Laufzeitparameter des rc_stereomatching-Moduls
Name Typ Min. Max. Default Beschreibung
acquisition_mode string - - Continuous Aufnahmemodus: [Continuous,

SingleFrame, SingleFrameOut1]
double_shot bool false true false Kombination zweier Disparitätsbil-

der von zwei Stereobildpaaren
exposure_adapt_timeout float64 0.0 2.0 0.0 Maximale Zeit in Sekunden, die

nach Auslösen einer Aufnahme im
Einzelbild-Modus gewartet wird, bis
die Belichtung angepasst ist

fill int32 0 4 3 Disparitätstoleranz (für das Füllen
von Löchern) in Pixeln

maxdepth float64 0.1 100.0 100.0 Maximaler Abstand in Metern
maxdeptherr float64 0.01 100.0 100.0 Maximaler Tiefenfehler in Metern
minconf float64 0.5 1.0 0.5 Mindestkonfidenz
mindepth float64 0.1 100.0 0.1 Minimaler Abstand in Metern
quality string - - High Full (Voll), High (Hoch), Medium

(Mittel), oder Low (Niedrig). Full be-
nötigt eine ‚StereoPlus‘-Lizenz.

seg int32 0 4000 200 Mindestgröße der gültigen Dispari-
tätssegmente in Pixeln

smooth bool false true true Glättung von Disparitätsbildern (be-
nötigt eine ‚StereoPlus‘-Lizenz)

static_scene bool false true false Mitteln von Bildern in statischen
Szenen, um Rauschen zu reduzie-
ren

Beschreibung der Laufzeitparameter

Jeder Laufzeitparameter ist durch eine eigene Zeile auf der Seite Tiefenbild der Web GUI repräsentiert.
Der Web GUI-Name des Parameters ist in Klammern hinter dem Namen des Parameters angegeben
und die Parameter werden in der Reihenfolge, in der sie in der Web GUI erscheinen, aufgelistet:

Roboception GmbH
Handbuch: rc_reason_stack

54 Rev: 26.01.4
Status: 30.01.2026

6.2. 3D-Module

Abb. 6.3: Seite Tiefenbild der Web GUI

acquisition_mode (Aufnahmemodus)

Der Aufnahmemodus kann auf Continuous (Kontinuierlich), SingleFrame (Einzel-
bild) oder SingleFrameOut1 (Einzelbild + Out1) eingestellt werden. Kontinuier-
lich ist die Standardeinstellung, bei der das Stereo-Matching kontinuierlich mit
der vom Benutzer eingestellten Bildwiederholrate, entsprechend der verfügba-
ren Rechenressourcen, durchgeführt wird. Bei den beiden anderen Modi wird
das Stereo-Matching bei jedem Drücken des Aufnehmen-Knopfes durchgeführt.
Der Einzelbild + Out1 Modus kontrolliert zusätzlich einen externen Projektor, falls
dieser an GPIO-Ausgang 1 angeschlossen ist (IOControl und Projektor-Kontrolle,
Abschnitt 6.4.4). In diesem Modus wird out1_mode des IOControl-Moduls automa-

Roboception GmbH
Handbuch: rc_reason_stack

55 Rev: 26.01.4
Status: 30.01.2026

6.2. 3D-Module

tisch bei jedem Trigger auf ExposureAlternateActive und nach dem Aufnehmen
der Bilder für das Stereo-Matching auf Low gesetzt.

Bemerkung: Der Einzelbild + Out1 Modus kann nur dann über out1_mode
einen Projektor steuern, wenn die IOControl-Lizenz auf dem rc_reason_stack
verfügbar ist.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?
→˓acquisition_mode=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?acquisition_mode=<value>

exposure_adapt_timeout (Timeout Belichtungsautomatik)

Der Timeout für die Belichtungsautomatik gibt die maximale Zeitspanne in Se-
kunden an, die das System nach dem Auslösen einer Bildaufnahme warten wird,
bis die Belichtungsautomatik die optimale Belichtungszeit gefunden hat. Dieser
Timeout wird nur im Modus SingleFrame (Einzelbild) oder SingleFrameOut1 (Ein-
zelbild + Out1) bei aktiver Belichtungsautomatik verwendet. Dieser Wert sollte er-
höht werden, wenn in Anwendungen mit veränderlichen Lichtbedingungen Bilder
unter- oder überbelichtet werden, und das resultierende Disparitätsbild nicht dicht
genug ist. In diesem Fall werden mehrere Bilder aufgenommen, bis sich die Be-
lichtungsautomatik angepasst hat oder der Timeout erreicht ist, und erst dann wird
die eigentliche Bildaufnahme ausgelöst.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?
→˓exposure_adapt_timeout=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?exposure_adapt_timeout=
→˓<value>

quality (Qualität)

Disparitätsbilder lassen sich in verschiedenen Auflösungen berechnen: Full (Voll,
volle Bildauflösung), High (Hoch, halbe Bildauflösung), Medium (Mittel, Viertel-
Bildauflösung) und Low (Niedrig, Sechstel-Bildauflösung). Stereo-Matching mit vol-
ler Auflösung (Full) ist nur mit einer gültigen StereoPlus Lizenz möglich. Je nied-
riger die Auflösung, desto höher die Bildwiederholrate des Disparitätsbilds. Es ist
zu beachten, dass die Bildwiederholrate der Disparitäts-, Konfidenz- und Fehlerbil-
der immer höchstens der Bildwiederholrate der Kamera entspricht. Falls die Pro-
jektoreinstellung ExposureAlternateActive ist, kann die Wiederholrate der Bilder
höchstens die halbe Bildwiederholrate der Kamera sein.

Wenn volle Auflösung eingestellt ist, dann ist der mögliche Tiefenbereich intern
limitiert, aufgrund von beschränktem on-board Speicherplatz. Es wird empfohlen

Roboception GmbH
Handbuch: rc_reason_stack

56 Rev: 26.01.4
Status: 30.01.2026

6.2. 3D-Module

mindepth and maxdepth auf den Tiefenbereich anzupassen der für die Applikation
benötigt wird.

Tab. 6.10: Auflösung des Tiefenbilds (Pixel) in Abhängigkeit von
der gewählten Qualität

Verbundene Kamera Volle
Qualität
(Full)

Hohe
Qualität
(High)

Mittlere Qualität
(Medium)

Niedrige
Qualität (Low)

rc_visard 1280 x 960 640 x 480 320 x 240 214 x 160
rc_visard_ng 1440 x 1080 720 x 540 360 x 270 240 x 180
rc_viscore 4112 x 3008 2056 x 1504 1028 x 752 686 x 502

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?
→˓quality=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?quality=<value>

double_shot (Double-Shot)

Das Aktivieren dieses Modus führt zu dichteren Disparitätsbildern, aber einer erhöhten Ver-
arbeitungszeit.

Bei Szenen, die mit einem Projektor im Single + Out1 Modus oder im kontinuierlichen Mo-
dus mit der Projektoreinstellung ExposureAlternateActive aufgenommen werden, werden
Löcher, die durch Projektor-Reflexionen verursacht werden, gefüllt mit Tiefeninformationen
aus den Bildern ohne Projektormuster. In diesem Fall darf der double_shot Modus nur ver-
wendet werden, wenn sich die Szene während der Aufnahme der Bilder nicht verändert.

Bei allen anderen Szenen werden Löcher im Disparitätsbild mit Tiefeninformationen aus
demselben, herunterskalierten Bild gefüllt.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?double_

→˓shot=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?double_shot=<value>

static_scene (Statisch)

Mit dieser Option werden acht aufeinanderfolgende Kamerabilder vor dem Matching gemit-
telt. Dies reduziert Rauschen, was die Qualität des Stereo-Matching-Resultats verbessert.
Allerdings erhöht sich auch die Latenz deutlich. Der Zeitstempel des ersten Bildes wird als
Zeitstempel für das Disparitätsbild verwendet. Diese Option betrifft nur das Matching in vol-
ler und hoher Qualität. Sie darf nur verwendet werden, wenn sich die Szene während der
Aufnahme der acht Bilder nicht verändert.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

Roboception GmbH
Handbuch: rc_reason_stack

57 Rev: 26.01.4
Status: 30.01.2026

6.2. 3D-Module

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?static_

→˓scene=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?static_scene=<value>

mindepth (Minimaler Abstand)

Dieser Wert bezeichnet den geringsten Abstand zur Kamera, ab dem Messungen möglich
sind. Größere Werte verringern implizit den Disparitätsbereich, wodurch sich auch die Re-
chenzeit verkürzt. Der minimale Abstand wird in Metern angegeben.

Abhängig von den Eigenschaften des Sensors kann der tatsächliche minimale Abstand grö-
ßer sein als die Benutzereinstellung. Der tatsächliche minimale Abstand wird in den Status-
werten angezeigt.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?
→˓mindepth=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?mindepth=<value>

maxdepth (Maximaler Abstand)

Dieser Wert ist der größte Abstand zur Kamera, bis zu dem Messungen möglich sind. Pi-
xel mit größeren Distanzwerten werden auf „ungültig“ gesetzt. Wird dieser Wert auf das
Maximum gesetzt, so sind Abstände bis Unendlich möglich. Der maximale Abstand wird in
Metern angegeben.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?
→˓maxdepth=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?maxdepth=<value>

smooth (Glättung)

Diese Option aktiviert die Glättung von Disparitätswerten. Sie ist nur mit gültiger StereoPlus-
Lizenz verfügbar.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?smooth=
→˓<value>

Roboception GmbH
Handbuch: rc_reason_stack

58 Rev: 26.01.4
Status: 30.01.2026

6.2. 3D-Module

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?smooth=<value>

fill (Füllen)

Diese Option wird verwendet, um Löcher im Disparitätsbild durch Interpolation zu füllen. Der
Füllwert gibt die maximale Disparitätsabweichung am Rand des Lochs an. Größere Füllwer-
te können die Anzahl an Löchern verringern, aber die interpolierten Werte können größere
Fehler aufweisen. Maximal 5% der Pixel werden interpoliert. Kleine Löcher werden dabei be-
vorzugt interpoliert. Die Konfidenz für die interpolierten Pixel wird auf einen geringen Wert
von 0,5 eingestellt. Das Auffüllen lässt sich deaktivieren, wenn der Wert auf 0 gesetzt wird.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?fill=
→˓<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?fill=<value>

seg (Segmentierung)

Der Segmentierungsparameter wird verwendet, um die Mindestanzahl an Pixeln anzugeben,
die eine zusammenhängende Disparitätsregion im Disparitätsbild ausfüllen muss. Isolierte
Regionen, die kleiner sind, werden im Disparitätsbild auf ungültig gesetzt. Der Wert bezieht
sich immer auf ein Disparitätsbild mit hoher Qualität (halbe Auflösung) und muss nicht ver-
ändert werden, wenn andere Qualitäten gewählt werden. Die Segmentierung eignet sich,
um Disparitätsfehler zu entfernen. Bei größeren Werten kann es jedoch vorkommen, dass
real vorhandene Objekte entfernt werden.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?seg=
→˓<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?seg=<value>

minconf (Minimale Konfidenz)

Die minimale Konfidenz lässt sich einstellen, um potenziell falsche Disparitätsmessungen
herauszufiltern. Dabei werden alle Pixel, deren Konfidenz unter dem gewählten Wert liegt,
im Disparitätsbild auf „ungültig“ gesetzt.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?
→˓minconf=<value>

API Version 1 (veraltet)

Roboception GmbH
Handbuch: rc_reason_stack

59 Rev: 26.01.4
Status: 30.01.2026

6.2. 3D-Module

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?minconf=<value>

maxdeptherr (Maximaler Fehler)

Der maximale Fehler wird verwendet, um Messungen, die zu ungenau sind, herauszufiltern.
Alle Pixel mit einem Tiefenfehler, der den gewählten Wert überschreitet, werden im Dispa-
ritätsbild auf „ungültig“ gesetzt. Der maximale Tiefenfehler wird in Metern angegeben. Der
Tiefenfehler wächst in der Regel quadratisch mit dem Abstand eines Objekts zur Kamera
(siehe Konfidenz- und Fehlerbilder , Abschnitt 4.2.3).

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/parameters?
→˓maxdeptherr=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?maxdeptherr=<value>

6.2.2.2 Statuswerte

Dieses Modul meldet folgende Statuswerte:

Tab. 6.11: Statuswerte des rc_stereomatching-Moduls
Name Beschreibung
fps Tatsächliche Bildwiederholrate der Disparitäts-, Fehler- und

Konfidenzbilder. Dieser Wert wird unter der Bildvorschau in der Web GUI
als Bildwiederholrate (Hz) angezeigt.

latency Zeit zwischen Bildaufnahme und Weitergabe des Disparitätsbildes in
Sekunden. Dieser Wert wird unter der Bildvorschau in der Web GUI als
Latenz (s) angezeigt.

width Aktuelle Breite von Disparitäts-, Fehler- und Konfidenzbild in Pixeln. Dieser
Wert wird unter der Bildvorschau in der Web GUI als erster Wert von
Auflösung (px) angezeigt.

height Aktuelle Höhe von Disparitäts-, Fehler- und Konfidenzbild in Pixeln. Dieser
Wert wird unter der Bildvorschau in der Web GUI als zweiter Wert von
Auflösung (px) angezeigt.

mindepth Tatsächlicher minimaler Arbeitsabstand in Metern. Dieser Wert wird unter
der Bildvorschau in der Web GUI als Min. Abstand (m) angezeigt.

maxdepth Tatsächlicher maximaler Arbeitsabstand in Metern. Dieser Wert wird unter
der Bildvorschau in der Web GUI als Max. Abstand (m) angezeigt.

time_matching Zeit in Sekunden für die Durchführung des Stereo-Matchings mittels SGM
auf der GPU

time_postprocessing Zeit in Sekunden für die Nachbearbeitung des Matching-Ergebnisses auf
der CPU

reduced_depth_range Gibt an, ob der Tiefenbereich aufgrund von Rechenressourcen verringert
ist ist

6.2.2.3 Services

Das Stereo-Matching-Modul bietet folgende Services.

Roboception GmbH
Handbuch: rc_reason_stack

60 Rev: 26.01.4
Status: 30.01.2026

6.2. 3D-Module

acquisition_trigger

signalisiert dem Modul, das Stereo-Matching auf den nächsten Stereobildern durchzufüh-
ren, falls acquisition_mode auf SingleFrame (Einzelbild) oder SingleFrameOut1 (Einzel-
bild+Out1) eingestellt ist.

Details

Es wird ein Fehler zurückgegeben, falls acquisition_mode auf Continuous (Kontinuierlich)
eingestellt ist.

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/services/
→˓acquisition_trigger

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_stereomatching/services/acquisition_trigger

Request

Dieser Service hat keine Argumente.

Response

Mögliche Rückgabewerte sind in der Tabelle unten aufgeführt.

Tab. 6.12: Mögliche Rückgabewerte des acquisition_trigger
Serviceaufrufs.

Code Beschreibung
0 Erfolgreich
-8 Triggern ist nur im Einzelbild-Modus möglich.

101 Triggern wird ignoriert, da bereits ein anderer Triggeraufruf stattfindet.
102 Triggern wird ignoriert, da keine Empfänger registriert sind.

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "acquisition_trigger",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

reset_defaults

stellt die Werkseinstellungen der Parameter dieses Moduls wieder her und wendet sie an
(„factory reset“).

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

Roboception GmbH
Handbuch: rc_reason_stack

61 Rev: 26.01.4
Status: 30.01.2026

6.2. 3D-Module

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_stereomatching/services/reset_

→˓defaults

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_stereomatching/services/reset_defaults

Request

Dieser Service hat keine Argumente.

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.2.3 Zivid Modul

Bemerkung: Die Firmwareversion der angeschlossenen zivid Kamera muss der vom
rc_reason_stack geforderten Firmwareversion entsprechen, sonst kann die zivid nicht verwendet
werden. Um die zivid Firmware auf die benötigte Version zu aktualisieren, öffnen Sie die Web
GUI (Abschnitt 7.1), navigieren Sie zu System → Kamerapipelines und wählen Sie die zivid Pipeline.
Danach wird das Update durch Klicken auf Zivid Firmware updaten durchgeführt.

Das zivid Modul ist ein Basismodul, das auf jedem rc_reason_stack verfügbar ist und liefert Disparitäts-
, Konfidenz- und Fehlerbilder einer angeschlossenen zivid Structured Light Kamera. Es läuft nur in
Kamera-Pipelines vom Typ zivid.

6.2.3.1 Benutzerdefinierte Voreinstellungen

Die zivid-Kamera verfügt über zahlreiche vorkonfigurierte Einstellungen zur Bildaufnahme, sogenannte
Presets.

Die mit der zivid-Kamera mitgelieferten 3D-Voreinstellungen umfassen sowohl 2D- als auch 3D-
Einstellungen und ermöglichen die gleichzeitige Erfassung von Farbbildern und Tiefendaten. Die 2D-
Bildeinstellungen werden jedoch ignoriert. Stattdessen wird das 2D-Bild mit der in rc_camera gewähl-
ten Voreinstellung aufgenommen (siehe Benutzerdefinierte Voreinstellungen, Abschnitt 6.1.6.1). Die
3D-Voreinstellungen sind nach Anwendungsanforderungen kategorisiert, z.B. Consumer Goods, Ma-
nufacturing usw.

Benutzer können mit der Software Zivid Studio (https://www.zivid.com/zivid-studio-software) auch ei-
gene 3D-Presets erstellen und als .yml-Dateien speichern. Diese Preset-Dateien können auf der Seite
Tiefenbild der Web GUI auf den rc_reason_stack hochgeladen werden. Alternativ können Voreinstellun-
gen über die REST-API verwaltet werden, wie in Presets API beschrieben. Benutzerdefinierte Presets
können dann wie die vordefinierten Presets über den Laufzeitparameter preset_name für die Tiefenbild-
aufnahme ausgewählt werden. Soll das im benutzerdefinierten 3D-Preset enthaltene 2D-Preset ver-
wendet werden, muss dieses ebenfalls als 2D-Preset hochgeladen und als preset_name in rc_camera
ausgewählt werden.

Roboception GmbH
Handbuch: rc_reason_stack

62 Rev: 26.01.4
Status: 30.01.2026

https://www.zivid.com/zivid-studio-software

6.2. 3D-Module

6.2.3.2 Parameter

Das zivid Modul wird in der REST-API als rc_zivid bezeichnet und in der Web GUI (Abschnitt 7.1) auf
der Seite Tiefenbild in der gewünschten Pipeline dargestellt, wenn eine zivid Kamera an der entspre-
chenden Pipeline angeschlossen ist. Der Benutzer kann die zivid Parameter entweder dort oder über
die REST-API (REST-API-Schnittstelle, Abschnitt 7.2) ändern.

Übersicht über die Parameter

Dieses Softwaremodul bietet folgende Laufzeitparameter:

Tab. 6.13: Laufzeitparameter des rc_zivid Moduls
Name Typ Min. Max. Default Beschreibung
acquisition_mode string - - SingleFrame Aufnahmemodus: [Continuous,

SingleFrame]
maxdepth float64 0.3 100.0 100.0 Maximaler Abstand in Metern
mindepth float64 0.3 100.0 0.3 Minimaler Abstand in Metern
preset_name string - - - Name der Voreinstellung

Beschreibung der Laufzeitparameter

Jeder Laufzeitparameter ist durch eine eigene Zeile auf der Seite Tiefenbild der Web GUI repräsentiert.
Der Web GUI-Name des Parameters ist in Klammern hinter dem Namen des Parameters angegeben
und die Parameter werden in der Reihenfolge, in der sie in der Web GUI erscheinen, aufgelistet:

acquisition_mode (Aufnahmemodus)

Dieser Parameter bestimmt den Aufnahmemodus der 3D-Tiefenbilder. Der Auf-
nahmemodus kann auf Kontinuierlich (Continuous) oder Einzelbild (SingleFrame)
gestellt werden. Letzteres ist der Standardwert, wobei ein Tiefenbild bei je-
dem Klick auf den Aufnehmen-Knopf oder beim Aufruf des Services rc_zivid/
acquisition_trigger (siehe Services des rc_zivid Moduls, Abschnitt 6.2.3.4))
aufgenommen wird. Im Modus Kontinuierlich (Continuous) werden Tiefenbilder
kontinuierlich aufgenommen, wenn auch der 2D Bildaufnahmemodus auf Konti-
nuierlich (Continuous) gestellt ist. Andernfalls werden Tiefenbilder nur aufgenom-
men, wenn eine 2D Bildaufnahme ausgelöst wird.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_zivid/parameters?acquisition_

→˓mode=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_zivid/parameters?acquisition_mode=<value>

preset_name (Voreinstellung)

Mit diesem Parameter kann eine Voreinstellung für die 3D-Bildaufnahme ausgewählt wer-
den. Die Voreinstellung kann eine der vorkonfigurierten zivid-Voreinstellungen sein, die vom
zivid-Modell abhängen und vom angeschlossenen Gerät gelesen werden, oder eine benut-
zerdefinierte Voreinstellung, die auf den rc_reason_stack hochgeladen wurde (siehe Benut-
zerdefinierte Voreinstellungen, Abschnitt 6.2.3.1).

Roboception GmbH
Handbuch: rc_reason_stack

63 Rev: 26.01.4
Status: 30.01.2026

6.2. 3D-Module

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_zivid/parameters?preset_name=
→˓<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_zivid/parameters?preset_name=<value>

6.2.3.3 Statuswerte

Das rc_zivid Modul meldet die folgenden Statuswerte:

Tab. 6.14: Die Statuswerte des rc_zivid-Moduls
Name Beschreibung
fps Aktuelle Bildwiederholrate der Disparitäts-, Fehler- und Konfidenzbilder

in Hertz. Dieser Wert wird unter der Bildvorschau in der Web GUI als
FPS (Hz) angezeigt.

height Höhe der Disparitäts-, Fehler- und Konfidenzbilder in Pixeln. Dieser
Wert wird unter der Bildvorschau in der Web GUI als zweiter Teil von
Auflösung (px) angezeigt.

last_capture_ok 1 wenn die letzte Bildaufnahme erfolgreich war
last_timestamp_grabbed Zeitstempel des letzten aufgenommenen Tiefenbilds
latency Aktuelle Bildwiederholrate der Disparitäts-, Fehler- und Konfidenzbilder

in Hertz. Dieser Wert wird unter der Bildvorschau in der Web GUI als
FPS (Hz) angezeigt.

width Breite der Disparitäts-, Fehler- und Konfidenzbilder in Pixeln. Dieser
Wert wird unter der Bildvorschau in der Web GUI als erster Teil von
Auflösung (px) angezeigt.

6.2.3.4 Services des rc_zivid Moduls

Das ‘‘rc_zivid‘ Modul bietet folgende Services.

acquisition_trigger

signalisiert dem Modul, ein Tiefenbild aufzunehmen, falls acquisition_mode auf
SingleFrame (Einzelbild) eingestellt ist.

Details

Es wird ein Fehler zurückgegeben, falls acquisition_mode auf Continuous (Kontinuierlich)
eingestellt ist.

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_zivid/services/acquisition_

→˓trigger

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_zivid/services/acquisition_trigger

Roboception GmbH
Handbuch: rc_reason_stack

64 Rev: 26.01.4
Status: 30.01.2026

6.2. 3D-Module

Request

Dieser Service hat keine Argumente.

Response

Mögliche Rückgabewerte sind in der Tabelle unten aufgeführt.

Tab. 6.15: Mögliche Rückgabewerte des acquisition_trigger
Serviceaufrufs.

Code Beschreibung
0 Erfolgreich
-8 Triggern ist nur im Einzelbild-Modus möglich.

101 Triggern wird ignoriert, da bereits ein anderer Triggeraufruf stattfindet.
102 Triggern wird ignoriert, da keine Empfänger registriert sind.

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "acquisition_trigger",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

reset_defaults‘

stellt die Werkseinstellungen der Parameter dieses Moduls wieder her und wendet sie an
(„factory reset“).

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_zivid/services/reset_defaults

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_zivid/services/reset_defaults

Request

Dieser Service hat keine Argumente.

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

Roboception GmbH
Handbuch: rc_reason_stack

65 Rev: 26.01.4
Status: 30.01.2026

6.2. 3D-Module

6.2.3.5 Presets API

Die 3D Voreinstellungen können über die folgenden REST-API Endpunkte gesetzt, abgefragt und ge-
löscht werden.

GET /presets/rc_zivid/3d_presets
Listet zivid 3D Voreinstellungen.

Musteranfrage

GET /api/v2/presets/rc_zivid/3d_presets HTTP/1.1

Antwort-Header

• Content-Type – application/json

Statuswerte

• 200 OK – Erfolgreiche Verarbeitung

GET /presets/rc_zivid/3d_presets/{id}
Gibt eine zivid 3D Voreinstellungsdatei (yml) zurück.

Musteranfrage

GET /api/v2/presets/rc_zivid/3d_presets/<id> HTTP/1.1

Parameter

• id (string) – ID/Dateiname ohne Endung (obligatorisch)

Antwort-Header

• Content-Type – application/octet-stream

Statuswerte

• 200 OK – Erfolgreiche Verarbeitung

• 404 Not Found – yml Datei nicht gefunden

PUT /presets/rc_zivid/3d_presets/{id}
Erstellt oder aktualisiert eine zivid 3D Voreinstellungsdatei.

Musteranfrage

PUT /api/v2/presets/rc_zivid/3d_presets/<id> HTTP/1.1
Accept: multipart/form-data application/json

Parameter

• id (string) – ID/Dateiname ohne Endung (obligatorisch)

Formularparameter

• file – yml Voreinstellungsdatei (obligatorisch)

Anfrage-Header

• Accept – multipart/form-data application/json

Antwort-Header

• Content-Type – application/json

Statuswerte

• 200 OK – Erfolgreiche Verarbeitung

Roboception GmbH
Handbuch: rc_reason_stack

66 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

6.2. 3D-Module

• 400 Bad Request – yml ist ungültig oder maximale Anzahl von Elementen er-
reicht

• 413 Request Entity Too Large – Datei zu groß

DELETE /presets/rc_zivid/3d_presets/{id}
Entfernt eine zivid 3D Voreinstellungsdatei

Musteranfrage

DELETE /api/v2/presets/rc_zivid/3d_presets/<id> HTTP/1.1
Accept: application/json

Parameter

• id (string) – ID/Dateiname ohne Endung (obligatorisch)

Anfrage-Header

• Accept – application/json

Antwort-Header

• Content-Type – application/json

Statuswerte

• 200 OK – Erfolgreiche Verarbeitung

• 404 Not Found – Element nicht gefunden

6.2.4 Orbbec Modul

Bemerkung: Die Firmwareversion der angeschlossenen Orbbec Kamera muss mindestens 1.6.00
sein, damit die Kamera genutzt werden kann.

Das Orbbec Modul ist ein Basismodul, das auf jedem rc_reason_stack verfügbar ist und liefert
Disparitäts-, Konfidenz- und Fehlerbilder einer angeschlossenen Orbbec Stereokamera. Es läuft nur
in Kamera-Pipelines vom Typ orbbec.

6.2.4.1 Parameter

Das Orbbec Modul wird in der REST-API als rc_orbbec bezeichnet und in der Web GUI (Abschnitt 7.1)
auf der Seite Tiefenbild in der gewünschten Pipeline dargestellt, wenn eine Orbbec Kamera an der
entsprechenden Pipeline angeschlossen ist. Der Benutzer kann die Orbbec Parameter entweder dort
oder über die REST-API (REST-API-Schnittstelle, Abschnitt 7.2) ändern.

Übersicht über die Parameter

Dieses Softwaremodul bietet folgende Laufzeitparameter:

Roboception GmbH
Handbuch: rc_reason_stack

67 Rev: 26.01.4
Status: 30.01.2026

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.2. 3D-Module

Tab. 6.16: Laufzeitparameter des rc_orbbec Moduls
Name Typ Min. Max. Default Beschreibung
fill int32 0 4 3 Disparitätstoleranz (für das Füllen

von Löchern) in Pixeln
maxdepth float64 0.1 100.0 100.0 Maximaler Abstand in Metern
mindepth float64 0.1 100.0 0.1 Minimaler Abstand in Metern
seg int32 0 4000 200 Mindestgröße der gültigen Dispari-

tätssegmente in Pixeln
smooth bool false true true Glättung von Disparitätsbildern (be-

nötigt eine ‚StereoPlus‘-Lizenz)

Beschreibung der Laufzeitparameter

Jeder Laufzeitparameter ist durch eine eigene Zeile auf der Seite Tiefenbild der Web GUI repräsentiert.
Der Web GUI-Name des Parameters ist in Klammern hinter dem Namen des Parameters angegeben
und die Parameter werden in der Reihenfolge, in der sie in der Web GUI erscheinen, aufgelistet:

mindepth (Minimaler Abstand)

Dieser Wert bezeichnet den geringsten Abstand zur Kamera, ab dem Messungen möglich
sind. Der minimale Abstand wird in Metern angegeben.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_orbbec/parameters?mindepth=
→˓<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_orbbec/parameters?mindepth=<value>

maxdepth (Maximaler Abstand)

Dieser Wert ist der größte Abstand zur Kamera, bis zu dem Messungen möglich sind. Pi-
xel mit größeren Distanzwerten werden auf „ungültig“ gesetzt. Wird dieser Wert auf das
Maximum gesetzt, so sind Abstände bis Unendlich möglich. Der maximale Abstand wird in
Metern angegeben.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_orbbec/parameters?maxdepth=
→˓<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_orbbec/parameters?maxdepth=<value>

smooth (Glättung)

Diese Option aktiviert die Glättung von Disparitätswerten.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

Roboception GmbH
Handbuch: rc_reason_stack

68 Rev: 26.01.4
Status: 30.01.2026

6.2. 3D-Module

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_orbbec/parameters?smooth=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_orbbec/parameters?smooth=<value>

fill (Füllen)

Diese Option wird verwendet, um Löcher im Disparitätsbild durch Interpolation zu füllen. Der
Füllwert gibt die maximale Disparitätsabweichung am Rand des Lochs an. Größere Füllwer-
te können die Anzahl an Löchern verringern, aber die interpolierten Werte können größere
Fehler aufweisen. Maximal 5% der Pixel werden interpoliert. Kleine Löcher werden dabei be-
vorzugt interpoliert. Die Konfidenz für die interpolierten Pixel wird auf einen geringen Wert
von 0,5 eingestellt. Das Auffüllen lässt sich deaktivieren, wenn der Wert auf 0 gesetzt wird.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_orbbec/parameters?fill=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_orbbec/parameters?fill=<value>

seg (Segmentierung)

Der Segmentierungsparameter wird verwendet, um die Mindestanzahl an Pixeln anzugeben,
die eine zusammenhängende Disparitätsregion im Disparitätsbild ausfüllen muss. Isolierte
Regionen, die kleiner sind, werden im Disparitätsbild auf ungültig gesetzt. Der Wert bezieht
sich immer auf ein Disparitätsbild mit hoher Qualität (halbe Auflösung) und muss nicht ver-
ändert werden, wenn andere Qualitäten gewählt werden. Die Segmentierung eignet sich,
um Disparitätsfehler zu entfernen. Bei größeren Werten kann es jedoch vorkommen, dass
real vorhandene Objekte entfernt werden.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_orbbec/parameters?seg=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_orbbec/parameters?seg=<value>

6.2.4.2 Statuswerte

Das rc_orbbec Modul meldet die folgenden Statuswerte:

Roboception GmbH
Handbuch: rc_reason_stack

69 Rev: 26.01.4
Status: 30.01.2026

6.2. 3D-Module

Tab. 6.17: Die Statuswerte des rc_orbbec-Moduls
Name Beschreibung
fps Aktuelle Bildwiederholrate der Disparitäts-, Fehler- und Konfidenzbilder

in Hertz. Dieser Wert wird unter der Bildvorschau in der Web GUI als
FPS (Hz) angezeigt.

height Höhe der Disparitäts-, Fehler- und Konfidenzbilder in Pixeln. Dieser
Wert wird unter der Bildvorschau in der Web GUI als zweiter Teil von
Auflösung (px) angezeigt.

last_capture_ok 1 wenn die letzte Bildaufnahme erfolgreich war
last_timestamp_grabbed Zeitstempel des letzten aufgenommenen Tiefenbilds
latency Aktuelle Bildwiederholrate der Disparitäts-, Fehler- und Konfidenzbilder

in Hertz. Dieser Wert wird unter der Bildvorschau in der Web GUI als
FPS (Hz) angezeigt.

mindepth Tatsächlicher minimaler Arbeitsabstand in Metern. Dieser Wert wird
unter der Bildvorschau in der Web GUI als Min. Abstand (m) angezeigt.

maxdepth Tatsächlicher maximaler Arbeitsabstand in Metern. Dieser Wert wird
unter der Bildvorschau in der Web GUI als Max. Abstand (m) angezeigt.

width Breite der Disparitäts-, Fehler- und Konfidenzbilder in Pixeln. Dieser
Wert wird unter der Bildvorschau in der Web GUI als erster Teil von
Auflösung (px) angezeigt.

6.2.4.3 Services des rc_orbbec Moduls

Das ‘‘rc_orbbec‘ Modul bietet folgende Services.

reset_defaults‘

stellt die Werkseinstellungen der Parameter dieses Moduls wieder her und wendet sie an
(„factory reset“).

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_orbbec/services/reset_defaults

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_orbbec/services/reset_defaults

Request

Dieser Service hat keine Argumente.

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

Roboception GmbH
Handbuch: rc_reason_stack

70 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

6.3 Detektions- und Messmodule

Der rc_reason_stack bietet Softwaremodule für unterschiedliche Detektions- und Messanwendungen:

• Measure (rc_measure, Abschnitt 6.3.1) ermöglicht die Messung von Tiefenwerten

• LoadCarrier (rc_load_carrier, Abschnitt 6.3.2) ermöglicht die Erkennung von Load Carriern
(Behältern) und ihres Füllstands.

• TagDetect (rc_april_tag_detect und rc_qr_code_detect, Abschnitt 6.3.3) ermöglicht die Er-
kennung von AprilTags und QR-Codes sowie die Schätzung von deren Pose.

• ItemPick und ItemPickAI (rc_itempick, Abschnitt 6.3.4) bietet eine Standardlösung für roboti-
sche Pick-and-Place-Anwendungen für Objekte einer Objektkategorie oder unbekannte Ob-
jekte.

• BoxPick (rc_boxpick, Abschnitt 6.3.5) bietet eine Standardlösung für robotische Pick-and-
Place-Anwendungen für Boxen oder texturierte Boxen.

• SilhouetteMatch und SilhouetteMatchAI (rc_silhouettematch, Abschnitt 6.3.6) bietet eine
Objekterkennungslösung für Objekte, die sich auf einer Ebene befinden, oder gestapelte
planare Objekt.

• CADMatch (rc_cadmatch, Abschnitt 6.3.7) bietet eine Objekterkennungslösung für 3D-Objekte.

Diese Softwaremodule sind pipelinespezifisch, was heißt, dass sie innerhalb jeder Kamerapipeline lau-
fen. Änderungen ihrer Einstellungen oder Parameter gelten nur für die zugehörige Pipeline und haben
keinen Einfluss auf andere Kamerapipelines auf dem rc_reason_stack.

Diese Module sind optional und können durch Kauf einer separaten Lizenz (Abschnitt 8.2) aktiviert
werden.

6.3.1 Measure

6.3.1.1 Einleitung

Das Measure Modul ermöglicht die Messung von Tiefenwerten in einer Region of Interest.

Das Measure Modul ist ein Basismodul, welches auf jedem rc_reason_stack verfügbar ist.

6.3.1.2 Tiefe messen

Das Measure Modul bietet Funktionen zum Messen von Tiefenwerten in der aktuellen Szene in einer
2D Region of Interest. Optional kann die Region of Interest in bis zu 100 Zellen unterteilt werden, für die
separate Tiefenmessungen erfolgen, die zusätzlich zu den Tiefenmessungen für die gesamte Region
of Interest zurückgegeben werden.

Die Tiefenmessung besteht aus der durchschnittlichen Tiefe mean_z, der minimalen Tiefe min_z und der
maximalen Tiefe max_z, die jeweils 3D-Koordinaten enthalten. Die Koordinaten der Messungen min_z
und max_z entsprechen dem Punkt in der Zelle oder der gesamten Region of Interest mit dem minimalen
bzw. maximalen Abstand von der Kamera. Die x- und y-Koordinaten der mean_z-Messungen definieren
einen Punkt in der Mitte der Zelle oder der gesamten Region of Interest und die z-Koordinate wird aus
dem Durchschnitt aller Tiefenwerte (Entfernungen von der Kamera) in diesem Bereich bestimmt. Dar-
über hinaus wird für jede Zelle und die gesamte Region of Interest ein coverage Wert zurückgegeben.
Dabei handelt es sich um eine Zahl zwischen 0 und 1, die den Anteil der gültigen Tiefenwerte innerhalb
der jeweiligen Region widerspiegelt. Ein coverage Wert von 0 bedeutet, dass die Zelle ungültig ist und
kein Tiefenwert berechnet werden konnte.

Wenn als Referenzkoordinatensystem (pose_frame) external für die Tiefenmessungen verwendet wird,
werden alle 3D-Koordinaten wie oben beschrieben berechnet, dann aber in das externe Koordinaten-
system transformiert. Das heißt, die Tiefe wird immer entlang der Sichtlinie der Kamera gemessen,
unabhängig vom gewählten Referenzkoordinatensystem.

Roboception GmbH
Handbuch: rc_reason_stack

71 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

6.3.1.3 Wechselwirkung mit anderen Modulen

Die folgenden, intern auf dem rc_reason_stack laufenden Module liefern Daten für das Measure Modul
oder haben Einfluss auf die Datenverarbeitung.

Bemerkung: Jede Konfigurationsänderung dieser Module kann direkte Auswirkungen auf die Qua-
lität oder das Leistungsverhalten des Measure Moduls haben.

Tiefenbilder

Folgende Daten werden vom Measure Modul verarbeitet:

• Die Disparitätsbilder des Stereo-Matching Modul (rc_stereomatching, Abschnitt 6.2.2), falls eine
Stereokamera verwendet wird

• Die Disparitätsbilder der Orbbec Modul (rc_orbbec, Abschnitt 6.2.4), falls eine Orbbec Kamera
verwendet wird

• die Disparitätsbilder des Zivid Modul (rc_zivid, Abschnitt 6.2.3), falls eine zivid Kamera verwen-
det wird

Hand-Auge-Kalibrierung

Falls die Kamera zu einem Roboter kalibriert wurde, kann das Measure Modul automatisch Punkte im
Roboterkoordinatensystem ausgeben. Für die Services (Abschnitt 6.3.1.6) kann das Koordinatensys-
tem der berechneten Punkte mit dem Argument pose_frame spezifiziert werden.

Zwei verschiedene Werte für pose_frame können gewählt werden:

1. Kamera-Koordinatensystem (camera): Alle Punkte sind im Kamera-Koordinatensystem angege-
ben und es ist kein zusätzliches Wissen über die Lage der Kamera in seiner Umgebung notwen-
dig. Es liegt daher in der Verantwortung des Anwenders, in solchen Fällen die entsprechenden
Punkte der Situation entsprechend zu aktualisieren (beispielsweise für den Anwendungsfall einer
robotergeführten Kamera).

2. Benutzerdefiniertes externes Koordinatensystem (external): Alle Punkte sind im sogenann-
ten externen Koordinatensystem angegeben, welches vom Nutzer während der Hand-Auge-
Kalibrierung gewählt wurde. In diesem Fall bezieht das Measure Modul alle notwendigen Informa-
tionen über die Kameramontage und die kalibrierte Hand-Auge-Transformation automatisch vom
Modul Hand-Auge-Kalibrierung (Abschnitt 6.4.1). Für den Fall einer robotergeführten Kamera ist
vom Nutzer zusätzlich die jeweils aktuelle Roboterpose robot_pose anzugeben.

Bemerkung: Wenn keine Hand-Auge-Kalibrierung durchgeführt wurde bzw. zur Verfügung steht,
muss als Referenzkoordinatensystem pose_frame immer camera angegeben werden.

Zulässige Werte zur Angabe des Referenzkoordinatensystems sind camera und external. Andere Wer-
te werden als ungültig zurückgewiesen.

6.3.1.4 Parameter

Das Measure Modul wird in der REST-API als rc_measure bezeichnet und in der Web GUI (Abschnitt
7.1) in der gewünschten Pipeline unter Module → Measure dargestellt.

Übersicht über die Parameter

Dieses Modul besitzt keine Laufzeitparameter.

Roboception GmbH
Handbuch: rc_reason_stack

72 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

6.3.1.5 Statuswerte

Das Measure Modul meldet folgende Statuswerte:

Tab. 6.18: Statuswerte des rc_measure Moduls
Name Beschreibung
data_acquisition_time Zeit in Sekunden, für die beim letzten Aufruf auf Tiefenbilddaten

gewartet werden musste
last_timestamp_processed Zeitstempel des letzten verarbeiteten Tiefenbilds
processing_time Berechnungszeit für die letzte Messung in Sekunden

6.3.1.6 Services

Die angebotenen Services des Measure Moduls können mithilfe der REST-API-Schnittstelle (Abschnitt
7.2) oder der rc_reason_stack Web GUI (Abschnitt 7.1) auf der Seite Measure unter dem Menüpunkt
Module ausprobiert und getestet werden.

Das Measure Modul stellt folgende Services zur Verfügung.

measure_depth

Berechnet die durchschnittliche, minimale und maximale Tiefe in einer angegebenen Region
of Interest, die optional in Zellen unterteilt werden kann.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_measure/services/measure_depth

API version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_measure/services/measure_depth

Request

Obligatorische Serviceargumente:

pose_frame: siehe Hand-Auge-Kalibrierung (Abschnitt 6.3.1.3).

Optionale Serviceargumente:

region_of_interest_2d_id: Die ID der 2D Region of Interest (siehe RoiDB, Ab-
schnitt 6.5.2), innerhalb welcher die Tiefenmessung durchgeführt werden soll.

region_of_interest_2d ist eine alternative Definition der Region of Interest
für die Tiefenmessung. Diese Region of Interest wird ignoriert, falls eine
region_of_interest_2d_id gesetzt ist. Die Region of Interest wird immer auf dem
Kamerabild mit voller Auflösung definiert, wobei offset_x und offset_y die Pixel-
koordinaten der oberen linken Ecke der rechteckigen Region of Interest sind, und
width und height die Breite und Höhe des Rechtecks in Pixeln angeben. Der
Standardwert ist eine Region of Interest, die das gesamte Bild abdeckt.

cell_count ist die Anzahl der Zellen in x und y Richtung, in die die Region of
Interest für die Tiefenmessung unterteilt wird. Falls nicht angegeben, wird ein
cell_count von 0, 0 angenommen und es werden nur die Gesamtwerte overall
berechnet. Die Gesamtanzahl der Zellen, die als Produkt aus den x und y Werten
des cell_count berechnet werden kann, darf nicht größer sein als 100.

Roboception GmbH
Handbuch: rc_reason_stack

73 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

data_acquisition_mode: Falls der Aufnahmemodus auf CAPTURE_NEW (Standard-
wert) gesetzt ist, wird ein neuer Bild-Datensatz für die Messung aufgenommen.
Falls der Modus auf USE_LAST gesetzt wird, wird der Datensatz der vorherigen
Messung erneut verwendet.

Möglicherweise benötigte Serviceargumente:

robot_pose: siehe Hand-Auge-Kalibrierung (Abschnitt 6.3.1.3).

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"cell_count": {
"x": "uint32",
"y": "uint32"

},
"data_acquisition_mode": "string",
"pose_frame": "string",
"region_of_interest_2d": {
"height": "uint32",
"offset_x": "uint32",
"offset_y": "uint32",
"width": "uint32"

},
"region_of_interest_2d_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

cells enthält die Tiefenmessungen aller gewünschter Zellen. Die Zellen sind immer von
links nach rechts und oben nach unten in Bildkoordinaten sortiert.

overall enthält die Tiefenmessung der gesamten Region of Interest.

coverage enthält den Anteil der Pixel mit gültigen Tiefenmesswerten, wie in Tiefe mes-
sen (Abschnitt 6.3.1.2) beschrieben.

mean_z, min_z und max_z enthalten die gemessenen Koordinaten wie in Tiefe mes-
sen (Abschnitt 6.3.1.2).

region_of_interest_2d gibt die Definition der angeforderten Region of Interest für die Tie-
fenmessung zurück.

pose_frame enthält das Koordinatensystem der Tiefenmessungen.

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "measure_depth",
"response": {

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

74 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"cell_count": {
"x": "uint32",
"y": "uint32"

},
"cells": [
{

"coverage": "float64",
"max_z": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"mean_z": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"min_z": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

],
"overall": {

"coverage": "float64",
"max_z": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"mean_z": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"min_z": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"region_of_interest_2d": {
"height": "uint32",
"offset_x": "uint32",
"offset_y": "uint32",
"width": "uint32"

},
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

Roboception GmbH
Handbuch: rc_reason_stack

75 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

trigger_dump

speichert die Detektion auf dem angeschlossenen USB Speicher, die dem übergebenen
Zeitstempel entspricht, oder die letzte, falls kein Zeitstempel angegeben wurde.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_measure/services/trigger_dump

API version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_measure/services/trigger_dump

Request

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"comment": "string",
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "trigger_dump",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.3.1.7 Rückgabecodes

Zusätzlich zur eigentlichen Serviceantwort gibt jeder Service einen sogenannten return_code beste-
hend aus einem Integer-Wert und einer optionalen Textnachricht zurück. Erfolgreiche Service-Anfragen
werden mit einem Wert von 0 quittiert. Positive Werte bedeuten, dass die Service-Anfrage zwar erfolg-
reich bearbeitet wurde, aber zusätzliche Informationen zur Verfügung stehen. Negative Werte bedeu-
ten, dass Fehler aufgetreten sind. Für den Fall, dass mehrere Rückgabewerte zutreffend wären, wird
der kleinste zurückgegeben, und die entsprechenden Textnachrichten werden in return_code.message
akkumuliert.

Die folgende Tabelle listet die möglichen Rückgabe-Codes auf:

Tab. 6.19: Rückgabecodes der Services des Measure Moduls
Code Beschreibung

0 Erfolgreich
-1 Ungültige(s) Argument(e)

Roboception GmbH
Handbuch: rc_reason_stack

76 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

6.3.2 LoadCarrier

6.3.2.1 Einleitung

Das LoadCarrier Modul ermöglicht die Erkennung von Load Carriern, was oftmals der erste Schritt für
die Erkennung von Objekten oder Berechnung von Greifpunkten in einem Behälter ist. Die Modelle der
zu erkennenden Load Carrier müssen im LoadCarrierDB (Abschnitt 6.5.1) Modul definiert werden.

Das LoadCarrier Modul ist ein optionales Modul, welches intern auf dem rc_reason_stack läuft, und
ist freigeschaltet, sobald eine gültige Lizenz für eines der Module ItemPick und ItemPickAI (Abschnitt
6.3.4) und BoxPick (Abschnitt 6.3.5) oder CADMatch (Abschnitt 6.3.7) und SilhouetteMatch und Sil-
houetteMatchAI (Abschnitt 6.3.6) vorhanden ist. Andernfalls benötigt es eine gesonderte LoadCarrier
Lizenz (Abschnitt 8.2), welche erworben werden muss.

Bemerkung: Dieses Softwaremodul ist pipelinespezifisch. Änderungen seiner Einstellungen oder
Parameter betreffen nur die zugehörige Kamerapipeline und haben keinen Einfluss auf die anderen
Pipelines, die auf dem rc_reason_stack laufen.

6.3.2.2 Erkennung von Load Carriern

Der Algorithmus zur Erkennung von Load Carriern detektiert Load Carrier, die einem speziellen Load
Carrier Modell entsprechen, welches im LoadCarrierDB (Abschnitt 6.5.1) Modul definiert werden muss.
Das Load Carrier Modell wird über seine ID referenziert, die bei der Load Carrier Detektion übergeben
wird. Die Erkennung von Load Carriern basiert auf der Erkennung des rechteckigen Load Carrier Rands.
Dazu werden detektierte Linien im linken Kamerabild und die Tiefenwerte des Load Carrier Randes
genutzt. Daher sollte der Rand einen Kontrast zum Hintergrund bilden und das Disparitätsbild auf dem
Rand dicht sein.

Wenn mehrere Load Carrier mit der angegeben Load Carrier ID in der Szene sichtbar sind, werden alle
von ihnen detektiert und zurückgeliefert.

Standardmäßig, wenn assume_gravity_aligned aktiv ist und Gravitationsmessungen verfügbar sind,
wird nach Load Carriern gesucht, deren Randebene senkrecht zur gemessenen Gravitationsrich-
tung ausgerichtet ist. Um geneigte Load Carrier zu erkennen, muss assume_gravity_aligned deak-
tiviert werden oder deren ungefähre Orientierung als Pose pose in einem Referenzkoordinatensystem
pose_frame angegeben werden, und der Posentyp pose_type auf ORIENTATION_PRIOR gesetzt werden.

Load Carrier können höchstens bis zu einer Entfernung von 3 Metern von der Kamera erkannt werden.

Wenn eine 3D Region of Interest (siehe RoiDB, Abschnitt 6.5.2) genutzt wird, um das Volumen für die
Load Carrier Erkennung einzuschränken, müssen nur die Ränder der Load Carrier vollständig in der
Region of Interest enthalten sein.

Die Erkennung liefert die Posen der Load Carrier Koordinatensysteme (siehe Load Carrier Definition,
Abschnitt 6.5.1.2) im gewünschten Referenzkoordinatensystem zurück.

Bei der Erkennung wird auch ermittelt, ob die Load Carrier überfüllt (overfilled) sind, was bedeutet,
dass Objekte aus dem Load Carrier herausragen.

Roboception GmbH
Handbuch: rc_reason_stack

77 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

x
z

outer_dimensions.x
inner_dimensions.x

inn
er
_d
im
en
sio
ns
.y

ou
ter
_d
im
en
sio
ns
.y

inner_dim
ensions.z

outer_dim
ensions.z

y
z

rim
_th

ick
ne
ss
.y

rim_thickness.x

x
y

Abb. 6.4: Illustration verschiedener Load Carrier Modelle und deren Koordinatensysteme

6.3.2.3 Füllstandserkennung

Das LoadCarrier Modul bietet den Service detect_filling_level an, um den Füllstand aller erkannten
Load Carrier zu berechnen.

Dazu werden die Load Carrier in eine konfigurierbare Anzahl von Zellen unterteilt, welche in einem 2D-
Raster angeordnet sind. Die maximale Anzahl beträgt 200x200 Zellen. Für jede Zelle werden folgende
Werte ermittelt:

• level_in_percent: Minimum, Maximum und Mittelwert des Füllstands vom Boden in Prozent.
Diese Werte können größer als 100% sein, falls die Zelle überfüllt ist.

• level_free_in_meters: Minimum, Maximum und Mittelwert in Metern des freien Teils der Zelle
vom Rand des Load Carriers gemessen. Diese Werte können negativ sein, falls die Zelle überfüllt
ist.

• cell_size: Abmessungen der 2D-Zelle in Metern.

• cell_position: Position des Mittelpunkts der Zelle in Metern (entweder im Koordinatensystem
camera oder external, siehe Hand-Auge-Kalibrierung, Abschnitt 6.3.4.4). Die z-Koordinate liegt
auf der Ebene des Load Carrier Randes.

• coverage: Anteil der gültigen Pixel in dieser Zelle. Dieser Wert reicht von 0 bis 1 in Schritten von
0.1. Ein niedriger Wert besagt, dass die Zelle fehlende Daten beinhaltet (d.h. nur wenige Punkte
konnten in der Zelle gemessen werden).

Diese Werte werden auch für den gesamten Load Carrier berechnet. Falls keine Zellunterteilung ange-
geben ist, wird nur der Gesamtfüllstand (overall_filling_level) berechnet.

Abb. 6.5: Visualisierungen des Behälterfüllstands: Gesamtfüllstand ohne Raster (links), 4x3 Raster (Mit-
te), 8x8 Raster (rechts). Der Inhalt wird mit einem Farbverlauf von weiß (auf dem Boden) nach dunkel-
grün dargestellt. Die überfüllten Bereiche sind rot dargestellt. Die Nummern stellen die Zell-IDs dar.

Roboception GmbH
Handbuch: rc_reason_stack

78 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

6.3.2.4 Wechselwirkung mit anderen Modulen

Die folgenden, intern auf dem rc_reason_stack laufenden Module liefern Daten für das LoadCarrier
Modul oder haben Einfluss auf die Datenverarbeitung.

Bemerkung: Jede Konfigurationsänderung dieser Module kann direkte Auswirkungen auf die Qua-
lität oder das Leistungsverhalten des LoadCarrier Moduls haben.

Kamera- und Tiefendaten

Folgende Daten werden vom LoadCarrier Modul verarbeitet:

• Die rektifizierten Bilder des Kamera Modul (rc_camera, Abschnitt 6.1);

• die Disparitäts-, Konfidenz- und Fehlerbilder des Stereo-Matching Modul (rc_stereomatching,
Abschnitt 6.2.2), falls eine Stereokamera verwendet wird.

• die Disparitäts-, Konfidenz- und Fehlerbilder der Orbbec Modul (rc_orbbec, Abschnitt 6.2.4), falls
eine Orbbec Kamera verwendet wird

• die Disparitäts-, Konfidenz- und Fehlerbilder des Zivid Modul (rc_zivid, Abschnitt 6.2.3), falls
eine zivid Kamera verwendet wird

Für alle genutzten Bilder ist garantiert, dass diese nach dem Auslösen des Services aufgenommen
wurden.

IOControl und Projektor-Kontrolle

Für den Anwendungsfall, dass der rc_reason_stack zusammen mit einem externen Musterprojektor und
dem Modul für IOControl und Projektor-Kontrolle (rc_iocontrol, Abschnitt 6.4.4) betrieben wird, wird
empfohlen, den Projektor an GPIO Out 1 anzuschließen und den Aufnahmemodus des Stereokamera-
Moduls auf SingleFrameOut1 zu setzen (siehe Stereomatching-Parameter , Abschnitt 6.2.2.1), damit bei
jedem Aufnahme-Trigger ein Bild mit und ohne Projektormuster aufgenommen wird.

Alternativ kann der verwendete digitale Ausgang in den Betriebsmodus ExposureAlternateActive ge-
schaltet werden (siehe Beschreibung der Laufzeitparameter , Abschnitt 6.4.4.1).

In beiden Fällen sollte die Belichtungszeitregelung (exp_auto_mode) auf AdaptiveOut1 gesetzt werden,
um die Belichtung beider Bilder zu optimieren.

Darüber hinaus sind keine weiteren Änderungen für diesen Anwendungsfall notwendig.

Hand-Auge-Kalibrierung

Falls die Kamera zu einem Roboter kalibriert wurde, kann die Load Carrier Komponente automatisch
Posen im Roboterkoordinatensystem ausgeben. Für die Services (Abschnitt 6.3.2.7) kann das Koordi-
natensystem der berechneten Posen mit dem Argument pose_frame spezifiziert werden.

Zwei verschiedene Werte für pose_frame können gewählt werden:

1. Kamera-Koordinatensystem (camera): Alle Posen sind im Kamera-Koordinatensystem angege-
ben und es ist kein zusätzliches Wissen über die Lage der Kamera in seiner Umgebung notwen-
dig. Das bedeutet insbesondere, dass sich Load Carrier, welche in diesem Koordinatensystem
angegeben sind, mit der Kamera bewegen. Es liegt daher in der Verantwortung des Anwenders,
in solchen Fällen die entsprechenden Posen der Situation entsprechend zu aktualisieren (bei-
spielsweise für den Anwendungsfall einer robotergeführten Kamera).

2. Benutzerdefiniertes externes Koordinatensystem (external): Alle Posen sind im sogenann-
ten externen Koordinatensystem angegeben, welches vom Nutzer während der Hand-Auge-
Kalibrierung gewählt wurde. In diesem Fall bezieht das Load Carrier Modul alle notwendigen

Roboception GmbH
Handbuch: rc_reason_stack

79 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Informationen über die Kameramontage und die kalibrierte Hand-Auge-Transformation automa-
tisch vom Modul Hand-Auge-Kalibrierung (Abschnitt 6.4.1). Für den Fall einer robotergeführten
Kamera ist vom Nutzer zusätzlich die jeweils aktuelle Roboterpose robot_pose anzugeben.

Bemerkung: Wenn keine Hand-Auge-Kalibrierung durchgeführt wurde bzw. zur Verfügung steht,
muss als Referenzkoordinatensystem pose_frame immer camera angegeben werden.

Zulässige Werte zur Angabe des Referenzkoordinatensystems sind camera und external. Andere Wer-
te werden als ungültig zurückgewiesen.

6.3.2.5 Parameter

Das LoadCarrier Modul wird in der REST-API als rc_load_carrier bezeichnet und in der Web
GUI (Abschnitt 7.1) in der gewünschten Pipeline unter Module → LoadCarrier dargestellt. Der Benutzer
kann die Parameter entweder dort oder über die REST-API-Schnittstelle (Abschnitt 7.2) ändern.

Übersicht über die Parameter

Bemerkung: Die Defaultwerte in der Tabelle unten zeigen die Werte des rc_visard. Diese Werte
können sich bei anderen Sensoren unterscheiden.

Dieses Modul bietet folgende Laufzeitparameter:

Tab. 6.20: Laufzeitparameter des rc_load_carrier Moduls
Name Typ Min. Max. Default Beschreibung
assume_gravity_aligned bool false true true Wenn dieser Parameter aktiv ist,

werden nur waagerechte Load Car-
rier erkannt falls eine Gravitations-
messung verfügbar ist.

crop_distance float64 0.0 0.05 0.005 Sicherheitsspielraum um den das
Load Carrier Innenmaß verringert
wird, um eine Region of Interest für
die Erkennung zu definieren

min_plausibility float64 0.0 0.99 0.8 Gibt an, wie viel von der Ebene um
den Load Carrier Rand herum min-
destens frei sein muss, um als gülti-
ge Erkennung zu zählen.

model_tolerance float64 0.003 0.025 0.008 Gibt an, wie weit die Abmessungen
des Load Carriers von den Werten
im Modell abweichen dürfen

Beschreibung der Laufzeitparameter

Die Laufzeitparameter werden in der Web GUI zeilenweise im Abschnitt LoadCarrier Einstellungen auf
der Seite LoadCarrier unter Module dargestellt. Im folgenden wird der Name des Parameters in der Web
GUI in Klammern hinter dem eigentlichen Parameternamen angegeben. Die Parameter sind in dersel-
ben Reihenfolge wie in der Web GUI aufgelistet. Wenn die Parameter außerhalb des rc_load_carrier
Moduls über die REST-API-Schnittstelle (Abschnitt 7.2) eines anderen Moduls verwendet werden, sind
sie durch den Präfix load_carrier_ gekennzeichnet.

Roboception GmbH
Handbuch: rc_reason_stack

80 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

assume_gravity_aligned (Gravitationsausgerichtet)

Wenn dieser Parameter aktiv ist, werden nur waagerechte Load Carrier erkannt. Dies kann
die Erkennung beschleunigen. Wenn dieser Parameter nicht aktiv ist, werden auch Load
Carrier mit Verkippung detektiert.

Für Load Carrier mit einem Orientierungsprior wird dieser Parameter ignoriert.

Bemerkung: Die Ausrichtung an der Gravitation ist nur für Kamerapipelines vom Typ rc_visard
verfügbar. Die Richtung des Gravitationsvektors wird durch Messungen der linearen Beschleunigung
der IMU bestimmt.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_load_carrier/parameters?assume_gravity_

→˓aligned=<value>

API version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_load_carrier/parameters?assume_gravity_aligned=<value>

model_tolerance (Modelltoleranz)

Gibt an, wie weit die Abmessungen des Load Carriers von den Werten im Modell abweichen
dürfen.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_load_carrier/parameters?model_

→˓tolerance=<value>

API version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_load_carrier/parameters?model_tolerance=<value>

crop_distance (Cropping)

setzt den Sicherheitsspielraum, um den das Load Carrier Innenmaß verringert wird, um eine
Region of Interest für die Erkennung zu definieren (siehe Abb. 6.37).

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_load_carrier/parameters?crop_

→˓distance=<value>

API version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_load_carrier/parameters?crop_distance=<value>

Roboception GmbH
Handbuch: rc_reason_stack

81 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

min_plausibility (Minimale Plausibilität):

Die minimale Plausibilität gibt an, wie viel von der Ebene um den Load Carrier Rand herum
mindestens frei sein muss, um als gültige Erkennung zu zählen. Erhöhen Sie die minimale
Plausibilität um falsch-positive Erkennungen zu vermeiden, und verringern Sie den Wert,
wenn ein deutlich sichtbarer Load Carrier nicht erkannt wird.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_load_carrier/parameters?min_

→˓plausibility=<value>

API version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_load_carrier/parameters?min_plausibility=<value>

6.3.2.6 Statuswerte

Das LoadCarrier Modul meldet folgende Statuswerte:

Tab. 6.21: Statuswerte des rc_load_carrier Moduls
Name Beschreibung
data_acquisition_time Zeit in Sekunden, für die beim letzten Aufruf auf Bilddaten

gewartet werden musste
last_timestamp_processed Zeitstempel des letzten verarbeiteten Bilddatensatzes
load_carrier_detection_time Berechnungszeit für die letzte Load Carrier Detektion in

Sekunden

6.3.2.7 Services

Die angebotenen Services des LoadCarrier Moduls können mithilfe der REST-API-
Schnittstelle (Abschnitt 7.2) oder der rc_reason_stack Web GUI (Abschnitt 7.1) auf der Seite
LoadCarrier unter dem Menüpunkt Module ausprobiert und getestet werden.

Das LoadCarrier Modul stellt folgende Services zur Verfügung.

detect_load_carriers

löst die Erkennung von Load Carriern aus, wie in Erkennung von Load Carriern (Abschnitt
6.3.2.2) beschrieben.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_load_carrier/services/detect_

→˓load_carriers

API version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/detect_load_carriers

Request

Obligatorische Serviceargumente:

Roboception GmbH
Handbuch: rc_reason_stack

82 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

pose_frame: siehe Hand-Auge-Kalibrierung (Abschnitt 6.3.2.4).

load_carrier_ids: IDs der zu erkennenden Load Carrier. Aktuell kann nur eine
ID angegeben werden.

Möglicherweise benötigte Serviceargumente:

robot_pose: siehe Hand-Auge-Kalibrierung (Abschnitt 6.3.2.4).

Optionale Serviceargumente:

region_of_interest_id: Die ID der 3D Region of Interest, innerhalb welcher nach
den Load Carriern gesucht wird.

region_of_interest_2d_id: Die ID der 2D Region of Interest, innerhalb welcher
nach den Load Carriern gesucht wird.

Bemerkung: Es kann nur eine Art von Region of Interest kann angegeben
werden.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"load_carrier_ids": [
"string"

],
"pose_frame": "string",
"region_of_interest_2d_id": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

load_carriers: Liste der erkannten Load Carrier (Behälter).

timestamp: Zeitstempel des Bildes, auf dem die Erkennung durchgeführt wurde.

return_code: enthält mögliche Warnungen oder Fehlercodes und Nachrichten.

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "detect_load_carriers",
"response": {
"load_carriers": [
{

"height_open_side": "float64",
"id": "string",
"inner_dimensions": {
"x": "float64",

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

83 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

detect_filling_level

löst eine Load Carrier Füllstandserkennung aus, wie in Füllstandserkennung (Abschnitt
6.3.2.3) beschrieben.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_load_carrier/services/detect_

→˓filling_level

API version 1 (veraltet)

Roboception GmbH
Handbuch: rc_reason_stack

84 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/detect_filling_level

Request

Obligatorische Serviceargumente:

pose_frame: siehe Hand-Auge-Kalibrierung (Abschnitt 6.3.2.4).

load_carrier_ids: IDs der zu erkennenden Load Carrier. Aktuell kann nur eine
ID angegeben werden.

Möglicherweise benötigte Serviceargumente:

robot_pose: siehe Hand-Auge-Kalibrierung (Abschnitt 6.3.2.4).

Optionale Serviceargumente:

filling_level_cell_count: Anzahl der Zellen im Füllstandsraster.

region_of_interest_id: Die ID der 3D Region of Interest, innerhalb welcher nach
den Load Carriern gesucht wird.

region_of_interest_2d_id: Die ID der 2D Region of Interest, innerhalb welcher
nach den Load Carriern gesucht wird.

Bemerkung: Es kann nur eine Art von Region of Interest kann angegeben
werden.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"filling_level_cell_count": {
"x": "uint32",
"y": "uint32"

},
"load_carrier_ids": [

"string"
],
"pose_frame": "string",
"region_of_interest_2d_id": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

load_carriers: Liste an erkannten Load Carriern und deren Füllstand.

timestamp: Zeitstempel des Bildes, auf dem die Erkennung durchgeführt wurde.

return_code: enthält mögliche Warnungen oder Fehlercodes und Nachrichten.

Die Definition der Response mit jeweiligen Datentypen ist:

Roboception GmbH
Handbuch: rc_reason_stack

85 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

{
"name": "detect_filling_level",
"response": {

"load_carriers": [
{

"cells_filling_levels": [
{
"cell_position": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"cell_size": {
"x": "float64",
"y": "float64"

},
"coverage": "float64",
"level_free_in_meters": {
"max": "float64",
"mean": "float64",
"min": "float64"

},
"level_in_percent": {
"max": "float64",
"mean": "float64",
"min": "float64"

}
}

],
"filling_level_cell_count": {

"x": "uint32",
"y": "uint32"

},
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overall_filling_level": {

"cell_position": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"cell_size": {
"x": "float64",
"y": "float64"

},
"coverage": "float64",
"level_free_in_meters": {

"max": "float64",
"mean": "float64",
"min": "float64"

},
"level_in_percent": {

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

86 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"max": "float64",
"mean": "float64",
"min": "float64"

}
},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

reset_defaults

stellt die Werkseinstellungen der Parameter dieses Moduls wieder her und wendet sie an
(„factory reset“).

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_load_carrier/services/reset_

→˓defaults

API version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/reset_defaults

Roboception GmbH
Handbuch: rc_reason_stack

87 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Request

Dieser Service hat keine Argumente.

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

trigger_dump

speichert die Detektion auf dem angeschlossenen USB Speicher, die dem übergebenen
Zeitstempel entspricht, oder die letzte, falls kein Zeitstempel angegeben wurde.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_load_carrier/services/trigger_

→˓dump

API version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/trigger_dump

Request

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"comment": "string",
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "trigger_dump",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

Roboception GmbH
Handbuch: rc_reason_stack

88 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

set_load_carrier (veraltet)

speichert einen Load Carrier auf dem rc_reason_stack.

API Version 2

Dieser Service ist in API Version 2 nicht verfügbar. Nutzen Sie stattdessen
set_load_carrier (Abschnitt 6.5.1.5) in rc_load_carrier_db.

API version 1 (veraltet)

Dieser Service kann wie folgt aufgerufen werden.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/set_load_carrier

Die Definitionen von Request und Response sind dieselben wie in
set_load_carrier (Abschnitt 6.5.1.5) in rc_load_carrier_db beschrieben.

get_load_carriers (veraltet)

gibt die mit load_carrier_ids spezifizierten, gespeicherten Load Carrier zurück.

API Version 2

Dieser Service ist in API Version 2 nicht verfügbar. Nutzen Sie stattdessen
get_load_carriers (Abschnitt 6.5.1.5) in rc_load_carrier_db.

API version 1 (veraltet)

Dieser Service kann wie folgt aufgerufen werden.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/get_load_carriers

Die Definitionen von Request und Response sind dieselben wie in
get_load_carriers (Abschnitt 6.5.1.5) in rc_load_carrier_db beschrieben.

delete_load_carriers (veraltet)

löscht die mit load_carrier_ids spezifizierten, gespeicherten Load Carrier.

API Version 2

Dieser Service ist in API Version 2 nicht verfügbar. Nutzen Sie stattdessen dele-
te_load_carriers (Abschnitt 6.5.1.5) in rc_load_carrier_db.

API version 1 (veraltet)

Dieser Service kann wie folgt aufgerufen werden.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/delete_load_carriers

Die Definitionen von Request und Response sind dieselben wie in dele-
te_load_carriers (Abschnitt 6.5.1.5) in rc_load_carrier_db beschrieben.

set_region_of_interest (veraltet)

speichert eine 3D Region of Interest auf dem rc_reason_stack.

API Version 2

Dieser Service ist in API Version 2 nicht verfügbar. Nutzen Sie stattdessen
set_region_of_interest (Abschnitt 6.5.2.4) in rc_roi_db.

Roboception GmbH
Handbuch: rc_reason_stack

89 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

API version 1 (veraltet)

Dieser Service kann wie folgt aufgerufen werden.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/set_region_of_interest

Die Definitionen von Request und Response sind dieselben wie in
set_region_of_interest (Abschnitt 6.5.2.4) in rc_roi_db beschrieben.

get_regions_of_interest (veraltet)

gibt die mit region_of_interest_ids spezifizierten, gespeicherten 3D Regions of Interest
zurück.

API Version 2

Dieser Service ist in API Version 2 nicht verfügbar. Nutzen Sie stattdessen
get_regions_of_interest (Abschnitt 6.5.2.4) in rc_roi_db.

API version 1 (veraltet)

Dieser Service kann wie folgt aufgerufen werden.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/get_regions_of_interest

Die Definitionen von Request und Response sind dieselben wie in
get_regions_of_interest (Abschnitt 6.5.2.4) in rc_roi_db beschrieben.

delete_regions_of_interest (veraltet)

löscht die mit region_of_interest_ids spezifizierten, gespeicherten 3D Regions of Inte-
rest.

API Version 2

Dieser Service ist in API Version 2 nicht verfügbar. Nutzen Sie stattdessen dele-
te_regions_of_interest (Abschnitt 6.5.2.4) in rc_roi_db.

API version 1 (veraltet)

Dieser Service kann wie folgt aufgerufen werden.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/delete_regions_of_interest

Die Definitionen von Request und Response sind dieselben wie in dele-
te_regions_of_interest (Abschnitt 6.5.2.4) in rc_roi_db beschrieben.

set_region_of_interest_2d (veraltet)

speichert eine 2D Region of Interest auf dem rc_reason_stack.

API Version 2

Dieser Service ist in API Version 2 nicht verfügbar. Nutzen Sie stattdessen
set_region_of_interest_2d (Abschnitt 6.5.2.4) in rc_roi_db.

API version 1 (veraltet)

Dieser Service kann wie folgt aufgerufen werden.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/set_region_of_interest_2d

Roboception GmbH
Handbuch: rc_reason_stack

90 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Die Definitionen von Request und Response sind dieselben wie in
set_region_of_interest_2d (Abschnitt 6.5.2.4) in rc_roi_db beschrieben.

get_regions_of_interest_2d (veraltet)

gibt die mit region_of_interest_2d_ids spezifizierten, gespeicherten 2D Regions of Inte-
rest zurück.

API Version 2

Dieser Service ist in API Version 2 nicht verfügbar. Nutzen Sie stattdessen
get_regions_of_interest_2d (Abschnitt 6.5.2.4) in rc_roi_db.

API version 1 (veraltet)

Dieser Service kann wie folgt aufgerufen werden.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/get_region_of_interest_2d

Die Definitionen von Request und Response sind dieselben wie in
get_regions_of_interest_2d (Abschnitt 6.5.2.4) in rc_roi_db beschrieben.

delete_regions_of_interest_2d (veraltet)

löscht die mit region_of_interest_2d_ids spezifizierten, gespeicherten 2D Regions of In-
terest.

API Version 2

Dieser Service ist in API Version 2 nicht verfügbar. Nutzen Sie stattdessen dele-
te_regions_of_interest_2d (Abschnitt 6.5.2.4) in rc_roi_db.

API version 1 (veraltet)

Dieser Service kann wie folgt aufgerufen werden.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/delete_regions_of_interest_2d

Die Definitionen von Request und Response sind dieselben wie in dele-
te_regions_of_interest_2d (Abschnitt 6.5.2.4) in rc_roi_db beschrieben.

6.3.2.8 Rückgabecodes

Zusätzlich zur eigentlichen Serviceantwort gibt jeder Service einen sogenannten return_code beste-
hend aus einem Integer-Wert und einer optionalen Textnachricht zurück. Erfolgreiche Service-Anfragen
werden mit einem Wert von 0 quittiert. Positive Werte bedeuten, dass die Service-Anfrage zwar erfolg-
reich bearbeitet wurde, aber zusätzliche Informationen zur Verfügung stehen. Negative Werte bedeu-
ten, dass Fehler aufgetreten sind. Für den Fall, dass mehrere Rückgabewerte zutreffend wären, wird
der kleinste zurückgegeben, und die entsprechenden Textnachrichten werden in return_code.message
akkumuliert.

Die folgende Tabelle listet die möglichen Rückgabe-Codes auf:

Roboception GmbH
Handbuch: rc_reason_stack

91 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Tab. 6.22: Rückgabecodes der Services des LoadCarrier Moduls
Code Beschreibung

0 Erfolgreich
-1 Ungültige(s) Argument(e)
-4 Die maximal erlaubte Zeitspanne für die interne Akquise der Bilddaten wurde überschritten.

-10 Das neue Element konnte nicht hinzugefügt werden, da die maximal speicherbare Anzahl
an Load Carriern überschritten wurde.

-11 Sensor nicht verbunden, nicht unterstützt oder nicht bereit
-12 Ressource ausgelastet, z.B. wenn trigger_dump zu häufig aufgerufen wird
-302 Es wurde mehr als ein Load Carrier an den detect_load_carriers oder

detect_filling_level Service übergeben, aber nur einer wird unterstützt.
3 Der Timeout während der Load Carrier Erkennung wurde erreicht. Die Modelltoleranz sollte

reduziert werden.
10 Die maximal speicherbare Anzahl an Load Carriern wurde erreicht.
11 Mit dem Aufruf von set_load_carrier wurde ein bereits existierendes Objekt mit derselben

id überschrieben.
100 Die angefragten Load Carrier wurden in der Szene nicht gefunden.
102 Der erkannte Load Carrier enthält keine 3D-Punkte
300 Ein gültiges robot_pose-Argument wurde angegeben, ist aber nicht erforderlich.

6.3.3 TagDetect

6.3.3.1 Einführung

Die TagDetect-Module sind optionale Module, die intern auf dem rc_reason_stack laufen, und benötigen
gesonderte Lizenzen (Abschnitt 8.2), die erworben werden müssen. Diese Lizenzen sind auf jedem
rc_reason_stack, der nach dem 01.07.2020 gekauft wurde, vorhanden.

Die TagDetect-Module laufen intern auf dem rc_reason_stack und ermöglichen es, 2D-Matrixcodes
und Marker (Tags) zu erkennen. Derzeit gibt es TagDetect-Module für QR-Codes und AprilTags.
Neben der Erkennung berechnen die Module die Position und Orientierung jedes Tags im 3D-
Kamerakoordinatensystem, um diesen beispielsweise mit einem Roboter zu manipulieren oder die Pose
der Kamera in Bezug auf den Tag zu berechnen.

Bemerkung: Diese Module sind nicht verfügbar in Kamerapipelines vom Typ zivid oder orbbec.

Bemerkung: Diese Softwaremodule sind pipelinespezifisch. Änderungen ihrer Einstellungen oder
Parameter betreffen nur die zugehörige Kamerapipeline und haben keinen Einfluss auf die anderen
Pipelines, die auf dem rc_reason_stack laufen.

Die Tagerkennung besteht aus drei Schritten:

1. Tagerkennung auf dem 2D-Bildpaar (siehe Tagerkennung, Abschnitt 6.3.3.2).

2. Schätzung der Pose jedes Tags (siehe Posenschätzung, Abschnitt 6.3.3.3).

3. Wiedererkennung von bisher gesehenen Tags (siehe Tag-Wiedererkennung, Abschnitt 6.3.3.4).

Im Folgenden werden die zwei unterstützten Tagtypen näher beschrieben, gefolgt von einem Vergleich.

Roboception GmbH
Handbuch: rc_reason_stack

92 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

QR-Code

Abb. 6.6: Beispiel eines QR-Codes

QR-Codes sind zweidimensionale Matrixcodes, welche beliebige, benutzerspezifizierte Daten enthalten
können. Viele Alltagsgeräte, wie beispielsweise Smartphones, unterstützen die Erkennung von QR-
Codes. Zusätzlich stehen Online- und Offlinetools zur Verfügung, um QR-Codes zu generieren.

Die „Pixel“ eines QR-Codes werden Module genannt. Das Aussehen und die Auflösung von QR-Codes
ändert sich mit der Menge der in ihnen gespeicherten Daten. Während die speziellen Muster in den
drei Ecken immer 7 Module breit sind, erhöht sich die Anzahl der Module dazwischen, je mehr Daten
gespeichert sind. Der am niedrigsten aufgelöste QR-Code besitzt eine Größe von 21x21 Modulen und
kann bis zu 152 Bits speichern.

Auch wenn viele QR-Code-Generatoren speziell designte QR-Codes erzeugen können (bspw. mit ei-
nem Logo, mit runden Ecken oder mit Punkten als Module), wird eine zuverlässige Erkennung solcher
Tags mit dem TagDetect-Modul nicht garantiert. Gleiches gilt für QR-Codes, welche Zeichen außerhalb
des ASCII-Zeichensatzes beinhalten.

AprilTag

Abb. 6.7: Ein 16h5 Tag (links), ein 36h11 Tag (Mitte) und ein 41h12 Tag (rechts). AprilTags bestehen
aus einem obligatorischen weißen (a) und schwarzen (b) Rahmen und einer variablen Menge an Da-
tenmodulen (c).

AprilTags sind ähnlich zu QR-Codes. Sie wurden allerdings speziell zur robusten Identifikation auf wei-
te Entfernungen entwickelt. Wie bei QR-Codes werden die „Pixel“ Module genannt. Abb. 6.7 veran-
schaulicht den Aufbau von AprilTags. Sie haben einen obligatorischen weißen und schwarzen Rahmen,

Roboception GmbH
Handbuch: rc_reason_stack

93 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

welcher jeweils ein Modul breit ist. Tags der Familien 16h5, 25h9, 36h10 und 36h11 sind von diesem
Rahmen umschlossen und enthalten innen eine variable Menge an Datenmodulen. Bei Tags der Fami-
lie 41h12 ist der Rahmen nach innen verschoben und die Datenmodule befinden sich sowohl innerhalb
als auch außerhalb des Rahmens. Anders als QR-Codes speichern AprilTags keine benutzerdefinierten
Informationen, sondern werden durch eine vordefinierte Familie und ID identifiziert. Die Tags in Abb. 6.7
sind zum Beispiel aus Familie 16h5, 36h11 bzw. 41h12 und besitzen ID 0, 11 bzw. 0. Alle unterstützten
Familien werden in Tab. 6.23 aufgelistet.

Tab. 6.23: AprilTag-Familien
Familie Anzahl IDs Empfohlen
16h5 30 -
25h9 35 o
36h10 2320 o
36h11 587 +
41h12 2115 +

Die Zahl vor dem „h“ jeder Familie bezeichnet die Anzahl der Datenmodule, welche im Tag enthalten
sind: Während ein 16h5 Tag 16 (4x4) Datenmodule enthält ((c) in Abb. 6.7) und ein 36h11 Tag 36
(6x6), beinhaltet ein 41h12 Tag 41 Datenmodule (3x3 innen und 4x8 außen). Die Zahl hinter dem
„h“ bezeichnet den Hamming-Abstand zwischen zwei Tags der Familie. Je höher, desto höher ist die
Robustheit, aber desto weniger IDs stehen bei gleicher Anzahl an Datenmodulen zur Verfügung (siehe
Tab. 6.23).

Der Vorteil von Familien mit weniger Modulen (bspw. 16h5 im Vergleich zu 36h11) ist die niedrigere
Auflösung der Tags. Jedes Modul ist somit größer, weshalb der Tag auf eine größere Distanz erkannt
werden kann. Dies hat allerdings auch Nachteile: Zum einen stehen bei niedrigerer Zahl an Daten-
modulen auch weniger IDs zur Verfügung. Wichtiger aber ist, dass die Robustheit der Tagerkennung
signifikant reduziert wird, da es zu einer höheren Falsch-Positiv-Rate kommt. Dies bedeutet, dass Tags
verwechselt werden oder nicht existierende Tags in zufälliger Bildtextur oder im Bildrauschen erkannt
werden. Die 41h12 Familie hat ihren Rahmen nach innen verschoben, was im Vergleich zur 36h11
Familie mehr Datenmodule bei einer geringen Gesamtmodulanzahl ermöglicht.

Aus diesen Gründen empfehlen wir die Verwendung der 42h12 und 36h11-Familien und raten aus-
drücklich von der Familie 16h5 ab. Letztgenannte Familie sollten nur benutzt werden, wenn eine große
Erkennungsdistanz für die Anwendung unbedingt erforderlich ist. Jedoch ist die maximale Erkennungs-
distanz nur ca. 25% größer, wenn anstelle der 36h11-Familie die 16h5-Familie verwendet wird.

Vorgenerierte AprilTags können von der Webseite https://github.com/AprilRobotics/apriltag-imgs herun-
tergeladen werden. Jede Familie besteht aus mehreren PNGs, welche jeweils einen AprilTag enthalten.
Jedes Pixel im PNG entspricht dabei einem Modul des AprilTags. Beim Drucken der Tags der Familien
36h11, 36h10, 25h9 und 16h5 sollte darauf geachtet werden, den weißen Rand um den AprilTag mit
einzuschließen – dieser ist in den PNGs enthalten (siehe (a) in Abb. 6.7). Die Tags müssen außerdem
ohne Interpolation auf die Druckgröße skaliert werden, sodass die scharfen Kanten erhalten bleiben.

Vergleich

Sowohl QR-Codes als auch AprilTags haben ihre Vor- und Nachteile. Während QR-Codes die Speiche-
rung von benutzerdefinierten Daten erlauben, sind die Tags bei AprilTags vordefiniert und in ihrer Anzahl
limitiert. Andererseits haben AprilTags eine niedrigere Auflösung und können daher auf eine größere
Distanz erkannt werden. Zusätzlich hilft die durchgängige weiß-zu-schwarz-Kante in jedem AprilTag bei
einer präziseren Posenschätzung.

Bemerkung: Falls die Speicherung von benutzerdefinierten Daten nicht benötigt wird, sollten April-
Tags QR-Codes vorgezogen werden.

Roboception GmbH
Handbuch: rc_reason_stack

94 Rev: 26.01.4
Status: 30.01.2026

https://github.com/AprilRobotics/apriltag-imgs

6.3. Detektions- und Messmodule

6.3.3.2 Tagerkennung

Der erste Schritt der Tagerkennung ist die Detektion der Tags auf dem Stereo-Bildpaar. Dieser Schritt
benötigt die meiste Zeit und seine Präzision ist entscheidend für die Präzision der finalen Tagpose. Um
die Dauer dieses Schritts zu kontrollieren, kann der Parameter quality vom Benutzer konfiguriert wer-
den. Er hat ein Herunterskalieren des Stereo-Bildpaares vor der Tagerkennung zur Folge. Hoch (High)
ergibt die höchste maximale Erkennungsdistanz und Präzision, aber auch die längste Dauer der Erken-
nung. Niedrig (Low) führt zur kleinsten maximalen Erkennungsdistanz und Präzision, aber benötigt auch
nur weniger als die halbe Zeit. Mittel (Medium) liegt dazwischen. Es sollte beachtet werden, dass dieser
quality-Parameter keine Verbindung zum quality-Parameter des Stereo-Matching Modul (Abschnitt
6.2.2) hat.

Abb. 6.8: Visualisierung der Modulgröße 𝑠, der Größe eines Tags in Modulen 𝑟 und der Größe eines
Tags in Metern 𝑡 für AprilTags (links und Mitte) und QR-Codes (rechts)

Die maximale Erkennungsdistanz 𝑧 für Qualität Hoch (High) kann mit folgenden Formeln angenähert
werden:

𝑧 =
𝑓𝑠

𝑝
,

𝑠 =
𝑡

𝑟
,

wobei 𝑓 die Brennweite (Abschnitt 6.1.1) in Pixeln und 𝑠 die Größe jedes Moduls in Metern bezeichnet.
𝑠 kann leicht mit letztgenannter Formel berechnet werden, in welcher 𝑡 der Taggröße in Metern und 𝑟
der Breite des Tags in Modulen entspricht (bei AprilTags ohne den weißen Rahmen). Abb. 6.8 veran-
schaulicht diese Variablen. 𝑝 bezeichnet die Zahl der Bildpixel pro Modul, welche für eine Erkennung
erforderlich sind. Sie unterscheidet sich zwischen QR-Codes und AprilTags. Auch der Winkel des Tags
zur Kamera und die Beleuchtung spielen eine Rolle. Ungefähre Werte für eine robuste Erkennung sind:

• AprilTag: 𝑝 = 5 Pixel/Modul

• QR-Code: 𝑝 = 6 Pixel/Modul

Die folgenden Tabellen enthalten Beispiele für die maximale Erkennungsdistanz in unterschiedlichen
Situationen. Die Brennweite des rc_visard wird dafür mit 1075 Pixeln, die Qualität mit High angenom-
men.

Tab. 6.24: Beispiele zur maximalen Erkennungsdistanz für April-
Tags mit einer Breite von 𝑡 = 4 cm

AprilTag-Familie Tagbreite Maximale Distanz
36h11 (empfohlen) 8 Module 1.1 m
16h5 6 Module 1.4 m
41h12 (empfohlen) 5 Module 1.7 m

Roboception GmbH
Handbuch: rc_reason_stack

95 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Tab. 6.25: Beispiele zur maximalen Erkennungsdistanz für QR-
Codes mit einer Breite von 𝑡 = 8 cm

Tagbreite Maximale Distanz
29 Module 0.49 m
21 Module 0.70 m

6.3.3.3 Posenschätzung

Für jeden erkannten Tag wird dessen Pose im Kamerakoordinatensystem geschätzt. Eine Bedingung
dafür ist, dass der Tag vollständig im linken und rechten Bild zu sehen ist. Das Koordinatensystem ist
wie unten gezeigt am Tag ausgerichtet.

Abb. 6.9: Koordinatensysteme für AprilTags (links und Mitte) bzw. QR-Codes (rechts)

Die z-Achse zeigt „in“ den Tag. Es ist zu beachten, dass, auch wenn AprilTags den weißen Rand in
ihrer Definition enthalten, der Ursprung des Koordinatensystems trotzdem am Übergang des weißen
zum schwarzen Rand liegt. Da AprilTags keine offensichtliche Orientierung haben, liegt der Ursprung in
der oberen linken Ecke des vorgenerierten AprilTags.

Während der Posenschätzung wird auch die Größe des Tags geschätzt unter der Annahme, dass der
Tag quadratisch ist. Bei QR-Codes bezieht sich die Größe auf den gesamten Tag, bei AprilTags dagegen
nur auf den Bereich innerhalb des Übergangs vom schwarzen zum weißen Rand. Das heißt, dass bei
Tags der Familien 16h5, 25h9, 36h10 und 36h11 der äußere weiße Rand ignoriert wird.

Der Benutzer kann auch die ungefähre Größe (±10%) eines Tags angeben. Alle Tags, die dieser Ein-
schränkung nicht entsprechen, werden automatisch herausgefiltert. Weiter hilft diese Information in
bestimmten Situationen, Mehrdeutigkeiten in der Posenschätzung aufzulösen, die entstehen können,
wenn mehrere Tags mit derselben ID im linken und rechten Bild sichtbar und diese Tags parallel zu den
Bildzeilen ausgerichtet sind.

Bemerkung: Für beste Ergebnisse der Posenschätzung sollte der Tag sorgfältig gedruckt und auf
einem steifen und möglichst ebenen Untergrund angebracht werden. Jegliche Verzerrung des Tags
oder Unebenheit der Oberfläche verschlechtert die geschätzte Pose.

Bemerkung: Wir empfehlen, die ungefähre Größe der Tags anzugeben. Ansonsten, falls mehre-
re Tags mit derselben ID im linken oder rechten Bild sichtbar sind, kann es zu einer fehlerhaften
Posenschätzung kommen, wenn die Tags gleich orientiert sind und sie ungefähr parallel zu den Bild-
zeilen angeordnet sind. Auch wenn die Größe nicht angegeben sein sollte, versuchen die TagDetect-
Module jedoch, solche Situationen zu erkennen und verwerfen betroffene Tags.

Unten stehende Tabellen enthalten grobe Angaben zur Präzision der geschätzten Posen von AprilTags.
Wir unterscheiden zwischen lateraler Präzision (also in x- und y-Richtung) und Präzision in z-Richtung.

Roboception GmbH
Handbuch: rc_reason_stack

96 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Es wird angenommen, dass quality auf High gesetzt ist, und dass die Blickrichtung der Kamera parallel
zur Normalen des Tags ist. Die Größe eines Tags hat keinen signifikanten Einfluss auf die Präzision in
lateraler und z-Richtung. Im Allgemeinen verbessert ein größerer Tag allerdings die Präzision. Im Bezug
auf die Präzision der Rotation, im speziellen um die x- und y-Achsen, übertreffen große Tags kleinere
deutlich.

Tab. 6.26: Ungefähre Präzision der Orientierung von AprilTag
Messungen mit Qualität Hoch in einem idealen Szenario für ver-
schiedene Tag-Größen

Distanz 60 x 60 mm 120 x 120 mm
0.5 m 0.2° –
1.0 m 0.8° 0.3°
2.0 m 2.0° 0.8°
3.0 m – 1.8°

6.3.3.4 Tag-Wiedererkennung

Jeder Tag besitzt eine ID: bei AprilTags ist dies die Familie zusammen mit der AprilTag-ID, bei QR-
Codes die enthaltenen Daten. Diese IDs sind jedoch nicht einzigartig, da mehrere Tags mit derselben
ID in einer Szene vorkommen können.

Zur Unterscheidung dieser Tags weisen die TagDetect-Module jedem Tag einen eindeutigen Identifi-
kator zu. Um den Benutzer dabei zu unterstützen, denselben Tag über mehrere Tagerkennungsläufe
hinweg zu identifizieren, versucht das TagDetect-Modul Tags wiederzuerkennen. Falls erfolgreich, wird
einem Tag derselbe Identifikator zugewiesen.

Die Tag-Wiedererkennung vergleicht die Positionen der Ecken der Tags im Kamera-Koordinatensystem,
um identische Tags wiederzufinden. Tags werden als identisch angenommen, falls sie sich nicht oder
nur geringfügig in diesem Koordinatensystem bewegt haben.

Über den max_corner_distance-Parameter kann der Benutzer festlegen, wie weit ein Tag sich zwischen
zwei Erkennungsläufen bewegen darf, um als identisch zu gelten. Der Parameter definiert die maximale
Distanz zwischen den Ecken zweier Tags, was in Abb. 6.10 dargestellt ist. Die euklidischen Abstände
der vier zusammengehörenden Tagecken in 3D werden berechnet. Falls keiner dieser Abstände den
Grenzwert überschreitet, gilt der Tag als wiedererkannt.

Abb. 6.10: Vereinfachte Darstellung der Tag-Wiedererkennung. Die euklidischen Abstände zwischen
zusammengehörigen Tagecken in 3D werden berechnet (rote Pfeile).

Nach einer bestimmten Anzahl von Tagerkennungsläufen werden vorher gesehene Tags verwor-
fen, falls diese in der Zwischenzeit nicht mehr erkannt wurden. Dies kann über den Parameter
forget_after_n_detections festgelegt werden.

Roboception GmbH
Handbuch: rc_reason_stack

97 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

6.3.3.5 Hand-Auge-Kalibrierung

Falls die Kamera zu einem Roboter kalibriert wurde, kann das TagDetect-Modul automatisch Posen im
Roboterkoordinatensystem ausgeben. Für die Services (Abschnitt 6.3.3.8) kann das Koordinatensys-
tem der berechneten Posen mit dem Argument pose_frame spezifiziert werden.

Zwei verschiedene pose_frame-Werte können gewählt werden:

1. Kamera-Koordinatensystem (camera): Alle Posen sind im Kamera-Koordinatensystem angege-
ben.

2. Benutzerdefiniertes externes Koordinatensystem (external): Alle Posen sind im sogenann-
ten externen Koordinatensystem angegeben, welches vom Nutzer während der Hand-Auge-
Kalibrierung gewählt wurde. In diesem Fall bezieht das Modul alle notwendigen Informationen
über die Kameramontage und die kalibrierte Hand-Auge-Transformation automatisch vom Modul
Hand-Auge-Kalibrierung (Abschnitt 6.4.1). Für den Fall einer robotergeführten Kamera ist vom
Nutzer zusätzlich die jeweils aktuelle Roboterpose robot_pose anzugeben.

Zulässige Werte zur Angabe des Referenzkoordinatensystems sind camera und external. Andere Wer-
te werden als ungültig zurückgewiesen.

6.3.3.6 Parameter

Es stehen zwei getrennte Module für die Tagerkennung zur Verfügung, eines für AprilTag- und eines für
QR-Code-Erkennung: rc_april_tag_detect bzw. rc_qr_code_detect. Abgesehen vom Modulnamen
teilen beide die gleiche Schnittstellendefinition.

Neben der REST-API-Schnittstelle (Abschnitt 7.2) stellen die TagDetect-Module außerdem Seiten in der
Web GUI in der gewünschten Pipeline unter Module → AprilTag und Module → QR Code bereit, über
welche sie manuell ausprobiert und konfiguriert werden können.

Im Folgenden sind die Parameter am Beispiel von rc_qr_code_detect aufgelistet. Sie gleichen denen
von rc_april_tag_detect.

Dieses Softwaremodul bietet folgende Laufzeitparameter:

Tab. 6.27: Laufzeitparameter des rc_qr_code_detect-Moduls
Name Typ Min. Max. Default Beschreibung
detect_inverted_tags bool false true false Erkennt Tags, bei denen Schwarz

und Weiß vertauscht sind
forget_after_n_detections int32 1 1000 30 Anzahl an Erkennungsläufen, nach

denen ein vorher gesehener Tag
während der Tag-Wiedererkennung
verworfen wird

max_corner_distance float64 0.001 0.01 0.005 Maximale Distanz zusammengehö-
riger Ecken zweier Tags während
der Tag-Wiedererkennung

quality string - - High Qualität der Tagerkennung: [Low,
Medium, High]

use_cached_images bool false true false Benutze das zuletzt empfange-
ne Stereo-Bildpaar, anstatt auf ein
neues zu warten

Über die REST-API können diese Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/<rc_qr_code_detect|rc_april_tag_

→˓detect>/parameters?<parameter-name>=<value>

API Version 1 (veraltet)

Roboception GmbH
Handbuch: rc_reason_stack

98 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/parameters?
→˓<parameter-name>=<value>

6.3.3.7 Statuswerte

Die TagDetect-Module melden folgende Statuswerte:

Tab. 6.28: Statuswerte der rc_qr_code_detect- und
rc_april_tag_detect-Module

Name Beschreibung
data_acquisition_time Zeit in Sekunden, für die beim letzten Aufruf auf Bilddaten gewartet

werden musste
last_timestamp_processed Zeitstempel des letzten verarbeiteten Bilddatensatzes
processing_time Berechnungszeit für die letzte Erkennung in Sekunden
state Der aktuelle Zustand des Moduls

Der Parameter state kann folgende Werte annehmen:

Tab. 6.29: Mögliche Zustände der TagDetect-Module
Zustandsname Beschreibung
IDLE Das Modul ist inaktiv.
RUNNING Das Modul läuft und ist bereit zur Tagerkennung.
FATAL Ein schwerwiegender Fehler ist aufgetreten.

6.3.3.8 Services

Die TagDetect-Module implementieren einen Zustandsautomaten, welcher zum Starten und Stoppen
genutzt werden kann. Die eigentliche Tagerkennung kann mit detect ausgelöst werden.

Die angebotenen Services von rc_qr_code_detect bzw. rc_april_tag_detect können mithilfe der
REST-API-Schnittstelle (Abschnitt 7.2) oder der rc_reason_stack Web GUI (Abschnitt 7.1) ausprobiert
und getestet werden.

detect

löst eine Tagerkennung aus.

Details

Abhängig vom use_cached_images-Parameter arbeitet das Modul auf dem zuletzt
empfangenen Bildpaar (wenn true) oder wartet auf ein Bildpaar, das nach dem
Auslösen des Services aufgenommen wurde (wenn false, dies ist das Standard-
verhalten). Auch wenn der Parameter auf true steht, arbeitet die Tagerkennung
niemals mehrmals auf einem Bildpaar.

Es wird empfohlen, detect nur im Zustand RUNNING aufzurufen. Es ist jedoch auch
im Zustand IDLE möglich, was zu einem Autostart und -stop des Moduls führt.
Dies hat allerdings Nachteile: Erstens dauert der Aufruf deutlich länger, zweitens
funktioniert die Tag-Wiedererkennung nicht. Es wird daher ausdrücklich empfoh-
len, das Modul manuell zu starten, bevor detect aufgerufen wird.

Tags können vom detect-Ergebnis aus mehreren Gründen ausgeschlossen wer-
den, z.B. falls ein Tag nur in einem der Kamerabilder sichtbar war, oder falls die
Posenschätzung fehlschlug. Diese herausgefilterten Tags werden im Log aufge-
listet, auf welches wie in Download der Logdateien (Abschnitt 8.3) beschrieben
zugegriffen werden kann.

Roboception GmbH
Handbuch: rc_reason_stack

99 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Auf den Web GUI-Seiten der TagDetect-Module wird eine Visualisierung der letz-
ten Tagerkennung bereitgestellt. Diese Visualisierung wird allerdings erst ange-
zeigt, sobald die Tagerkennung mindestens einmal ausgeführt wurde. In der Web
GUI kann die Tagerkennung außerdem manuell ausprobiert werden, indem die
Detektieren-Schaltfläche betätigt wird.

Aufgrund von Änderungen der Systemzeit auf dem rc_reason_stack können
Zeitsprünge auftreten, sowohl vorwärts als auch rückwärts. Während Vorwärtss-
prünge keinen Einfluss auf die TagDetect-Module haben, invalidieren Rücksprün-
ge die bereits empfangenen Bilder. Deshalb wird, wenn ein Rücksprung erkannt
wird, Fehler -102 beim nächsten detect-Aufruf zurückgegeben. Dies geschieht
auch, um den Benutzer darauf hinzuweisen, dass die Zeitstempel in der detect-
Antwort ebenso zurückspringen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/<rc_qr_code_detect|rc_

→˓april_tag_detect>/services/detect

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/
→˓services/detect

Request

Optionale Serviceargumente:

tags bezeichnet die Liste der Tag-IDs, welche erkannt werden sollen. Bei
QR-Codes ist die ID gleich den enthaltenen Daten. Bei AprilTags ist es
„<Familie>_<ID>“, also beispielsweise „36h11_5“ für Familie 36h11 und
ID 5. Natürlich kann das AprilTag-Modul nur zur Erkennung von AprilTags
und das QR-Code-Modul nur zur Erkennung von QR-Codes genutzt wer-
den.

Die tags-Liste kann auch leer gelassen werden. In diesem Fall werden al-
le erkannten Tags zurückgegeben. Dieses Feature sollte nur während der
Entwicklung einer Applikation oder zur Fehlerbehebung benutzt werden.
Wann immer möglich sollten die konkreten Tag-IDs aufgelistet werden,
zum einen zur Vermeidung von Fehldetektionen, zum anderen auch um
die Tagerkennung zu beschleunigen, da nicht benötigte Tags aussortiert
werden können.

Bei AprilTags kann der Benutzer nicht nur einzelne Tags, sondern auch
eine gesamte Familie spezifizieren, indem die ID auf „<family>“ gesetzt
wird, bspw. „36h11“. Dadurch werden alle Tags dieser Familie erkannt. Es
ist auch möglich, mehrere Familien oder eine Kombination aus Familien
und einzelnen Tags anzugeben. Zum Beispiel kann detect mit „36h11“,
„25h9_3“ und „36h10“ zur gleichen Zeit aufgerufen werden.

Zusätzlich zur ID kann auch die ungefähre Größe (±10%) eines Tags an-
gegeben werden. Wie in Posenschätzung (Abschnitt 6.3.3.3) erklärt, ver-
hilft dies Mehrdeutigkeiten aufzulösen, die in bestimmten Situationen auf-
treten können, und kann zum Herausfiltern von Tags genutzt werden, die
nicht der angegebenen Größe entsprechen.

Die tags-Liste ist ODER-verknüpft. Es werden alle Tags zurückgegeben,
die mit einem der id-size-Paare in der tags-Liste übereinstimmen.

Das Feld pose_frame gibt an, ob die Posen im Kamera- oder im ex-
ternen Koordinatensystem zurückgegeben werden (siehe Hand-Auge-
Kalibrierung, Abschnitt 6.3.3.5). Der Standardwert ist camera.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

Roboception GmbH
Handbuch: rc_reason_stack

100 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

{
"args": {

"pose_frame": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"tags": [

{
"id": "string",
"size": "float64"

}
]

}
}

Response

timestamp wird auf den Zeitstempel des Bildpaares gesetzt, auf dem die Tager-
kennung gearbeitet hat.

tags enthält alle erkannten Tags.

id ist die ID des Tags, vergleichbar zur id in der Anfrage.

instance_id ist der zufällige, eindeutige Identifikator eines Tags, welcher von der
Tag-Wiedererkennung zugewiesen wird.

pose enthält position und orientation. Die Orientierung ist im Quaternionen-
Format angegeben.

pose_frame bezeichnet das Koordinatensystem, auf welches obige Pose bezogen
ist, und hat den Wert camera oder external.

size wird auf die gemessene Taggröße gesetzt.

return_code enthält mögliche Warnungen oder Fehlercodes und Nachrichten.

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "detect",
"response": {
"return_code": {
"message": "string",
"value": "int16"

},
"tags": [

{
"id": "string",
"instance_id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

101 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"z": "float64"
},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"size": "float64",
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

],
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

start

startet das Modul durch einen Übergang von IDLE nach RUNNING.

Details

Wenn das Modul läuft, empfängt es die Bilder der Stereokamera und ist bereit, Tags zu
erkennen. Um Rechenressourcen zu sparen, sollte das Modul nur laufen, wenn dies nötig
ist.

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/<rc_qr_code_detect|rc_april_tag_

→˓detect>/services/start

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/services/start

Request

Dieser Service hat keine Argumente.

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "start",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

Roboception GmbH
Handbuch: rc_reason_stack

102 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

stop

stoppt das Modul durch einen Übergang zu IDLE.

Details

Dieser Übergang kann auf dem Zustand RUNNING und FATAL durchgeführt werden.
Alle Tag-Wiedererkennungs-Informationen werden beim Stoppen gelöscht.

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/<rc_qr_code_detect|rc_

→˓april_tag_detect>/services/stop

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/
→˓services/stop

Request

Dieser Service hat keine Argumente.

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "stop",
"response": {
"accepted": "bool",
"current_state": "string"

}
}

restart

startet das Modul neu.

Details

Wenn im Zustand RUNNING oder FATAL, wird das Modul erst gestoppt und dann
wieder gestartet. In IDLE wird das Modul nur gestartet.

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/<rc_qr_code_detect|rc_

→˓april_tag_detect>/services/restart

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/
→˓services/restart

Request

Dieser Service hat keine Argumente.

Response

Die Definition der Response mit jeweiligen Datentypen ist:

Roboception GmbH
Handbuch: rc_reason_stack

103 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

{
"name": "restart",
"response": {
"accepted": "bool",
"current_state": "string"

}
}

trigger_dump

speichert die Detektion auf dem angeschlossenen USB Speicher, die dem übergebenen
Zeitstempel entspricht, oder die letzte, falls kein Zeitstempel angegeben wurde.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/<rc_qr_code_detect|rc_april_tag_

→˓detect>/services/trigger_dump

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/services/
→˓trigger_dump

Request

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"comment": "string",
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "trigger_dump",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

reset_defaults

stellt die Werkseinstellungen der Parameter dieses Moduls wieder her und wendet sie an
(„factory reset“).

Details

Roboception GmbH
Handbuch: rc_reason_stack

104 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/<rc_qr_code_detect|rc_april_tag_

→˓detect>/services/reset_defaults

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/services/reset_

→˓defaults

Request

Dieser Service hat keine Argumente.

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.3.3.9 Rückgabecodes

Zusätzlich zur eigentlichen Serviceantwort gibt jeder Service einen sogenannten return_code beste-
hend aus einem Integer-Wert und einer optionalen Textnachricht zurück. Erfolgreiche Service-Anfragen
werden mit einem Wert von 0 quittiert. Positive Werte bedeuten, dass die Service-Anfrage zwar erfolg-
reich bearbeitet wurde, aber zusätzliche Informationen zur Verfügung stehen. Negative Werte bedeu-
ten, dass Fehler aufgetreten sind. Für den Fall, dass mehrere Rückgabewerte zutreffend wären, wird
der kleinste zurückgegeben, und die entsprechenden Textnachrichten werden in return_code.message
akkumuliert.

Die folgende Tabelle listet die möglichen Rückgabe-Codes auf:

Code Beschreibung
0 Erfolg
-1 Ein ungültiges Argument wurde übergeben.
-4 Die maximale Wartezeit auf ein Stereo-Bildpaar wurde überschritten.
-9 Die Lizenz ist ungültig.
-11 Sensor nicht verbunden, nicht unterstützt oder nicht bereit
-12 Ressource ausgelastet, z.B. wenn trigger_dump zu häufig aufgerufen wird
-101 Ein interner Fehler trat während der Tagerkennung auf.
-102 Ein Rückwärtssprung der Systemzeit trat auf
-103 Ein interner Fehler trat während der Posenschätzung auf.
-200 Ein schwerwiegender interner Fehler trat auf.
200 Mehrere Warnungen traten auf. Siehe die Auflistung in message.
201 Das Modul war nicht im Zustand RUNNING.

Roboception GmbH
Handbuch: rc_reason_stack

105 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

6.3.4 ItemPick und ItemPickAI

6.3.4.1 Einführung

Das ItemPick und ItemPickAI Modul liefert eine gebrauchsfertige Perzeptionslösung, um robotische
Pick-and-Place-Anwendungen zu realisieren. ItemPick detektiert ebene Oberflächen unbekannter Ob-
jekte für die Positionierung eines Sauggreifers. :cubeonly:‘ItemPickAI nutzt neuronale Netze, um Objek-
te einer bestimmten Objektkategorie zu segmentieren und orientierte und objektzentrierte Greifpunkte
für Sauggreifer zu berechnen.

Darüber hinaus bietet das Modul:

• eine intuitiv gestaltete Bedienoberfläche für Inbetriebnahme, Konfiguration und Test auf der
rc_reason_stack Web GUI (Abschnitt 7.1)

• die Möglichkeit, sogenannte Regions of Interest (ROIs) zu definieren, um relevante Teilbereiche
der Szene auszuwählen (siehe RoiDB, Abschnitt 6.5.2)

• eine integrierte Load Carrier Erkennung (siehe LoadCarrier , Abschnitt 6.3.2), um in Bin-Picking-
Anwendungen („Griff in die Kiste“) Greifpunkte nur für Objekte in dem erkannten Load Carrier zu
berechnen

• die Unterstützung von Load Carriern mit Fächern, sodass Greifpunkte für Objekte nur in einem
definierten Teilvolumen des Load Carriers berechnet werden

• eine Kollisionsprüfung zwischen Greifer und Load Carrier und/oder der Punktwolke

• die Unterstützung von sowohl statisch montierten als auch robotergeführten Kameras. Optional
kann es mit der Hand-Auge-Kalibrierung (Abschnitt 6.4.1) kombiniert werden, um Greifposen in
einem benutzerdefinierten externen Koordinatensystem zu liefern.

• einen Qualitätswert für jeden vorgeschlagenen Greifpunkt, der die Ebenheit der für das Greifen
verfügbaren Oberfläche bewertet

• Auswahl einer Strategie zum Sortieren der zurückgelieferten Greifpunkte

• eine 3D Visualisierung des Detektionsergebnisses mit Greifpunkten und einer Greiferanimation in
der Web GUI

Bemerkung: Dieses Softwaremodul ist pipelinespezifisch. Änderungen seiner Einstellungen oder
Parameter betreffen nur die zugehörige Kamerapipeline und haben keinen Einfluss auf die anderen
Pipelines, die auf dem rc_reason_stack laufen.

Bemerkung: In diesem Kapitel werden die Begriffe Cluster und Oberfläche synonym verwendet und
bezeichnen eine Menge von Punkten (oder Pixeln) mit ähnlichen geometrischen Eigenschaften.

Das Modul ist ein optional erhältliches Module, welches intern auf dem rc_reason_stack läuft und eine
gesonderte ItemPick bzw. ItemPickAI Lizenz (Abschnitt 8.2) benötigt.

6.3.4.2 Berechnung der Greifpunkte

Das ItemPick und ItemPickAI Modul bietet einen Service, um Greifpunkte für Sauggreifer zu berechnen.
Der Sauggreifer ist durch die Länge und Breite der Greiffläche definiert.

Das ItemPick-Modul identifiziert ebene Flächen in der Szene und unterstützt flexible und/oder deformier-
bare Objekte. Der Typ (type) dieser Objektmodelle (item_models) ist als unbekannt (UNKNOWN) definiert,
da sie keine gebräuchliche geometrische Form aufweisen müssen. Optional kann eine minimale und
maximale Größe angegeben werden.

Für ItemPickAI werden die Greifpunkte in der Mitte der oberen Oberfläche der segmentierten Ob-
jekte (items) der angegebenen Objektkategorie berechnet. Die Objektkategorie wird durch Festle-
gen des Typs (type) der Objektmodelle (item_models) ausgewählt. Derzeit werden die Typen BAG,

Roboception GmbH
Handbuch: rc_reason_stack

106 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

CONSUMER_GOODS und SHEET_METAL unterstützt. BAG bezieht sich auf verformbare und flexible beutel-
artige Objekte mit unterschiedlichen Füllgraden, wie z.B. Beutelpackungen, Päckchen, Schüttgutsäcke,
Versandtaschen, Papiertüten und Säcke. CONSUMER_GOODS umfasst allgemeine verpackte Konsumgü-
ter wie verpackte Lebensmittel, Getränke, Toilettenartikel, Reinigungsmittel und andere erschwingliche
Haushaltswaren. SHEET_METAL segmentiert flache, ebene Metallteile, z.B. lasergeschnittene Bleche.

Bemerkung: Der erste Aufruf der Erkennung mit dem Objektmodelltyp BAG, CONSUMER_GOODS oder
SHEET_METAL dauert jeweils länger als die nachfolgenden Aufrufe, weil das Modell erst in das
ItemPickAI-Modul geladen werden muss.

Optional können den Modulen zu einer Greifpunktberechnung weitere Informationen übergeben wer-
den:

• die ID des Load Carriers, welcher die zu greifenden Objekte enthält

• ein Unterabteil (load_carrier_compartment) innerhalb eines Load Carriers, in dem Objekte er-
kannt werden sollen (siehe Load Carrier Abteile, Abschnitt 6.5.1.3).

• die ID der 3D Region of Interest, innerhalb der nach dem Load Carrier gesucht wird, oder – falls
kein Load Carrier angegeben ist – die 3D Region of Interest, innerhalb der Greifpunkte berechnet
werden

• Informationen für die Kollisionsprüfung: Die ID des Greifers, um die Kollisionsprüfung zu aktivie-
ren, und optional ein Greif-Offset, der die Vorgreifposition definiert. Details zur Kollisionsprüfung
sind in CollisionCheck (Abschnitt 6.3.4.4) gegeben.

Ein vom BoxPick-Modul ermittelter Greifpunkt repräsentiert die empfohlene Pose des TCP (Tool Center
Point) des Sauggreifers. Der Greifpunkt type ist immer auf SUCTION gesetzt.

Für ItemPick mit dem Objektmodelltyp UNKNOWN liegt der Ursprung der berechneten Greifposen pose im
Mittelpunkt der größten von der jeweiligen Greiffläche umschlossenen Ellipse.

Für ItemPickAI mit dem Objektmodelltyp BAG, CONSUMER_GOODS oder SHEET_METAL liegen die Greifpunkte
im Mittelpunkt der oberen Fläche der segmentierten Objekte.

Die Orientierung des Greifpunkts ist ein rechtshändiges Koordinatensystem, sodass die z-Achse ortho-
gonal zur Greiffläche in das zu greifende Objekt zeigt und die x-Achse entlang der längsten Ausdehnung
ausgerichtet ist.Da die x-Achse zwei mögliche Richtungen haben kann, wird diejenige ausgewählt, die
besser zur bevorzugten TCP-Ausrichtung passt (siehe Setzen der bevorzugten TCP-Orientierung, Ab-
schnitt 6.3.4.3). Wenn der Laufzeitparameter allow_any_grasp_z_rotation auf True gesetzt ist, wird
die x-Achse nicht zwangsweise an der maximalen Dehnung der greifbaren Ellipse ausgerichtet, son-
dern kann eine beliebige Drehung um die z-Achse aufweisen. In diesem Fall hat der zurückgegebene
Greifpunkt die Ausrichtung, die am besten zur bevorzugten TCP-Ausrichtung passt und kollisionsfrei ist,
wenn die Kollisionsprüfung aktiviert ist.

Abb. 6.11: Veranschaulichung eines berechneten Greifpunktes mit Koordinatensystem und der zuge-
hörigen Ellipse, welche die Greiffläche bestmöglich beschreibt.

Zusätzlich enthält jeder Greifpunkt die Abmessungen der maximal verfügbaren Greiffläche, die als El-
lipse mit den Achslängen max_suction_surface_length und max_suction_surface_width beschrie-

Roboception GmbH
Handbuch: rc_reason_stack

107 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

ben wird. Der Nutzer kann Greifpunkte mit zu kleinen Greifflächen herausfiltern, indem die mini-
malen Abmessungen der Greiffläche, die vom Sauggreifer benötigt wird, angegeben werden. Wenn
der Laufzeitparameter allow_any_grasp_z_rotation auf True gesetzt ist, dann sind die Achslängen
max_suction_surface_length und max_suction_surface_width gleich und entsprechen der kürzeren
Achse der größtmöglichen Greifellipse.

Jeder Greifpunkt enthält auch einen Qualitätswert (quality), der einen Hinweis auf die Ebenheit der
Greiffläche gibt. Dieser Wert reicht von 0 bis 1, wobei höhere Werte für eine ebenere rekonstruierte
Oberfläche stehen.

Jeder berechnete Greifpunkt lässt sich anhand einer uuid (Universally Unique Identifier) eindeutig iden-
tifizieren und enthält zusätzlich den Zeitstempel der ältesten Bildaufnahme, auf der die Greifpunktbe-
rechnung durchgeführt wurde.

Die Sortierung der Greifpunkte basiert auf der ausgewählten Sortierstrategie. Folgende Sor-
tierstrategien sind verfügbar und können über die Web GUI (Abschnitt 7.1) oder über den
set_sorting_strategies Service gesetzt werden:

• gravity: höchste Greifpunkte entlang der Gravitationsrichtung werden zuerst zurückgeliefert.

• surface_area: Greifpunkte mit den größten Oberflächen werden zuerst zurückgeliefert.

• direction: Greifpunkte mit dem kleinsten Abstand entlang der gesetzten Richtung vector im
angegebenen Referenzkoordinatensystem pose_frame werden zuerst zurückgeliefert.

• distance_to_point: Greifpunkte mit dem kleinsten oder größten (falls farthest_first auf true
gesetzt ist) Abstand von einem gesetzten Sortierpunkt point im angegebenen Referenzkoordina-
tensystem pose_frame werden zuerst zurückgeliefert.

Wenn keine Sortierstrategie gesetzt ist, oder die Standard-Sortierstrategie in der Web GUI ausge-
wählt ist, geschieht die Sortierung der Greifpunkte basierend auf einer Kombination von gravity und
surface_area.

6.3.4.3 Setzen der bevorzugten TCP-Orientierung

Das ItemPick und ItemPickAI-Modul berechnet die Erreichbarkeit von Greifpunkten basierend auf
der bevorzugten Orientierung des TCPs. Die bevorzugte Orientierung kann über den Service
set_preferred_orientation oder über die CADMatch-Seite in der Web GUI gesetzt werden. Die be-
vorzugten Orientierung des TCPs wird genutzt, um Greifpunkte zu verwerfen, die der Greifer nicht er-
reichen kann, und kann auch zur Sortierung der Greifpunkte genutzt werden.

Die bevorzugte TCP-Orientierung kann im Kamerakoordinatensystem oder im externen Koordinaten-
system gesetzt werden, wenn eine Hand-Auge-Kalibrierung verfügbar ist. Wenn die bevorzugte TCP-
Orientierung im externen Koordinatensystem definiert ist, und die Kamera am Roboter montiert ist,
muss bei jedem Aufruf der Objekterkennung die aktuelle Roboterpose angegeben werden. Wenn keine
bevorzugte TCP-Orientierung gesetzt wird, wird die Orientierung der linken Kamera (siehe Coordinate
frames im rc_visard Handbuch) als die bevorzugte TCP-Orientierung genutzt.

6.3.4.4 Wechselwirkung mit anderen Modulen

Die folgenden, intern auf dem rc_reason_stack laufenden Module liefern Daten für das ItemPick und
ItemPickAI-Modul oder haben Einfluss auf die Datenverarbeitung.

Bemerkung: Jede Konfigurationsänderung dieser Module kann direkte Auswirkungen auf die Qua-
lität oder das Leistungsverhalten des ItemPick und ItemPickAI-Moduls haben.

Kamera- und Tiefendaten

Folgende Daten werden vom ItemPick und ItemPickAI-Modul verarbeitet:

Roboception GmbH
Handbuch: rc_reason_stack

108 Rev: 26.01.4
Status: 30.01.2026

https://doc.rc-visard.com/latest/en/hardware_spec.html#sect-coordinate-frames
https://doc.rc-visard.com/latest/en/hardware_spec.html#sect-coordinate-frames

6.3. Detektions- und Messmodule

• die rektifizierten Bilder des Kamera Modul (rc_camera, Abschnitt 6.1)

• die Disparitäts-, Konfidenz- und Fehlerbilder des Stereo-Matching Modul (rc_stereomatching,
Abschnitt 6.2.2), falls eine Stereokamera verwendet wird.

• die Disparitäts-, Konfidenz- und Fehlerbilder der Orbbec Modul (rc_orbbec, Abschnitt 6.2.4), falls
eine Orbbec Kamera verwendet wird

• die Disparitäts-, Konfidenz- und Fehlerbilder des Zivid Modul (rc_zivid, Abschnitt 6.2.3), falls
eine zivid Kamera verwendet wird

Für alle genutzten Bilder ist garantiert, dass diese nach dem Auslösen des Services aufgenommen
wurden.

IOControl und Projektor-Kontrolle

Für den Anwendungsfall, dass der rc_reason_stack zusammen mit einem externen Musterprojektor und
dem Modul für IOControl und Projektor-Kontrolle (rc_iocontrol, Abschnitt 6.4.4) betrieben wird, wird
empfohlen, den Projektor an GPIO Out 1 anzuschließen und den Aufnahmemodus des Stereokamera-
Moduls auf SingleFrameOut1 zu setzen (siehe Stereomatching-Parameter , Abschnitt 6.2.2.1), damit bei
jedem Aufnahme-Trigger ein Bild mit und ohne Projektormuster aufgenommen wird.

Alternativ kann der verwendete digitale Ausgang in den Betriebsmodus ExposureAlternateActive ge-
schaltet werden (siehe Beschreibung der Laufzeitparameter , Abschnitt 6.4.4.1).

In beiden Fällen sollte die Belichtungszeitregelung (exp_auto_mode) auf AdaptiveOut1 gesetzt werden,
um die Belichtung beider Bilder zu optimieren.

Hand-Auge-Kalibrierung

Falls die Kamera zu einem Roboter kalibriert wurde, kann das ItemPick und ItemPickAI-Modul auto-
matisch Posen im Roboterkoordinatensystem ausgeben. Für die Services (Abschnitt 6.3.4.7) kann das
Koordinatensystem der berechneten Posen mit dem Argument pose_frame spezifiziert werden.

Zwei verschiedene Werte für pose_frame können gewählt werden:

1. Kamera-Koordinatensystem (camera): Alle Posen sind im Kamera-Koordinatensystem angege-
ben und es ist kein zusätzliches Wissen über die Lage der Kamera in seiner Umgebung notwen-
dig. Das bedeutet insbesondere, dass sich ROIs oder Load Carrier, welche in diesem Koordina-
tensystem angegeben sind, mit der Kamera bewegen. Es liegt daher in der Verantwortung des
Anwenders, in solchen Fällen die entsprechenden Posen der Situation entsprechend zu aktuali-
sieren (beispielsweise für den Anwendungsfall einer robotergeführten Kamera).

2. Benutzerdefiniertes externes Koordinatensystem (external): Alle Posen sind im sogenann-
ten externen Koordinatensystem angegeben, welches vom Nutzer während der Hand-Auge-
Kalibrierung gewählt wurde. In diesem Fall bezieht das ItemPick- oder BoxPick-Modul alle not-
wendigen Informationen über die Kameramontage und die kalibrierte Hand-Auge-Transformation
automatisch vom Modul Hand-Auge-Kalibrierung (Abschnitt 6.4.1). Für den Fall einer roboterge-
führten Kamera ist vom Nutzer zusätzlich die jeweils aktuelle Roboterpose robot_pose anzuge-
ben.

Bemerkung: Wenn keine Hand-Auge-Kalibrierung durchgeführt wurde bzw. zur Verfügung steht,
muss als Referenzkoordinatensystem pose_frame immer camera angegeben werden.

Zulässige Werte zur Angabe des Referenzkoordinatensystems sind camera und external. Andere Wer-
te werden als ungültig zurückgewiesen.

Für den Fall einer robotergeführten Kamera ist es abhängig von pose_frame und der Sortierrichtung
bzw. des Sortierpunktes nötig, zusätzlich die aktuelle Roboterpose (robot_pose) zur Verfügung zu stel-
len:

• Wenn external als pose_frame ausgewählt ist, ist die Angabe der Roboterpose obligatorisch.

Roboception GmbH
Handbuch: rc_reason_stack

109 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

• Wenn die Sortierrichtung in external definiert ist, ist die Angabe der Roboterpose obligatorisch.

• Wenn der Sortierpunkt für die Abstandssortierung in external definiert ist, ist die Angabe der
Roboterpose obligatorisch.

• In allen anderen Fällen ist die Angabe der Roboterpose optional.

LoadCarrier

Das ItemPick und ItemPickAI-Module nutzt die Funktionalität zur Load Carrier Erkennung aus dem
LoadCarrier Modul (rc_load_carrier, Abschnitt 6.3.2) mit den Laufzeitparametern, die für dieses Mo-
dul festgelegt wurden. Wenn sich jedoch mehrere Load Carrier in der Szene befinden, die zu der an-
gegebenen Load Carrier ID passen, wird nur einer davon zurückgeliefert. In diesem Fall sollte eine
3D Region of Interest gesetzt werden, um sicherzustellen, dass immer derselbe Load Carrier für das
ItemPick und ItemPickAI-Modul verwendet wird.

CollisionCheck

Die Kollisionsprüfung kann für die Greifpunktberechnung des ItemPick und ItemPickAI-Moduls
aktiviert werden, indem das collision_detection Argument an den compute_grasps oder
compute_grasps_extended Service übergeben wird. Es enthält die ID des benutzten Greifers und op-
tional einen Greif-Offset. Der Greifer muss im GripperDB Modul definiert werden (siehe Erstellen eines
Greifers, Abschnitt 6.5.3.2) und Details über die Kollisionsprüfung werden in Integrierte Kollisionsprü-
fung in anderen Modulen (Abschnitt 6.4.2.2) gegeben.

Wenn die Kollisionsprüfung aktiviert ist, werden nur kollisionsfreie Greifpunkte zurückgeliefert. Jedoch
werden in den Visualisierungen auf der ItemPick:cubeonly:bzw. ItemPickAI -Seite der Web GUI kollidie-
rende Greifpunkte als schwarze Ellipsen dargestellt.

Die Laufzeitparameter des CollisionCheck-Moduls beeinflussen die Kollisionserkennung wie in
CollisionCheck-Parameter (Abschnitt 6.4.2.3) beschrieben.

6.3.4.5 Parameter

Das ItemPick und ItemPickAI-Modul wird in der REST-API als rc_itempick bezeichnet und in der Web
GUI (Abschnitt 7.1) in der gewünschten Pipeline unter Module → ItemPick und Modules → ItemPickAI
dargestellt. Wenn beide Lizenzen, ItemPick und ItemPickAI, auf einem Gerät vorhanden sind, wird die
ItemPick-Funktionalität in die ItemPickAI Seite der Web GUI integriert. Der Benutzer kann die Parameter
entweder dort oder über die REST-API-Schnittstelle (Abschnitt 7.2) ändern.

Die angebotenen Services von rc_itempick können mithilfe der REST-API-Schnittstelle (Abschnitt 7.2)
oder der rc_reason_stack Web GUI (Abschnitt 7.1) ausprobiert und getestet werden.

Übersicht über die Parameter

Dieses Softwaremodul bietet folgende Laufzeitparameter:

Roboception GmbH
Handbuch: rc_reason_stack

110 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Tab. 6.30: Laufzeitparameter des rc_itempick Moduls
Name Typ Min. Max. Default Beschreibung
allow_any_grasp_pose bool false true false Bestimmt, ob die Greifpunkte be-

liebig dort auf dem Objekt platziert
sein dürfen, wo ebene Greifflächen
detektiert werden

allow_any_grasp_z_-
rotation

bool false true false Bestimmt, ob die Greifpunkte belie-
bige Orientierung haben dürfen, an-
statt an der Hauptachse der greifba-
ren Ellipse ausgerichtet zu sein

check_collisions_with_-
point_cloud

bool false true false Gibt an, ob Kollisionen zwischen
Greifer und anderen Matches ge-
prüft werden

cluster_max_curvature float64 0.005 0.5 0.11 Maximal erlaubte Krümmung für
Greifflächen

cluster_max_dimension float64 0.05 2.0 0.3 Maximum allowed diameter for a
cluster in meters. Clusters with a
diameter larger than this value are
not used for grasp computation.

clustering_discontinuity_-
factor

float64 0.1 5.0 1.0 Erlaubte Unebenheit von Greifflä-
chen

clustering_max_surface_-
rmse

float64 0.0005 0.01 0.004 Maximal erlaubte Abweichung
(Root Mean Square Error, RMSE)
von Punkten zur Greiffläche in
Metern

clustering_patch_size int32 3 10 4 Pixelgröße der Patches für die Un-
terteilung des Tiefenbildes im ers-
ten Clustering-Schritt

grasp_filter_orientation_-
threshold

float64 0.0 180.0 45.0 Maximal erlaubte Orientierungsab-
weichung zwischen Greifpunkt und
bevorzugter TCP-Orientierung in
Grad

max_grasps int32 1 100 5 Maximale Anzahl von bereitgestell-
ten Greifpunkten

Beschreibung der Laufzeitparameter

Die Laufzeitparameter werden zeilenweise auf der ItemPick bzw. ItemPickAI Seite in der Web GUI
dargestellt. Im folgenden wird der Name des Parameters in der Web GUI in Klammern hinter dem
eigentlichen Parameternamen angegeben. Die Parameter sind in derselben Reihenfolge wie in der
Web GUI aufgelistet:

max_grasps (Anzahl Greifpunkte)

ist die maximale Anzahl von bereitgestellten Greifpunkten.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/parameters?max_grasps=
→˓<value>

API Version 1 (veraltet)

Roboception GmbH
Handbuch: rc_reason_stack

111 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?max_grasps=<value>

cluster_max_dimension (Maximale Größe, Nur für ItemPick)

is the maximum allowed diameter for a cluster in meters. Clusters with a diameter
larger than this value are not used for grasp computation.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/parameters?cluster_max_

→˓dimension=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?cluster_max_dimension=<value>

cluster_max_curvature (Maximale Krümmung, Nur für ItemPick)

ist die maximal erlaubte Krümmung für Greifflächen. Je kleiner dieser Wert ist,
desto mehr mögliche Greifflächen werden in kleinere Flächen mit weniger Krüm-
mung aufgeteilt.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/parameters?cluster_max_

→˓curvature=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?cluster_max_curvature=<value>

clustering_patch_size (Patchgröße, Nur für ItemPick)

ist die Pixelgröße der Patches für die Unterteilung des Tiefenbildes im ersten
Clustering-Schritt.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/parameters?clustering_

→˓patch_size=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?clustering_patch_size=<value>

clustering_discontinuity_factor (Unstetigkeitsfaktor, Nur für ItemPick)

beschreibt die erlaubte Unebenheit von Greifflächen. Je kleiner dieser Wert ist,
umso mehr werden mögliche Greifflächen in kleinere Flächen mit weniger Un-
ebenheiten aufgeteilt.

Roboception GmbH
Handbuch: rc_reason_stack

112 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/parameters?clustering_

→˓discontinuity_factor=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?clustering_discontinuity_factor=
→˓<value>

clustering_max_surface_rmse (Maximaler RMSE, Nur für ItemPick)

ist die maximal erlaubte Abweichung (Root Mean Square Error, RMSE) von Punk-
ten zur Greiffläche in Metern.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/parameters?clustering_

→˓max_surface_rmse=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?clustering_max_surface_rmse=
→˓<value>

grasp_filter_orientation_threshold‘ (Grasp Orientation Threshold)

ist die maximale Abweichung der TCP-z-Achse am Greifpunkt von der z-Achse
der bevorzugten TCP-Orientierung in Grad. Es werden nur Greifpunkte zurückge-
liefert, deren Orientierungsabweichung kleiner als der angegebene Wert ist. Falls
der Wert auf Null gesetzt wird, sind alle Abweichungen valide.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/parameters?grasp_filter_

→˓orientation_threshold=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?grasp_filter_orientation_

→˓threshold=<value>

allow_any_grasp_z_rotation (Beliebige Greifrotation um Z)

Wenn der Wert auf True gesetzt ist, werden die x-Achsen der zurückgegebe-
nen Greifpunkte nicht mehr notwendigerweise an der maximalen Ausdehnung der
greifbaren Ellipse ausgerichtet, sondern können eine beliebige Drehung um die
z-Achse haben. Die zurückgegebenen Werte von max_suction_surface_length
und max_suction_surface_width sind dann gleich und entsprechen dem kleins-
ten Durchmesser der größten greifbaren Ellipsenfläche. Dieser Parameter eröffnet
dem Roboter mehr Optionen zum Greifen von Objekten, insbesondere in Szenen,
in denen es zu Kollisionen kommen kann. Da der Greifpunkt jedoch nicht mehr mit

Roboception GmbH
Handbuch: rc_reason_stack

113 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

der greifbaren Ellipse ausgerichtet ist, muss bei Objektmodellen vom Typ UNKNOWN
die korrekte Ausrichtung zum Platzieren des Objekts auf andere Weise bestimmt
werden. Im Fall von ItemPickAI kann die Pose des zugehörigen ‘‘item‘ verwendet
werden, um die richtige Greiforientierung für die Platzierung zu bestimmen.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/parameters?allow_any_

→˓grasp_z_rotation=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?allow_any_grasp_z_rotation=
→˓<value>

allow_any_grasp_pose (Beliebige Greifposen)

Wenn dieser Parameter aktiv ist, werden die Greifpunkte nicht mehr zwangsläufig auf dem
Objekt zentriert und an der Hauptachse des Objekts ausgerichtet, sondern können sich
an beliebiger Stelle des Objekts befinden, wo greifbare Oberflächen vorhanden sind. Dazu
werden die segmentierten Objektoberflächen mithilfe der Cluster Parameter unterteilt, um
die greifbaren Flächen eines Objekts zu ermitteln. Dieser Parameter hat keine Auswirkung,
wenn der Objektmodell Typ UNKNOWN verwendet wird.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/parameters?allow_any_

→˓grasp_pose=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?allow_any_grasp_pose=<value>

check_collisions_with_point_cloud (Kollisionsprüfung mit Punktwolke)

Dieser Parameter wird nur beachtet, wenn die Kollisionsprüfung durch Übergabe
eines Greifers an den compute_grasps oder compute_grasps_extended Service
aktiviert ist. Wenn check_collisions_with_point_cloud auf true gesetzt ist, wer-
den alle Greifpunkte auf Kollisionen zwischen dem Greifer und einer wasserdich-
ten Version der Punktwolke geprüft. Nur Greifpunkte, bei denen der Greifer nicht
in Kollision mit dieser Punktwolke wäre, werden zurückgeliefert.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/parameters?check_

→˓collisions_with_point_cloud=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?check_collisions_with_point_

→˓cloud=<value>

Roboception GmbH
Handbuch: rc_reason_stack

114 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

6.3.4.6 Statuswerte

Das rc_itempick Modul meldet folgende Statuswerte:

Tab. 6.31: Statuswerte des rc_itempick Moduls
Name Beschreibung
data_acquisition_time Zeit in Sekunden, für die beim letzten Aufruf auf Bilddaten

gewartet werden musste.
grasp_computation_time Laufzeit für die Greifpunktberechnung beim letzten Aufruf in

Sekunden
last_timestamp_processed Zeitstempel des letzten verarbeiteten Bilddatensatzes
load_carrier_detection_time Laufzeit für die letzte Load Carrier Erkennung in Sekunden
processing_time Laufzeit für die letzte Erkennung (einschließlich Load Carrier

Detektion) in Sekunden
state Aktueller Zustand des rc_itempick Moduls

Folgende state-Werte werden gemeldet.

Tab. 6.32: Mögliche Werte für den Zustand des ItemPick und Item-
PickAI Moduls

Zustand Beschreibung
IDLE Das Modul ist inaktiv.
RUNNING Das Modul wurde gestartet und ist bereit, Load Carrier zu erkennen und Greifpunkte zu berechnen.
FATAL Ein schwerwiegender Fehler ist aufgetreten.

6.3.4.7 Services

Die angebotenen Services von rc_itempick können mithilfe der REST-API-Schnittstelle (Abschnitt 7.2)
oder der rc_reason_stack Web GUI (Abschnitt 7.1) ausprobiert und getestet werden.

Das ItemPick und ItemPickAI Modul stellt folgende Services zur Verfügung.

compute_grasps

löst die Erkennung von Greifpunkten für einen Sauggreifer aus, wie in Berechnung der Greif-
punkte (Abschnitt 6.3.4.2) beschrieben.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/services/compute_grasps

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_itempick/services/compute_grasps

Request

Obligatorische Serviceargumente:

pose_frame: siehe Hand-Auge-Kalibrierung (Abschnitt 6.3.4.4).

suction_surface_length: Länge der Greiffläche des verwendeten Vakuum-
Greifsystems.

Roboception GmbH
Handbuch: rc_reason_stack

115 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

suction_surface_width: Breite der Greiffläche des verwendeten Vakuum-
Greifsystems.

Möglicherweise benötigte Serviceargumente:

robot_pose: siehe Hand-Auge-Kalibrierung (Abschnitt 6.3.4.4).

Optionale Serviceargumente:

load_carrier_id: ID des Load Carriers, welcher die zu greifenden Objekte ent-
hält.

load_carrier_compartment: Teilvolumen (Fach oder Abteil) in einem zu detektie-
renden Load Carrier (Behälter), in dem Objekte erkannt werden sollen (siehe Load
Carrier Abteile, Abschnitt 6.5.1.3).

region_of_interest_id: Falls load_carrier_id gesetzt ist, die ID der 3D Region
of Interest, innerhalb welcher nach dem Load Carrier gesucht wird. Andernfalls
die ID der 3D Region of Interest, innerhalb der Greifpunkte berechnet werden.

item_models: Liste von Objektmodellen, die erkannt werden sollen. Im Fall von
ItemPick wird aktuell nur ein einzelnes Objektmodell vom Typ UNKNOWN mit mini-
maler und maximaler Größe unterstützt, wobei die minimale Größe kleiner als die
maximale Größe sein muss.

Im Fall von ItemPickAI werden aktuell Objektmodelle vom Typ BAG,
CONSUMER_GOODS und SHEET_METAL unterstützt.

collision_detection: siehe Integrierte Kollisionsprüfung in anderen Modu-
len (Abschnitt 6.4.2.2)

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"item_models": [
{

"type": "string",
"unknown": {
"max_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"min_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
],
"load_carrier_compartment": {

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

116 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"suction_surface_length": "float64",
"suction_surface_width": "float64"

}
}

Response

load_carriers: Liste der erkannten Load Carrier (Behälter).

grasps: sortierte Liste von Sauggreifpunkten.

items: Liste von erkannten Objekten, die zu den zurückgelieferten Greifpunkten gehören.
Im Fall von ItemPick ist diese Liste immer leer.

Im Fall von ItemPickAI enthält items die segmentierten Objekte vom Typ BAG,
CONSUMER_GOODS oder SHEET_METAL mit ihren Posen bezogen auf den Mittelpunkt der Boun-
ding Box (kleinste umschließende Box) des sichtbaren Teils des Objekts und die Abmessun-
gen dieser Bounding Box.

timestamp: Zeitstempel des Bildes, auf dem die Erkennung durchgeführt wurde.

return_code: enthält mögliche Warnungen oder Fehlercodes und Nachrichten.

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "compute_grasps",
"response": {
"grasps": [

{
"item_uuid": "string",
"max_suction_surface_length": "float64",

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

117 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"max_suction_surface_width": "float64",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"quality": "float64",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string"

}
],
"items": [
{

"bounding_box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"grasp_uuids": [

"string"
],
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string"

}
],
"load_carriers": [

{
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

118 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

compute_grasps_extended

löst die Erkennung von Greifpunkten für einen Sauggreifer aus. Dieser Service verhält sich
analog zu compute_grasps, gibt aber die Objektinformationen item für jeden Greifpunkt di-
rekt zurück, anstatt sie in einer separaten Liste zu speichern. Dies ermöglicht ein einfacheres
Parsen, wenn Objektinformationen für die Greifpunkte benötigt werden.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

Roboception GmbH
Handbuch: rc_reason_stack

119 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/services/compute_grasps_

→˓extended

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_itempick/services/compute_grasps_extended

Request

Siehe compute_grasps Service.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"item_models": [
{

"type": "string",
"unknown": {
"max_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"min_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
],
"load_carrier_compartment": {

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"region_of_interest_id": "string",

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

120 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"suction_surface_length": "float64",
"suction_surface_width": "float64"

}
}

Response

load_carriers: Liste der erkannten Load Carrier (Behälter).

grasps: sortierte Liste von Sauggreifpunkten. Jeder Greifpunkt enthält auch die item Infor-
mation, falls verfügbar.

Im Fall von ItemPickAI enthält jedes item das segmentierte Objekt vom Typ BAG,
CONSUMER_GOODS oder SHEET_METAL mit seiner Pose bezogen auf den Mittelpunkt der Boun-
ding Box (kleinste umschließende Box) des sichtbaren Teils des Objekts und die Abmessun-
gen dieser Bounding Box.

timestamp: Zeitstempel des Bildes, auf dem die Erkennung durchgeführt wurde.

return_code: enthält mögliche Warnungen oder Fehlercodes und Nachrichten.

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "compute_grasps_extended",
"response": {

"grasps": [
{

"item": {
"bounding_box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"type": "string",
"uuid": "string"

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

121 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

},
"max_suction_surface_length": "float64",
"max_suction_surface_width": "float64",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"quality": "float64",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string"

}
],
"load_carriers": [

{
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {

"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

122 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

set_preferred_orientation

speichert die bevorzugte TCP-Orientierung zum Berechnen der Erreichbarkeit der Greif-
punkte, die zur Filterung und optional zur Sortierung der vom compute_grasps und
compute_grasps_extended Service zurückgelieferten Greifpunkte verwendet wird (siehe
Setzen der bevorzugten TCP-Orientierung, Abschnitt 6.3.4.3).

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/services/set_preferred_

→˓orientation

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_itempick/services/set_preferred_orientation

Request

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string"

}
}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "set_preferred_orientation",
"response": {

"return_code": {

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

123 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"message": "string",
"value": "int16"

}
}

}

get_preferred_orientation

gibt die bevorzugte TCP-Orientierung zurück, die für die Filterung und optional für die Sor-
tierung der vom compute_grasps und compute_grasps_extended Service zurückgelieferten
Greifpunkte verwendet wird (siehe Setzen der bevorzugten TCP-Orientierung, Abschnitt
6.3.4.3).

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/services/get_preferred_

→˓orientation

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_itempick/services/get_preferred_orientation

Request

Dieser Service hat keine Argumente.

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "get_preferred_orientation",
"response": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_sorting_strategies

speichert die gewählte Strategie zur Sortierung der Greifpunkte, die vom compute_grasps
und compute_grasps_extended Service zurückgeliefert werden (siehe Berechnung der
Greifpunkte, Abschnitt 6.3.4.2).

Details

Dieser Service kann wie folgt aufgerufen werden.

Roboception GmbH
Handbuch: rc_reason_stack

124 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/services/set_sorting_

→˓strategies

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_itempick/services/set_sorting_strategies

Request

Nur eine Sortierstrategie darf einen Gewichtswert weight größer als 0 haben. Wenn alle
Werte für weight auf 0 gesetzt sind, wird die Standardsortierstrategie verwendet.

Wenn der Wert weight für direction gesetzt ist, muss vector den Richtungsvektor enthal-
ten und pose_frame auf camera oder external gesetzt sein.

Wenn der Wert weight für distance_to_point gesetzt ist, muss point den Sortierpunkt
enthalten und pose_frame auf camera oder external gesetzt sein.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"direction": {
"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"distance_to_point": {
"farthest_first": "bool",
"point": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"weight": "float64"

},
"gravity": {
"weight": "float64"

},
"surface_area": {
"weight": "float64"

}
}

}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "set_sorting_strategies",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

125 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

}
}

get_sorting_strategies

gibt die gewählte Sortierstrategie zurück, die zur Sortierung der vom compute-grasps Ser-
vice zurückgelieferten Greifpunkte verwendet wird (siehe Berechnung der Greifpunkte, Ab-
schnitt 6.3.4.2).

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/services/get_sorting_

→˓strategies

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_itempick/services/get_sorting_strategies

Request

Dieser Service hat keine Argumente.

Response

Wenn alle Werte für weight 0 sind, wird die Standardsortierstrategie verwendet.

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "get_sorting_strategies",
"response": {
"direction": {

"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"distance_to_point": {
"farthest_first": "bool",
"point": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"weight": "float64"

},
"gravity": {
"weight": "float64"

},
"return_code": {
"message": "string",
"value": "int16"

},

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

126 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"surface_area": {
"weight": "float64"

}
}

}

start

startet das Modul und versetzt es in den Zustand RUNNING.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/services/start

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_itempick/services/start

Request

Dieser Service hat keine Argumente.

Response

Es kann vorkommen, dass der Zustandsübergang noch nicht vollständig abgeschlossen ist,
wenn die Serviceantwort generiert wird. In diesem Fall liefert diese den entsprechenden,
sich von IDLE unterscheidenden Zustand zurück.

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "start",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

stop

stoppt das Modul und versetzt es in den Zustand IDLE.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/services/stop

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_itempick/services/stop

Request

Dieser Service hat keine Argumente.

Roboception GmbH
Handbuch: rc_reason_stack

127 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Response

Es kann vorkommen, dass der Zustandsübergang noch nicht vollständig abgeschlossen ist,
wenn die Serviceantwort generiert wird. In diesem Fall liefert diese den entsprechenden,
sich von IDLE unterscheidenden Zustand zurück.

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "stop",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

trigger_dump

speichert die Detektion auf dem angeschlossenen USB Speicher, die dem übergebenen
Zeitstempel entspricht, oder die letzte, falls kein Zeitstempel angegeben wurde.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/services/trigger_dump

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_itempick/services/trigger_dump

Request

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"comment": "string",
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "trigger_dump",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

Roboception GmbH
Handbuch: rc_reason_stack

128 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

reset_defaults

stellt die Werkseinstellungen der Parameter und der Sortierstrategie dieses Moduls wieder
her und wendet sie an („factory reset“).

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/services/reset_defaults

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_itempick/services/reset_defaults

Request

Dieser Service hat keine Argumente.

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.3.4.8 Rückgabecodes

Zusätzlich zur eigentlichen Serviceantwort gibt jeder Service einen sogenannten return_code beste-
hend aus einem Integer-Wert und einer optionalen Textnachricht zurück. Erfolgreiche Service-Anfragen
werden mit einem Wert von 0 quittiert. Positive Werte bedeuten, dass die Service-Anfrage zwar erfolg-
reich bearbeitet wurde, aber zusätzliche Informationen zur Verfügung stehen. Negative Werte bedeu-
ten, dass Fehler aufgetreten sind. Für den Fall, dass mehrere Rückgabewerte zutreffend wären, wird
der kleinste zurückgegeben, und die entsprechenden Textnachrichten werden in return_code.message
akkumuliert.

Die folgende Tabelle listet die möglichen Rückgabe-Codes auf:

Roboception GmbH
Handbuch: rc_reason_stack

129 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Tab. 6.33: Rückgabecodes der Services des ItemPick und Item-
PickAI Moduls

Code Beschreibung
0 Erfolgreich
-1 Ungültige(s) Argument(e)
-3 Ein interner Timeout ist aufgetreten, beispielsweise während der Boxerkennung, wenn der

Bereich der angegebenen Abmessungen zu groß ist.
-4 Die maximal erlaubte Zeitspanne für die interne Akquise der Bilddaten wurde überschritten.
-8 Das Template wurde während der Detektion gelöscht.
-10 Das neue Element konnte nicht hinzugefügt werden, da die maximal speicherbare Anzahl

an Load Carriern, ROIs oder Templates überschritten wurde.
-11 Sensor nicht verbunden, nicht unterstützt oder nicht bereit
-12 Ressource ausgelastet, z.B. wenn trigger_dump zu häufig aufgerufen wird

-200 Ein schwerwiegender interner Fehler ist aufgetreten.
-301 Für die Anfrage zur Greifpunktberechnung compute_grasps oder

compute_grasps_extended wurden mehrere Objektmodelle (item_models) übergeben.
10 Die maximal speicherbare Anzahl an Load Carriern, ROIs oder Templates wurde erreicht.
11 Mit dem Aufruf von set_load_carrier oder set_region_of_interest wurde ein bereits

existierendes Objekt mit derselben id überschrieben.
100 Die angefragten Load Carrier wurden in der Szene nicht gefunden.
101 Es wurden keine gültigen Greifflächen in der Szene gefunden.
102 Der detektierte Load Carrier ist leer.
103 Alle berechneten Greifpunkte sind in Kollision.
112 Die Detektionen eines oder mehrerer Cluster wurden verworfen, da die minimale

Clusterabdeckung nicht erreicht wurde.
300 Ein gültiges robot_pose-Argument wurde angegeben, ist aber nicht erforderlich.
999 Zusätzliche Hinweise für die Anwendungsentwicklung

6.3.5 BoxPick

6.3.5.1 Einführung

Das BoxPick Modul liefert eine gebrauchsfertige Perzeptionslösung, um robotische Pick-and-Place-
Anwendungen zu realisieren. Es erkennt rechteckige Oberflächen und bestimmt ihre Position, Orientie-
rung und Größe für das Greifen. Mit der +Match-Erweiterung kann BoxPick zur Detektion von texturier-
ten Rechtecken mit konsistenten Orientierungen verwendet werden, z.B. für bedruckte Produktverpa-
ckungen, Etiketten, Broschüren oder Bücher.

Darüber hinaus bietet das Modul:

• eine intuitiv gestaltete Bedienoberfläche für Inbetriebnahme, Konfiguration und Test auf der
rc_reason_stack Web GUI (Abschnitt 7.1)

• die Möglichkeit, sogenannte Regions of Interest (ROIs) zu definieren, um relevante Teilbereiche
der Szene auszuwählen (siehe RoiDB, Abschnitt 6.5.2)

• eine integrierte Load Carrier Erkennung (siehe LoadCarrier , Abschnitt 6.3.2), um in Bin-Picking-
Anwendungen („Griff in die Kiste“) Greifpunkte nur für Objekte in dem erkannten Load Carrier zu
berechnen

• die Unterstützung von Load Carriern mit Fächern, sodass Greifpunkte für Objekte nur in einem
definierten Teilvolumen des Load Carriers berechnet werden

• eine Kollisionsprüfung zwischen Greifer und Load Carrier und/oder der Punktwolke

• die Unterstützung von sowohl statisch montierten als auch robotergeführten Kameras. Optional
kann es mit der Hand-Auge-Kalibrierung (Abschnitt 6.4.1) kombiniert werden, um Greifposen in
einem benutzerdefinierten externen Koordinatensystem zu liefern.

Roboception GmbH
Handbuch: rc_reason_stack

130 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

• einen Qualitätswert für jeden vorgeschlagenen Greifpunkt, der die Ebenheit der für das Greifen
verfügbaren Oberfläche bewertet

• Auswahl einer Strategie zum Sortieren der zurückgelieferten Greifpunkte

• eine 3D Visualisierung des Detektionsergebnisses mit Greifpunkten und einer Greiferanimation in
der Web GUI

Bemerkung: Dieses Softwaremodul ist pipelinespezifisch. Änderungen seiner Einstellungen oder
Parameter betreffen nur die zugehörige Kamerapipeline und haben keinen Einfluss auf die anderen
Pipelines, die auf dem rc_reason_stack laufen.

Bemerkung: In diesem Kapitel werden die Begriffe Cluster und Oberfläche synonym verwendet und
bezeichnen eine Menge von Punkten (oder Pixeln) mit ähnlichen geometrischen Eigenschaften.

Das ItemPick Modul ist ein optional erhältliches Module, welches intern auf dem rc_reason_stack läuft
und eine gesonderte BoxPick-Lizenzen (Abschnitt 8.2) benötigt. Die +Match-Erweiterung von BoxPick
bedarf einer separaten Lizenz.

6.3.5.2 Erkennung von Rechtecken

Es gibt zwei verschiedene Typen von Objektmodellen für die Erkennung von Rechtecken im BoxPick
Modul.

Standardmäßig unterstützt BoxPick nur Objektmodelle (item_models) des Typs (type) RECTANGLE. Mit
der +Match-Erweiterung können auch Objektmodelle des Typs TEXTURED_BOX detektiert werden. Die
Erkennung der verschiedenen Objektmodelltypen wird weiter unten beschrieben.

Optional können dem BoxPick-Modul folgende Informationen übergeben werden:

• die ID des Load Carriers, welcher die Objekte enthält

• ein Teilbereich innerhalb eines Load Carriers, in dem Objekte detektiert werden sollen

• die ID der Region of Interest, innerhalb der nach dem Load Carrier gesucht wird, oder – falls kein
Load Carrier angegeben ist – die Region of Interest, in der nach Objekten gesucht wird

• die aktuelle Roboterpose, wenn die Kamera am Roboter montiert ist und als Koordinatensystem
external gewählt wurde, oder die gewählte Region of Interest im externen Koordinatensystem
definiert ist

Die zurückgegebene Pose pose eines detektierten Objekts item ist die Pose des Mittelpunkts des er-
kannten Rechtecks im gewünschten Koordinatensystem pose_frame, wobei die z-Achse in Richtung
der Kamera zeigt und die x-Achse parallel zu langen Seite des Rechtecks ausgerichtet ist. Diese Po-
se hat eine 180° Mehrdeutigkeit in der Rotation um die z-Achse, welche durch Nutzung der +Match-
Erweiterung im BoxPick Modul aufgelöst werden kann. Jedes erkannte Rechteck beinhaltet eine uuid
(Universally Unique Identifier) und den Zeitstempel timestamp des ältesten Bildes, das für die Erken-
nung benutzt wurde.

Erkennung von Objekten des Typs RECTANGLE

Das BoxPick-Modul unterstützt mehrere Objektmodelle (item_models) vom Typ (type) Rechteck
(RECTANGLE). Jedes Rechteck ist durch seine minimale und maximale Größe definiert, wobei die mi-
nimale Größe kleiner als die maximale Größe sein muss. Die Abmessungen sollten relativ genau an-
gegeben werden, um Fehldetektionen zu verhindern, jedoch eine gewisse Toleranz beinhalten, um
Messunsicherheiten und mögliche Produktionsabweichungen zu berücksichtigen.

Die Erkennung der Rechtecke läuft in mehreren Schritten ab. Zuerst wird die Punktwolke in möglichst
ebene Segmente (Cluster) unterteilt. Dann werden gerade Liniensegmente in den 2D Bildern erkannt
und auf die zugehörigen Clusterflächen projiziert. Die Cluster und die erkannten Linien werden in der

Roboception GmbH
Handbuch: rc_reason_stack

131 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

„Zwischenergebnis“ Visualisierung auf der BoxPick Seite in der Web GUI angezeigt. Schließlich werden
für jedes Cluster die am besten zu den erkannten Linien passenden Rechtecke extrahiert.

Erkennung von Objekten des Typs RECTANGLE (BoxPick+Match)

Mit der +Match-Erweiterung unterstützt BoxPick zusätzlich Objektmodelle (item_models) des Typs
(type) TEXTURED_BOX. Wenn dieser Objektmodelltyp verwendet wird, kann nur ein einzelnes Objekt-
modell pro Anfrage angegeben werden.

Das TEXTURED_BOX Objektmodell sollte für die Detektion mehrerer Rechtecke mit gleicher Textur, d.h.
gleichem Aussehen oder Aufdruck, verwendet werden, wie zum Beispiel bedruckte Produktverpackun-
gen, Etiketten, Broschüren oder Bücher. Es wird vorausgesetzt, dass die Textur bei allen Objekten gleich
positioniert ist in Bezug auf die Objektgeometrie. Weiterhin sollte die Textur nicht repetitiv sein.

Ein Objekt vom Typ TEXTURED_BOX wird definiert durch die exakten Abmessungen dimensions des Ob-
jekts in x, y und z (wobei nur z 0 sein darf) sowie eine Toleranz dimensions_tolerance_m die an-
gibt, wie stark die Abmessungen der erkannten Rechtecke von den gegebenen Dimensionen abwei-
chen dürfen. Als Standardwert wird eine Toleranz von 0.01 m angenommen. Des Weiteren muss ei-
ne template_id angegeben werden, über die die spezifizierten Abmessungen und die Texturen der
erkannten Rechtecke referenziert werden. Zusätzlich können die maximal mögliche Verformung der
Objekte (max_deformation_m) in Metern angegeben werden (Standardwert 0.004 m), um steifere oder
flexiblere Objekte zu beschreiben.

Wird eine template_id zum ersten Mal verwendet, dann detektiert BoxPick die Rechtecke so wie für
den Objektmodelltyp RECTANGLE beschrieben, und nutzt die angegebene Toleranz um den Abmessungs-
bereich für die Erkennung festzulegen. Wenn zusätzlich zu x und y auch die z Abmessungen gegeben
sind, werden Rechtecke mit allen möglichen Kombinationen der drei Abmessungen erkannt. Aus den
erkannten Rechtecken werden sogenannte Views erzeugt, die die Form und die Bildintensitätswerte der
Rechtecke beinhalten, und werden in einem neu erzeugten Template mit der angegebenen template_id
gespeichert. Die Views werden schrittweise erzeugt: Beginnend bei dem Rechteck mit dem höchsten
Erkennungs-Score wird ein View erzeugt und direkt verwendet, um weitere Rechtecke mit derselben
Textur zu finden. Dann werden in allen verbleibenden Clustern weitere Rechtecke mit den angegebe-
nen Abmessungen detektiert und es wird wiederum aus dem besten Rechteck ein View generiert, der
für weitere Erkennungen genutzt wird. Jedes Template kann bis zu 10 verschiedene Views speichern,
zum Beispiel um verschiedene Sorten derselben Produktverpackung abzubilden. Jeder View hat eine
eindeutige ID (view_uuid) und alle Rechtecke mit gleicher Textur erhalten dieselbe view_uuid. Das
bedeutet auch, dass alle Objekte (items) mit derselben view_uuid konsistente Orientierungen haben,
da die Orientierung jedes Objekts an der Textur ausgerichtet ist. Die Views können angezeigt und ge-
löscht werden, und ihre Orientierungen können über die Web GUI (Abschnitt 7.1) geändert werden,
indem das Template oder sein Editierbutton in der Templateübersicht angeklickt wird. Jedes erkannte
Objekt hat ein Feld view_pose_set, welches angibt, ob die Orientierung des zum Objekt zugeordneten
Views explizit gesetzt wurde, oder ob sie unbestimmt in einem zufälligen Zustand ist, welcher eine 180°
Mehrdeutigkeit hat. Weiterhin kann ein benutzerdefinierter Name für jeden View gesetzt werden, der
gemeinsam mit der view_uuid zurückgegeben wird und die Identifikation bestimmter Views vereinfacht.
Der Typ type eines zurückgelieferten Objekts mit einer view_uuid lautet TEXTURED_RECTANGLE.

Wenn ein Template mit der angegebenen template_id bereits existiert, werden die vorhandenen Views
verwendet, um Rechtecke anhand ihrer Textur zu erkennen. Wenn weitere Rechtecke gefunden werden,
die ebenfalls passende Abmessungen haben, aber eine andere Textur, dann werden neue Views ge-
neriert und dem Template hinzugefügt. Wenn die maximale Anzahl Views erreicht ist, werden zu selten
detektierte Views gelöscht, damit neu generierte Views dem Template hinzugefügt werden können, und
das Template aktuell gehalten wird. Um zu verhindern, dass ein Template durch neue Views aktualisiert
wird, kann das automatische Updaten der Views in der Web GUI aus- und eingeschaltet werden. Die
Dimensionstoleranz dimensions_tolerance_m und die maximale Verformung max_deformation_m kön-
nen dort ebenso für jedes Template geändert werden. Die maximale Verformung bestimmt die Toleranz
für die Texturerkennung, die nötig ist, wenn sich durch flexible Objektoberflächen Teile der Textur relativ
zueinander verschieben. Für steife Objekte sollte die maximale Verformung möglichst niedrig gesetzt
werden, um eine hohe Erkennungsgenauigkeit zu erreichen.

Roboception GmbH
Handbuch: rc_reason_stack

132 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Die Abmessungen dimensions des Templates können nur beim Erstellen eines neuen Templates an-
gegeben werden. Sobald das Template erzeugt wurde, können die Abmessungen nicht mehr geändert
werden und müssen beim Aufruf der Erkennung auch nicht angegeben werden. Wenn die Abmes-
sungen dennoch beim Aufruf angegeben werden, müssen sie mit den Abmessungen im vorhande-
nen Template übereinstimmen. Die Toleranz dimensions_tolerance_m und die maximale Verformung
max_deformation_m können jedoch für jeden Detektionsaufruf unterschiedlich angegeben werden und
ihre Werte werden auch im gespeicherten Template entsprechend aktualisiert.

6.3.5.3 Berechnung der Greifpunkte

Das BoxPick-Modul bietet einen Service, um Greifpunkte für Sauggreifer zu berechnen. Der Sauggreifer
ist durch die Länge und Breite der Greiffläche definiert.

Die Greifpunkte werden auf den erkannten Rechtecken items berechnet (siehe Erkennung von Recht-
ecken, Abschnitt 6.3.5.2).

Optional können dem Modul weitere Informationen zur Greifpunktberechnung übergeben werden:

• die ID des Load Carriers, welcher die zu greifenden Objekte enthält

• ein Unterabteil (load_carrier_compartment) innerhalb eines Load Carriers, in dem Objekte er-
kannt werden sollen (siehe Load Carrier Abteile, Abschnitt 6.5.1.3).

• die ID der 3D Region of Interest, innerhalb der nach dem Load Carrier gesucht wird, oder – falls
kein Load Carrier angegeben ist – die 3D Region of Interest, innerhalb der Greifpunkte berechnet
werden

• Informationen für die Kollisionsprüfung: Die ID des Greifers, um die Kollisionsprüfung zu aktivie-
ren, und optional ein Greif-Offset, der die Vorgreifposition definiert. Details zur Kollisionsprüfung
sind in CollisionCheck (Abschnitt 6.3.5.5) gegeben.

Ein vom BoxPick-Modul ermittelter Greifpunkt repräsentiert die empfohlene Pose des TCP (Tool Center
Point) des Sauggreifers. Der Greifpunkt type ist immer auf SUCTION gesetzt. Für jeden Greifpunkt liegt
der Ursprung der Greifpose pose im Mittelpunkt der größten von der jeweiligen Greiffläche umschlos-
senen Ellipse. Die Orientierung des Greifpunkts ist ein rechtshändiges Koordinatensystem, sodass die
z-Achse orthogonal zur Greiffläche in das zu greifende Objekt zeigt und die x-Achse entlang der längs-
ten Ausdehnung ausgerichtet ist.Da die x-Achse zwei mögliche Richtungen haben kann, wird diejenige
ausgewählt, die besser zur bevorzugten TCP-Ausrichtung passt (siehe Setzen der bevorzugten TCP-
Orientierung, Abschnitt 6.3.5.4). Wenn der Laufzeitparameter allow_any_grasp_z_rotation auf True
gesetzt ist, wird die x-Achse nicht zwangsweise an der maximalen Dehnung der greifbaren Ellipse
ausgerichtet, sondern kann eine beliebige Drehung um die z-Achse aufweisen. In diesem Fall hat der
zurückgegebene Greifpunkt die Ausrichtung, die am besten zur bevorzugten TCP-Ausrichtung passt
und kollisionsfrei ist, wenn die Kollisionsprüfung aktiviert ist.

Abb. 6.12: Veranschaulichung eines berechneten Greifpunktes mit Koordinatensystem und der zuge-
hörigen Ellipse, welche die größtmögliche Greiffläche beschreibt.

Zusätzlich enthält jeder Greifpunkt die Abmessungen der maximal verfügbaren Greiffläche, die als El-
lipse mit den Achslängen max_suction_surface_length und max_suction_surface_width beschrie-

Roboception GmbH
Handbuch: rc_reason_stack

133 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

ben wird. Der Nutzer kann Greifpunkte mit zu kleinen Greifflächen herausfiltern, indem die mini-
malen Abmessungen der Greiffläche, die vom Sauggreifer benötigt wird, angegeben werden. Wenn
der Laufzeitparameter allow_any_grasp_z_rotation auf True gesetzt ist, dann sind die Achslängen
max_suction_surface_length und ‘‘max_suction_surface_width‘‘gleich und entsprechen der kürzeren
Achse der größtmöglichen Greifellipse.

Im BoxPick-Modul entspricht der Greifpunkt dem Zentrum des detektierten Rechtecks. Wenn BoxPick
mit einem Objektmodell vom Typ RECTANGLE aufgerufen wird, entsprechen die Achslängen der Greifflä-
che der Länge und Breite des erkannten Rechtecks. In diesem Fall erhalten Rechtecke keinen Greif-
punkt, wenn mehr als 15% ihrer Fläche durch andere Objekte verdeckt ist oder ungültige Datenpunkte
hat.

Wenn BoxPick mit einem Objektmodell vom Typ TEXTURED_BOX aufgerufen wird, können Greifpunkt auch
auf teilweise verdeckten Rechtecken berechnet werden. Die zurückgegebene maximale Sauggreiffläche
entspricht dann der freien Oberfläche des Rechtecks, die nicht durch andere Cluster verdeckt ist.

Jeder Greifpunkt enthält auch einen Qualitätswert (quality), der einen Hinweis auf die Ebenheit der
Greiffläche gibt. Dieser Wert reicht von 0 bis 1, wobei höhere Werte für eine ebenere rekonstruierte
Oberfläche stehen.

Jeder berechnete Greifpunkt lässt sich anhand einer uuid (Universally Unique Identifier) eindeutig iden-
tifizieren und enthält zusätzlich den Zeitstempel der ältesten Bildaufnahme, auf der die Greifpunktbe-
rechnung durchgeführt wurde.

Die Sortierung der Greifpunkte basiert auf der ausgewählten Sortierstrategie. Folgende Sor-
tierstrategien sind verfügbar und können über die Web GUI (Abschnitt 7.1) oder über den
set_sorting_strategies Service gesetzt werden:

• gravity: höchste Greifpunkte entlang der Gravitationsrichtung werden zuerst zurückgeliefert.

• surface_area: Greifpunkte mit den größten Oberflächen werden zuerst zurückgeliefert.

• direction: Greifpunkte mit dem kleinsten Abstand entlang der gesetzten Richtung vector im
angegebenen Referenzkoordinatensystem pose_frame werden zuerst zurückgeliefert.

• distance_to_point: Greifpunkte mit dem kleinsten oder größten (falls farthest_first auf true
gesetzt ist) Abstand von einem gesetzten Sortierpunkt point im angegebenen Referenzkoordina-
tensystem pose_frame werden zuerst zurückgeliefert.

Wenn keine Sortierstrategie gesetzt ist, oder die Standard-Sortierstrategie in der Web GUI ausge-
wählt ist, geschieht die Sortierung der Greifpunkte basierend auf einer Kombination von gravity und
surface_area.

6.3.5.4 Setzen der bevorzugten TCP-Orientierung

Das BoxPick-Modul berechnet die Erreichbarkeit von Greifpunkten basierend auf der bevorzugten Ori-
entierung des TCPs. Die bevorzugte Orientierung kann über den Service set_preferred_orientation
oder über die CADMatch-Seite in der Web GUI gesetzt werden. Die bevorzugten Orientierung des
TCPs wird genutzt, um Greifpunkte zu verwerfen, die der Greifer nicht erreichen kann, und kann auch
zur Sortierung der Greifpunkte genutzt werden.

Die bevorzugte TCP-Orientierung kann im Kamerakoordinatensystem oder im externen Koordinaten-
system gesetzt werden, wenn eine Hand-Auge-Kalibrierung verfügbar ist. Wenn die bevorzugte TCP-
Orientierung im externen Koordinatensystem definiert ist, und die Kamera am Roboter montiert ist,
muss bei jedem Aufruf der Objekterkennung die aktuelle Roboterpose angegeben werden. Wenn keine
bevorzugte TCP-Orientierung gesetzt wird, wird die Orientierung der linken Kamera (siehe Coordinate
frames im rc_visard Handbuch) als die bevorzugte TCP-Orientierung genutzt.

6.3.5.5 Wechselwirkung mit anderen Modulen

Die folgenden, intern auf dem rc_reason_stack laufenden Module liefern Daten für das BoxPick-Modul
oder haben Einfluss auf die Datenverarbeitung.

Roboception GmbH
Handbuch: rc_reason_stack

134 Rev: 26.01.4
Status: 30.01.2026

https://doc.rc-visard.com/latest/en/hardware_spec.html#sect-coordinate-frames
https://doc.rc-visard.com/latest/en/hardware_spec.html#sect-coordinate-frames

6.3. Detektions- und Messmodule

Bemerkung: Jede Konfigurationsänderung dieses Moduls kann direkte Auswirkungen auf die Qua-
lität oder das Leistungsverhalten des Boxpick-Moduls haben.

Kamera- und Tiefendaten

Folgende Daten werden vom BoxPick-Modul verarbeitet:

• die rektifizierten Bilder des Kamera Modul (rc_camera, Abschnitt 6.1)

• die Disparitäts-, Konfidenz- und Fehlerbilder des Stereo-Matching Modul (rc_stereomatching,
Abschnitt 6.2.2), falls eine Stereokamera verwendet wird.

• die Disparitäts-, Konfidenz- und Fehlerbilder der Orbbec Modul (rc_orbbec, Abschnitt 6.2.4), falls
eine Orbbec Kamera verwendet wird

• die Disparitäts-, Konfidenz- und Fehlerbilder der Zivid Modul (rc_zivid, Abschnitt 6.2.3), falls eine
zivid Kamera verwendet wird

Für alle genutzten Bilder ist garantiert, dass diese nach dem Auslösen des Services aufgenommen
wurden.

IOControl und Projektor-Kontrolle

Für den Anwendungsfall, dass der rc_reason_stack zusammen mit einem externen Musterprojektor und
dem Modul für IOControl und Projektor-Kontrolle (rc_iocontrol, Abschnitt 6.4.4) betrieben wird, wird
empfohlen, den Projektor an GPIO Out 1 anzuschließen und den Aufnahmemodus des Stereokamera-
Moduls auf SingleFrameOut1 zu setzen (siehe Stereomatching-Parameter , Abschnitt 6.2.2.1), damit bei
jedem Aufnahme-Trigger ein Bild mit und ohne Projektormuster aufgenommen wird.

Alternativ kann der verwendete digitale Ausgang in den Betriebsmodus ExposureAlternateActive ge-
schaltet werden (siehe Beschreibung der Laufzeitparameter , Abschnitt 6.4.4.1).

In beiden Fällen sollte die Belichtungszeitregelung (exp_auto_mode) auf AdaptiveOut1 gesetzt werden,
um die Belichtung beider Bilder zu optimieren.

Hand-Auge-Kalibrierung

Falls die Kamera zu einem Roboter kalibriert wurde, kann das BoxPick-Modul automatisch Posen im
Roboterkoordinatensystem ausgeben. Für die Services (Abschnitt 6.3.5.8) kann das Koordinatensys-
tem der berechneten Posen mit dem Argument pose_frame spezifiziert werden.

Zwei verschiedene Werte für pose_frame können gewählt werden:

1. Kamera-Koordinatensystem (camera): Alle Posen sind im Kamera-Koordinatensystem angege-
ben und es ist kein zusätzliches Wissen über die Lage der Kamera in seiner Umgebung notwen-
dig. Das bedeutet insbesondere, dass sich ROIs oder Load Carrier, welche in diesem Koordina-
tensystem angegeben sind, mit der Kamera bewegen. Es liegt daher in der Verantwortung des
Anwenders, in solchen Fällen die entsprechenden Posen der Situation entsprechend zu aktuali-
sieren (beispielsweise für den Anwendungsfall einer robotergeführten Kamera).

2. Benutzerdefiniertes externes Koordinatensystem (external): Alle Posen sind im sogenann-
ten externen Koordinatensystem angegeben, welches vom Nutzer während der Hand-Auge-
Kalibrierung gewählt wurde. In diesem Fall bezieht das ItemPick- oder BoxPick-Modul alle not-
wendigen Informationen über die Kameramontage und die kalibrierte Hand-Auge-Transformation
automatisch vom Modul Hand-Auge-Kalibrierung (Abschnitt 6.4.1). Für den Fall einer roboterge-
führten Kamera ist vom Nutzer zusätzlich die jeweils aktuelle Roboterpose robot_pose anzuge-
ben.

Roboception GmbH
Handbuch: rc_reason_stack

135 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Bemerkung: Wenn keine Hand-Auge-Kalibrierung durchgeführt wurde bzw. zur Verfügung steht,
muss als Referenzkoordinatensystem pose_frame immer camera angegeben werden.

Zulässige Werte zur Angabe des Referenzkoordinatensystems sind camera und external. Andere Wer-
te werden als ungültig zurückgewiesen.

Für den Fall einer robotergeführten Kamera ist es abhängig von pose_frame und der Sortierrichtung
bzw. des Sortierpunktes nötig, zusätzlich die aktuelle Roboterpose (robot_pose) zur Verfügung zu stel-
len:

• Wenn external als pose_frame ausgewählt ist, ist die Angabe der Roboterpose obligatorisch.

• Wenn die Sortierrichtung in external definiert ist, ist die Angabe der Roboterpose obligatorisch.

• Wenn der Sortierpunkt für die Abstandssortierung in external definiert ist, ist die Angabe der
Roboterpose obligatorisch.

• In allen anderen Fällen ist die Angabe der Roboterpose optional.

LoadCarrier

Das BoxPick-Modul nutzt die Funktionalität zur Load Carrier Erkennung aus dem LoadCarrier Modul
(rc_load_carrier, Abschnitt 6.3.2) mit den Laufzeitparametern, die für dieses Modul festgelegt wurden.
Wenn sich jedoch mehrere Load Carrier in der Szene befinden, die zu der angegebenen Load Carrier
ID passen, wird nur einer davon zurückgeliefert. In diesem Fall sollte eine 3D Region of Interest gesetzt
werden, um sicherzustellen, dass immer derselbe Load Carrier für das BoxPick-Modul verwendet wird.

Der Load Carrier wird verwendet um Fehldetektionen zu filtern, wenn BoxPick mit einem Objektmodell
vom Typ TEXTURED_BOX aufgerufen wird, und alle drei Dimensionen x, y und z angegeben werden.
In diesem Fall werden intern 3D Boxen generiert, indem die erkannten Rechtecken um die fehlende
Dimension erweitert werden. Es werden dann nur die erkannten Rechtecke zurückgeliefert, bei denen
die entsprechende 3D Box vollständig im Load Carrier enthalten ist.

CollisionCheck

Die Kollisionsprüfung kann für die Greifpunktberechnung des BoxPick-Moduls aktiviert werden, indem
das collision_detection Argument an den compute_grasps oder compute_grasps_extended Service
übergeben wird. Es enthält die ID des benutzten Greifers und optional einen Greif-Offset. Der Greifer
muss im GripperDB Modul definiert werden (siehe Erstellen eines Greifers, Abschnitt 6.5.3.2) und De-
tails über die Kollisionsprüfung werden in Integrierte Kollisionsprüfung in anderen Modulen (Abschnitt
6.4.2.2) gegeben.

Wenn die Kollisionsprüfung aktiviert ist, werden nur kollisionsfreie Greifpunkte zurückgeliefert. Jedoch
werden in den Visualisierungen auf der BoxPick -Seite der Web GUI kollidierende Greifpunkte als
schwarze Ellipsen dargestellt.

Die Laufzeitparameter des CollisionCheck-Moduls beeinflussen die Kollisionserkennung wie in
CollisionCheck-Parameter (Abschnitt 6.4.2.3) beschrieben.

6.3.5.6 Parameter

Das BoxPick-Modul wird in der REST-API als rc_boxpick bezeichnet und in der Web GUI (Abschnitt
7.1) in der gewünschten Pipeline unter Module → BoxPick dargestellt. Der Benutzer kann die Parameter
entweder dort oder über die REST-API-Schnittstelle (Abschnitt 7.2) ändern.

Roboception GmbH
Handbuch: rc_reason_stack

136 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Übersicht über die Parameter

Bemerkung: Die Defaultwerte in der Tabelle unten zeigen die Werte des rc_visard. Diese Werte
können sich bei anderen Sensoren unterscheiden.

Dieses Softwaremodul bietet folgende Laufzeitparameter:

Tab. 6.34: Laufzeitparameter des rc_boxpick Moduls
Name Typ Min. Max. Default Beschreibung
allow_any_grasp_z_-
rotation

bool false true false Bestimmt, ob die Greifpunkte belie-
bige Orientierung haben dürfen, an-
statt an der Hauptachse der greifba-
ren Ellipse ausgerichtet zu sein

allow_untextured_-
detections

bool false true false Gibt an, ob auch untexturierte
Rechtecke zurückgegeben werden
sollen, wenn ein Modell vom Typ
TEXTURED_BOX angegeben wur-
de

check_collisions_with_-
point_cloud

bool false true false Gibt an, ob Kollisionen zwischen
Greifer und anderen Matches ge-
prüft werden

cluster_max_curvature float64 0.005 0.5 0.11 Maximal erlaubte Krümmung für
Greifflächen

clustering_discontinuity_-
factor

float64 0.1 5.0 1.0 Erlaubte Unebenheit von Greifflä-
chen

clustering_max_surface_-
rmse

float64 0.0005 0.01 0.004 Maximal erlaubte Abweichung
(Root Mean Square Error, RMSE)
von Punkten zur Greiffläche in
Metern

grasp_filter_orientation_-
threshold

float64 0.0 180.0 45.0 Maximal erlaubte Orientierungsab-
weichung zwischen Greifpunkt und
bevorzugter TCP-Orientierung in
Grad

line_sensitivity float64 0.1 1.0 0.1 Empfindlichkeit des Liniendetektors
manual_line_sensitivity bool false true false Gibt an, ob die benutzerdefinierte

Linienempfindlichkeit oder die auto-
matische genutzt werden soll

max_grasps int32 1 100 5 Maximale Anzahl von bereitgestell-
ten Greifpunkten

min_cluster_coverage float64 0.0 0.99 0.0 Bestimmt den minimalen Anteil an
Punkten pro Cluster, die durch De-
tektionen abgedeckt sein müssen

mode string - - Unconstrained Modus der Rechteckerkennung:
[Unconstrained, PackedGridLayout,
PackedLayers]

prefer_splits bool false true false Gibt an, ob Rechtecke in kleinere
Rechtecke gesplittet werden sollen,
falls möglich

Beschreibung der Laufzeitparameter

Die Laufzeitparameter werden zeilenweise auf der BoxPick -Seite in der Web GUI dargestellt. Im folgen-
den wird der Name des Parameters in der Web GUI in Klammern hinter dem eigentlichen Parameter-
namen angegeben. Die Parameter sind in derselben Reihenfolge wie in der Web GUI aufgelistet:

Roboception GmbH
Handbuch: rc_reason_stack

137 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

max_grasps (Anzahl Greifpunkte)

ist die maximale Anzahl von bereitgestellten Greifpunkten.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?max_grasps=
→˓<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?max_grasps=<value>

cluster_max_curvature (Maximale Krümmung)

ist die maximal erlaubte Krümmung für Greifflächen. Je kleiner dieser Wert ist,
desto mehr mögliche Greifflächen werden in kleinere Flächen mit weniger Krüm-
mung aufgeteilt.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?cluster_max_

→˓curvature=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?cluster_max_curvature=<value>

clustering_discontinuity_factor (Unstetigkeitsfaktor)

beschreibt die erlaubte Unebenheit von Greifflächen. Je kleiner dieser Wert ist,
umso mehr werden mögliche Greifflächen in kleinere Flächen mit weniger Un-
ebenheiten aufgeteilt.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?clustering_

→˓discontinuity_factor=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?clustering_discontinuity_factor=
→˓<value>

clustering_max_surface_rmse (Maximaler RMSE)

ist die maximal erlaubte Abweichung (Root Mean Square Error, RMSE) von Punk-
ten zur Greiffläche in Metern.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

Roboception GmbH
Handbuch: rc_reason_stack

138 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?clustering_

→˓max_surface_rmse=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?clustering_max_surface_rmse=
→˓<value>

mode (Modus)

legt den Modus der Rechteckerkennung fest. Mögliche Werte sind Unconstrained
(Unbeschränkt), PackedGridLayout (Dichtes Gitterlayout) und PackedLayer (Dicht
geschichtet). Im Modus PackedGridLayout werden Rechtecke eines Clusters in
einem dichten Gittermuster erkannt. Im Modus PackedLayers wird angenommen,
dass die Boxen Schichten (Layer) bilden, und die Erkennung der Boxen startet
an den Ecken des Clusters. Dieser Modus sollte für Depalettierszenarien genutzt
werden. Im Modus Unconstrained (Standardwert) werden Rechtecke unabhängig
von ihren relativen Positionen zueinander und ihren Positionen im Cluster erkannt.
Abb. 6.13 zeigt die Modi für verschiedene Szenarien.

Abb. 6.13: Darstellung geeigneter BoxPick Modi für unterschiedliche Szenen. Gelb markierte Modi sind
anwendbar, aber nicht empfohlen für das jeweilige Szenario. Die grauen Flächen markieren die Recht-
ecke, die erkannt werden sollen.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

Roboception GmbH
Handbuch: rc_reason_stack

139 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?mode=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?mode=<value>

manual_line_sensitivity (Manuelle Linienempfindlichkeit)

legt fest, ob die benutzerdefinierte Linienempfindlichkeit für die Liniendetektion
zur Rechteckerkennung verwendet werden soll. Wenn dieser Parameter auf true
gesetzt ist, wird der benutzerdefinierte Wert in line_sensitivity (Linienempfind-
lichkeit) zur Detektion verwendet, andernfalls wird die Linienempfindlichkeit au-
tomatisch ermittelt. Dieser Parameter sollte auf true gesetzt werden, wenn die
automatische Linienempfindlichkeit nicht genügend Linien an den Rändern der
Boxen liefert, sodass Boxen nicht erkannt werden. Die detektierten Linien werden
in der „Zwischenergebnis“ Visualisierung auf der BoxPick Seite in der Web GUI
angezeigt.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?manual_line_

→˓sensitivity=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?manual_line_sensitivity=<value>

line_sensitivity (Linienempfindlichkeit)

legt die Empfindlichkeit für die Detektion von Linien für die Rechteckerkennung
fest, wenn der Parameter manual_line_sensitivity (Manuelle Linienempfindlich-
keit) auf true gesetzt ist. Andernfalls hat dieser Parameter keinen Einfluss auf die
Rechteckerkennung. Höhere Werte liefern mehr Liniensegmente, aber erhöhen
auch die Laufzeit der Detektion. Dieser Parameter sollte erhöht werden, wenn
Boxen nicht erkannt werden können, weil ihre Ränder nicht als Linien detektiert
werden. Die erkannten Linien werden in der „Zwischenergebnis“ Visualisierung
auf der BoxPick Seite in der Web GUI angezeigt.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?line_

→˓sensitivity=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?line_sensitivity=<value>

prefer_splits (Splitting bevorzugen)

bestimmt, ob Rechtecke in kleinere Rechtecke aufgesplittet werden, falls die klei-
neren Rechtecke ebenfalls den angegebenen Objektmodellen entsprechen. Die-
ser Parameter sollte auf true gesetzt werden, wenn Boxen dicht beieinander lie-
gen, und die Objektmodelle auch zu einem Rechteck der Größe von zwei angren-

Roboception GmbH
Handbuch: rc_reason_stack

140 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

zenden Boxen passen. Wenn dieser Parameter auf false steht, werden in solch
einem Fall die Rechtecke bevorzugt, die sich aus zwei angrenzenden Boxen erge-
ben.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?prefer_splits=
→˓<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?prefer_splits=<value>

min_cluster_coverage (Minimale Clusterabdeckung)

bestimmt den Anteil von Punkten in jedem segmentierten Cluster, der durch
Rechtecksdetektionen abgedeckt sein muss, um diese Detektionen als valide an-
zunehmen. Wird die minimale Clusterabdeckung unterschritten, werden für das
jeweilige Cluster keine Detektionen zurückgeliefert und eine Warnung ausgege-
ben. Dieser Parameter sollte genutzt werden, um in einem Depalettierszenario zu
verifizieren, dass alle Objekte in einem Layer detektiert wurden.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?min_cluster_

→˓coverage=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?min_cluster_coverage=<value>

allow_untextured_detections (Nur für BoxPick+Match, Untexturierte Detektionen)

ermöglicht die Rückgabe aller Rechtecke, die den angegebenen Templateabmes-
sungen entsprechen, auch wenn sie mit keinem vorhandenen View gematcht wer-
den können oder wenn sie nicht über genügend Textur verfügen, um daraus einen
neuen View zu generieren. Das Deaktivieren dieses Parameters führt zu schnel-
lerer Laufzeit, wenn ein Template verwendet wird, für das automatische View Up-
dates gesperrt sind.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?allow_

→˓untextured_detections=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?allow_untextured_detections=
→˓<value>

Roboception GmbH
Handbuch: rc_reason_stack

141 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

grasp_filter_orientation_threshold (Grasp Orientation Threshold)

ist die maximale Abweichung der TCP-z-Achse am Greifpunkt von der z-Achse
der bevorzugten TCP-Orientierung in Grad. Es werden nur Greifpunkte zurückge-
liefert, deren Orientierungsabweichung kleiner als der angegebene Wert ist. Falls
der Wert auf Null gesetzt wird, sind alle Abweichungen valide.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?grasp_filter_

→˓orientation_threshold=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?grasp_filter_orientation_

→˓threshold=<value>

allow_any_grasp_z_rotation (Allow Any Grasp Z Rotation)

Wenn der Wert auf True gesetzt ist, werden die x-Achsen der zurückgegebe-
nen Greifpunkte nicht mehr notwendigerweise an der maximalen Ausdehnung der
greifbaren Ellipse ausgerichtet, sondern können eine beliebige Drehung um die
z-Achse haben. Die zurückgegebenen Werte von max_suction_surface_length
und max_suction_surface_width sind dann gleich und entsprechen dem kleins-
ten Durchmesser der größten greifbaren Ellipsenfläche. Dieser Parameter eröffnet
dem Roboter mehr Optionen zum Greifen von Objekten, insbesondere in Szenen,
in denen es zu Kollisionen kommen kann. Da der Greifpunkt jedoch nicht mehr mit
der greifbaren Ellipse ausgerichtet, muss die richtige Orientierung zum Platzieren
des Objekts anhand der Pose des zugehörigen item ermittelt werden.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?allow_any_

→˓grasp_z_rotation=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?allow_any_grasp_z_rotation=<value>

check_collisions_with_point_cloud (Kollisionsprüfung mit Punktwolke)

Dieser Parameter wird nur beachtet, wenn die Kollisionsprüfung durch Übergabe
eines Greifers an den compute_grasps oder compute_grasps_extended Service
aktiviert ist. Wenn check_collisions_with_point_cloud auf true gesetzt ist, wer-
den alle Greifpunkte auf Kollisionen zwischen dem Greifer und einer wasserdich-
ten Version der Punktwolke geprüft. Nur Greifpunkte, bei denen der Greifer nicht
in Kollision mit dieser Punktwolke wäre, werden zurückgeliefert.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?check_

→˓collisions_with_point_cloud=<value>

Roboception GmbH
Handbuch: rc_reason_stack

142 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?check_collisions_with_point_cloud=
→˓<value>

6.3.5.7 Statuswerte

Das rc_boxpick Modul meldet folgende Statuswerte:

Tab. 6.35: Statuswerte des rc_boxpick Moduls
Name Beschreibung
data_acquisition_time Zeit in Sekunden, für die beim letzten Aufruf auf Bilddaten

gewartet werden musste.
grasp_computation_time Laufzeit für die Greifpunktberechnung beim letzten Aufruf in

Sekunden
last_timestamp_processed Zeitstempel des letzten verarbeiteten Bilddatensatzes
load_carrier_detection_time Laufzeit für die letzte Load Carrier Erkennung in Sekunden
processing_time Laufzeit für die letzte Erkennung (einschließlich Load Carrier

Detektion) in Sekunden
state Aktueller Zustand des BoxPick-Moduls

Folgende state-Werte werden gemeldet.

Tab. 6.36: Mögliche Werte für den Zustand des BoxPick Moduls
Zustand Beschreibung
IDLE Das Modul ist inaktiv.
RUNNING Das Modul wurde gestartet und ist bereit, Load Carrier zu erkennen und Greifpunkte zu berechnen.
FATAL Ein schwerwiegender Fehler ist aufgetreten.

6.3.5.8 Services

Die angebotenen Services von rc_boxpick können mithilfe der REST-API-Schnittstelle (Abschnitt 7.2)
oder der rc_reason_stack Web GUI (Abschnitt 7.1) ausprobiert und getestet werden.

Das BoxPick-Modul stellt folgende Services zur Verfügung.

detect_items

löst die Erkennung von Rechtecken aus, wie in Erkennung von Rechtecken (Abschnitt
6.3.5.2) beschrieben.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/services/detect_items

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/detect_items

Request

Obligatorische Serviceargumente:

Roboception GmbH
Handbuch: rc_reason_stack

143 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

pose_frame: siehe Hand-Auge-Kalibrierung (Abschnitt 6.3.5.5).

item_models: Liste der zu erkennenden Objektmodelle. Der Typ type der Mo-
delle muss immer RECTANGLE oder TEXTURED_BOX sein. Für den Typ RECTANGLE
muss das Feld rectangle gefüllt werden, wohingegen für TEXTURED_BOX das
Feld textured_box angegeben werden muss. Siehe Erkennung von Rechte-
cken (Abschnitt 6.3.5.2) für eine ausführliche Beschreibung der Objektmodelle.

Möglicherweise benötigte Serviceargumente:

robot_pose: siehe Hand-Auge-Kalibrierung (Abschnitt 6.3.5.5).

Optionale Serviceargumente:

load_carrier_id: ID des Load Carriers, welcher die zu erkennenden Objekte ent-
hält.

load_carrier_compartment: Teilvolumen (Fach oder Abteil) in einem zu detektie-
renden Load Carrier (Behälter), in dem Objekte erkannt werden sollen (siehe Load
Carrier Abteile, Abschnitt 6.5.1.3).

region_of_interest_id: Falls load_carrier_id gesetzt ist, die ID der 3D Region
of Interest, innerhalb welcher nach dem Load Carrier gesucht wird. Andernfalls
die ID der 3D Region of Interest, in der nach Objekten gesucht wird.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"item_models": [
{

"rectangle": {
"max_dimensions": {
"x": "float64",
"y": "float64"

},
"min_dimensions": {
"x": "float64",
"y": "float64"

}
},
"textured_box": {
"dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"dimensions_tolerance_m": "float64",
"max_deformation_m": "float64",
"template_id": "string"

},
"type": "string"

}
],
"load_carrier_compartment": {

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

144 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"z": "float64"
},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

load_carriers: Liste der erkannten Load Carrier (Behälter).

items: Liste von erkannten Rechtecken.

timestamp: Zeitstempel des Bildes, auf dem die Erkennung durchgeführt wurde.

return_code: enthält mögliche Warnungen oder Fehlercodes und Nachrichten.

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "detect_items",
"response": {
"items": [

{
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rectangle": {
"x": "float64",
"y": "float64"

},

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

145 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"template_id": "string",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string",
"view_name": "string",
"view_pose_set": "bool",
"view_uuid": "string"

}
],
"load_carriers": [

{
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

146 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

}
}

compute_grasps

löst die Erkennung von Rechtecken und Berechnung von Greifposen für diese Rechtecke
aus, wie in Berechnung der Greifpunkte (Abschnitt 6.3.5.3) beschrieben.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/services/compute_grasps

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/compute_grasps

Request

Obligatorische Serviceargumente:

pose_frame: siehe Hand-Auge-Kalibrierung (Abschnitt 6.3.5.5).

item_models: Liste der zu erkennenden Objektmodelle. Der Typ type der Mo-
delle muss immer RECTANGLE oder TEXTURED_BOX sein. Für den Typ RECTANGLE
muss das Feld rectangle gefüllt werden, wohingegen für TEXTURED_BOX das
Feld textured_box angegeben werden muss. Siehe Erkennung von Rechte-
cken (Abschnitt 6.3.5.2) für eine ausführliche Beschreibung der Objektmodelle.

suction_surface_length: Länge der Greiffläche des verwendeten Vakuum-
Greifsystems.

suction_surface_width: Breite der Greiffläche des verwendeten Vakuum-
Greifsystems.

Möglicherweise benötigte Serviceargumente:

robot_pose: siehe Hand-Auge-Kalibrierung (Abschnitt 6.3.5.5).

Optionale Serviceargumente:

load_carrier_id: ID des Load Carriers, welcher die zu greifenden Objekte ent-
hält.

load_carrier_compartment: Teilvolumen (Fach oder Abteil) in einem zu detektie-
renden Load Carrier (Behälter), in dem Objekte erkannt werden sollen (siehe Load
Carrier Abteile, Abschnitt 6.5.1.3).

region_of_interest_id: Falls load_carrier_id gesetzt ist, die ID der 3D Region
of Interest, innerhalb welcher nach dem Load Carrier gesucht wird. Andernfalls
die ID der 3D Region of Interest, innerhalb der Greifpunkte berechnet werden.

collision_detection: siehe Integrierte Kollisionsprüfung in anderen Modu-
len (Abschnitt 6.4.2.2)

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"collision_detection": {
"gripper_id": "string",

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

147 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"pre_grasp_offset": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"item_models": [
{

"rectangle": {
"max_dimensions": {
"x": "float64",
"y": "float64"

},
"min_dimensions": {
"x": "float64",
"y": "float64"

}
},
"textured_box": {
"dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"dimensions_tolerance_m": "float64",
"max_deformation_m": "float64",
"template_id": "string"

},
"type": "string"

}
],
"load_carrier_compartment": {

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

148 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"suction_surface_length": "float64",
"suction_surface_width": "float64"

}
}

Response

load_carriers: Liste der erkannten Load Carrier (Behälter).

grasps: sortierte Liste von Sauggreifpunkten.

items: Liste von erkannten Rechtecken, die zu den zurückgelieferten Greifpunkten gehören.

timestamp: Zeitstempel des Bildes, auf dem die Erkennung durchgeführt wurde.

return_code: enthält mögliche Warnungen oder Fehlercodes und Nachrichten.

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "compute_grasps",
"response": {
"grasps": [

{
"item_uuid": "string",
"max_suction_surface_length": "float64",
"max_suction_surface_width": "float64",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"quality": "float64",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string"

}
],
"items": [
{

"grasp_uuids": [
"string"

],
"pose": {

"orientation": {

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

149 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rectangle": {
"x": "float64",
"y": "float64"

},
"template_id": "string",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string",
"view_name": "string",
"view_pose_set": "bool",
"view_uuid": "string"

}
],
"load_carriers": [

{
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {

"x": "float64",
"y": "float64"

},

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

150 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

compute_grasps_extended

löst die Erkennung von Rechtecken und Berechnung von Greifposen für diese Rechtecke
aus. Dieser Service verhält sich analog zu compute_grasps, gibt aber die Objektinformatio-
nen für jeden Greifpunkt direkt zurück, anstatt sie in einer separaten Liste zu speichern. Dies
ermöglicht ein einfacheres Parsen, wenn Objektinformationen für die Greifpunkte benötigt
werden.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/services/compute_grasps_

→˓extended

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/compute_grasps_extended

Request

Siehe compute_grasps Service.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"item_models": [
{

"rectangle": {
"max_dimensions": {
"x": "float64",

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

151 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"y": "float64"
},
"min_dimensions": {
"x": "float64",
"y": "float64"

}
},
"textured_box": {
"dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"dimensions_tolerance_m": "float64",
"max_deformation_m": "float64",
"template_id": "string"

},
"type": "string"

}
],
"load_carrier_compartment": {

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"suction_surface_length": "float64",
"suction_surface_width": "float64"

}
}

Response

Roboception GmbH
Handbuch: rc_reason_stack

152 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

load_carriers: Liste der erkannten Load Carrier (Behälter).

grasps: sortierte Liste von Sauggreifpunkten. Jeder Greifpunkt enthält die item Information
des zugehörigen erkannten Rechtecks.

timestamp: Zeitstempel des Bildes, auf dem die Erkennung durchgeführt wurde.

return_code: enthält mögliche Warnungen oder Fehlercodes und Nachrichten.

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "compute_grasps_extended",
"response": {

"grasps": [
{

"item": {
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rectangle": {
"x": "float64",
"y": "float64"

},
"template_id": "string",
"type": "string",
"uuid": "string",
"view_name": "string",
"view_pose_set": "bool",
"view_uuid": "string"

},
"max_suction_surface_length": "float64",
"max_suction_surface_width": "float64",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"quality": "float64",
"timestamp": {
"nsec": "int32",
"sec": "int32"

},
"type": "string",

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

153 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"uuid": "string"
}

],
"load_carriers": [

{
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {

"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {
"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

set_preferred_orientation

speichert die bevorzugte TCP-Orientierung zum Berechnen der Erreichbarkeit der Greif-
punkte, die zur Filterung und optional zur Sortierung der vom compute_grasps oder
compute_grasps_extended Service zurückgelieferten Greifpunkte verwendet wird (siehe

Roboception GmbH
Handbuch: rc_reason_stack

154 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Setzen der bevorzugten TCP-Orientierung, Abschnitt 6.3.5.4).

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/services/set_preferred_

→˓orientation

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/set_preferred_orientation

Request

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string"

}
}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "set_preferred_orientation",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_preferred_orientation

gibt die bevorzugte TCP-Orientierung zurück, die für die Filterung und optional für die Sor-
tierung der vom detect_object und compute_grasps_extended Service zurückgelieferten
Greifpunkte verwendet wird (siehe Setzen der bevorzugten TCP-Orientierung, Abschnitt
6.3.5.4).

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/services/get_preferred_

→˓orientation

API Version 1 (veraltet)

Roboception GmbH
Handbuch: rc_reason_stack

155 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

PUT http://<host>/api/v1/nodes/rc_boxpick/services/get_preferred_orientation

Request

Dieser Service hat keine Argumente.

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "get_preferred_orientation",
"response": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_sorting_strategies

speichert die gewählte Strategie zur Sortierung der Greifpunkte, die vom compute_grasps
und compute_grasps_extended Service zurückgeliefert werden (siehe Berechnung der
Greifpunkte, Abschnitt 6.3.5.3).

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/services/set_sorting_

→˓strategies

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/set_sorting_strategies

Request

Nur eine Sortierstrategie darf einen Gewichtswert weight größer als 0 haben. Wenn alle
Werte für weight auf 0 gesetzt sind, wird die Standardsortierstrategie verwendet.

Wenn der Wert weight für direction gesetzt ist, muss vector den Richtungsvektor enthal-
ten und pose_frame auf camera oder external gesetzt sein.

Wenn der Wert weight für distance_to_point gesetzt ist, muss point den Sortierpunkt
enthalten und pose_frame auf camera oder external gesetzt sein.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"direction": {
"pose_frame": "string",

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

156 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"vector": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"distance_to_point": {
"farthest_first": "bool",
"point": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"weight": "float64"

},
"gravity": {
"weight": "float64"

},
"surface_area": {
"weight": "float64"

}
}

}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "set_sorting_strategies",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_sorting_strategies

gibt die gewählte Sortierstrategie zurück, die zur Sortierung der vom compute-grasps Ser-
vice zurückgelieferten Greifpunkte verwendet wird (siehe Berechnung der Greifpunkte, Ab-
schnitt 6.3.5.3).

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/services/get_sorting_

→˓strategies

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/get_sorting_strategies

Request

Dieser Service hat keine Argumente.

Roboception GmbH
Handbuch: rc_reason_stack

157 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Response

Wenn alle Werte für weight 0 sind, wird die Standardsortierstrategie verwendet.

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "get_sorting_strategies",
"response": {
"direction": {

"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"distance_to_point": {
"farthest_first": "bool",
"point": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"weight": "float64"

},
"gravity": {
"weight": "float64"

},
"return_code": {
"message": "string",
"value": "int16"

},
"surface_area": {
"weight": "float64"

}
}

}

start

startet das Modul und versetzt es in den Zustand RUNNING.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/services/start

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/start

Request

Dieser Service hat keine Argumente.

Response

Roboception GmbH
Handbuch: rc_reason_stack

158 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Es kann vorkommen, dass der Zustandsübergang noch nicht vollständig abgeschlossen ist,
wenn die Serviceantwort generiert wird. In diesem Fall liefert diese den entsprechenden,
sich von IDLE unterscheidenden Zustand zurück.

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "start",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

stop

stoppt das Modul und versetzt es in den Zustand IDLE.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/services/stop

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/stop

Request

Dieser Service hat keine Argumente.

Response

Es kann vorkommen, dass der Zustandsübergang noch nicht vollständig abgeschlossen ist,
wenn die Serviceantwort generiert wird. In diesem Fall liefert diese den entsprechenden,
sich von IDLE unterscheidenden Zustand zurück.

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "stop",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

trigger_dump

speichert die Detektion auf dem angeschlossenen USB Speicher, die dem übergebenen
Zeitstempel entspricht, oder die letzte, falls kein Zeitstempel angegeben wurde.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/services/trigger_dump

Roboception GmbH
Handbuch: rc_reason_stack

159 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/trigger_dump

Request

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"comment": "string",
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "trigger_dump",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

reset_defaults

stellt die Werkseinstellungen der Parameter und der Sortierstrategie dieses Moduls wieder
her und wendet sie an („factory reset“).

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/services/reset_defaults

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/reset_defaults

Request

Dieser Service hat keine Argumente.

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

160 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

}
}

}

6.3.5.9 Rückgabecodes

Zusätzlich zur eigentlichen Serviceantwort gibt jeder Service einen sogenannten return_code beste-
hend aus einem Integer-Wert und einer optionalen Textnachricht zurück. Erfolgreiche Service-Anfragen
werden mit einem Wert von 0 quittiert. Positive Werte bedeuten, dass die Service-Anfrage zwar erfolg-
reich bearbeitet wurde, aber zusätzliche Informationen zur Verfügung stehen. Negative Werte bedeu-
ten, dass Fehler aufgetreten sind. Für den Fall, dass mehrere Rückgabewerte zutreffend wären, wird
der kleinste zurückgegeben, und die entsprechenden Textnachrichten werden in return_code.message
akkumuliert.

Die folgende Tabelle listet die möglichen Rückgabe-Codes auf:

Tab. 6.37: Rückgabecodes der Services des BoxPick-Moduls
Code Beschreibung

0 Erfolgreich
-1 Ungültige(s) Argument(e)
-3 Ein interner Timeout ist aufgetreten, beispielsweise während der Boxerkennung, wenn der

Bereich der angegebenen Abmessungen zu groß ist.
-4 Die maximal erlaubte Zeitspanne für die interne Akquise der Bilddaten wurde überschritten.
-8 Das Template wurde während der Detektion gelöscht.
-10 Das neue Element konnte nicht hinzugefügt werden, da die maximal speicherbare Anzahl

an Load Carriern, ROIs oder Templates überschritten wurde.
-11 Sensor nicht verbunden, nicht unterstützt oder nicht bereit
-12 Ressource ausgelastet, z.B. wenn trigger_dump zu häufig aufgerufen wird

-200 Ein schwerwiegender interner Fehler ist aufgetreten.
-301 Für die Anfrage zur Greifpunktberechnung compute_grasps oder

compute_grasps_extended wurden mehrere Objektmodelle (item_models) übergeben.
10 Die maximal speicherbare Anzahl an Load Carriern, ROIs oder Templates wurde erreicht.
11 Mit dem Aufruf von set_load_carrier oder set_region_of_interest wurde ein bereits

existierendes Objekt mit derselben id überschrieben.
100 Die angefragten Load Carrier wurden in der Szene nicht gefunden.
101 Es wurden keine gültigen Greifflächen in der Szene gefunden.
102 Der detektierte Load Carrier ist leer.
103 Alle berechneten Greifpunkte sind in Kollision.
112 Die Detektionen eines oder mehrerer Cluster wurden verworfen, da die minimale

Clusterabdeckung nicht erreicht wurde.
300 Ein gültiges robot_pose-Argument wurde angegeben, ist aber nicht erforderlich.
999 Zusätzliche Hinweise für die Anwendungsentwicklung

6.3.5.10 BoxPick Template API“

BoxPick Templates sind nur mit der +Match-Erweiterung von BoxPick verfügbar. Für den Upload, Dow-
nload, das Auflisten und Löschen von Templates werden spezielle REST-API-Endpunkte zur Verfügung
gestellt. Templates können auch über die Web GUI hoch- und runtergeladen werden. Die Templates
beinhalten die Greifpunkte und Posenvorgaben, falls Greifpunkte oder Posenvorgaben konfiguriert wur-
den. Bis zu 100 Templates können gleichzeitig auf dem rc_reason_stack gespeichert werden.

GET /templates/rc_boxpick
listet alle rc_cadmatch-Templates auf.

Musteranfrage

Roboception GmbH
Handbuch: rc_reason_stack

161 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

GET /api/v2/templates/rc_boxpick HTTP/1.1

Musterantwort

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": "string"
}

]

Antwort-Header

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung (Rückgabewert: Array der Templates)

• 404 Not Found – Modul nicht gefunden

Referenzierte Datenmodelle

• Template (Abschnitt 7.2.3)

GET /templates/rc_boxpick/{id}
ruft ein rc_boxpick-Template ab. Falls der angefragte Content-Typ application/octet-stream ist, wird
das Template als Datei zurückgegeben.

Musteranfrage

GET /api/v2/templates/rc_boxpick/<id> HTTP/1.1

Musterantwort

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameter

• id (string) – ID des Templates (obligatorisch)

Antwort-Header

• Content-Type – application/json application/ubjson application/octet-stream

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung (Rückgabewert: Template)

• 404 Not Found – Modul oder Template wurden nicht gefunden.

Referenzierte Datenmodelle

• Template (Abschnitt 7.2.3)

PUT /templates/rc_boxpick/{id}
erstellt oder aktualisiert ein rc_boxpick-Template.

Musteranfrage

Roboception GmbH
Handbuch: rc_reason_stack

162 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.3. Detektions- und Messmodule

PUT /api/v2/templates/rc_boxpick/<id> HTTP/1.1
Accept: multipart/form-data application/json

Musterantwort

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameter

• id (string) – ID des Templates (obligatorisch)

Formularparameter

• file – Template-Datei (obligatorisch)

Anfrage-Header

• Accept – multipart/form-data application/json

Antwort-Header

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung (Rückgabewert: Template)

• 400 Bad Request – Template ist ungültig oder die maximale Zahl an Templates
wurde erreicht.

• 403 Forbidden – Verboten, z.B. weil keine gültige Lizenz für das CADMatch-
Modul vorliegt.

• 404 Not Found – Modul oder Template wurden nicht gefunden.

• 413 Request Entity Too Large – Template ist zu groß.

Referenzierte Datenmodelle

• Template (Abschnitt 7.2.3)

DELETE /templates/rc_boxpick/{id}
entfernt ein rc_boxpick-Template.

Musteranfrage

DELETE /api/v2/templates/rc_boxpick/<id> HTTP/1.1
Accept: application/json application/ubjson

Parameter

• id (string) – ID des Templates (obligatorisch)

Anfrage-Header

• Accept – application/json application/ubjson

Antwort-Header

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung

Roboception GmbH
Handbuch: rc_reason_stack

163 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

6.3. Detektions- und Messmodule

• 403 Forbidden – Verboten, z.B. weil keine gültige Lizenz für das CADMatch-
Modul vorliegt.

• 404 Not Found – Modul oder Template wurden nicht gefunden.

6.3.6 SilhouetteMatch und SilhouetteMatchAI

6.3.6.1 Einführung

Das SilhouetteMatch und SilhouetteMatchAI Modul ist ein optionales Modul, welches intern auf dem
rc_reason_stack läuft, und benötigt eine eigene Lizenz (Abschnitt 8.2), welche erworben werden muss.

Bemerkung: Dieses Modul ist nicht verfügbar in Kamerapipelines vom Typ blaze.

Das Modul erkennt Objekte, indem eine vordefinierte Silhouette („Template“) mit Kanten im Bild vergli-
chen wird.

Das SilhouetteMatch und SilhouetteMatchAI Modul kann Objekte in zwei verschiedenen Szenarien er-
kennen:

Mit kalibrierter Basisebene: Die Objekte befinden sich auf einer gemeinsamen Basisebe-
ne, die vor der Objekterkennung kalibriert werden muss, und die Objekte haben prägnante
Kanten auf einer gemeinsamen Ebene, welche parallel zu der Basisebene ist.

Mit Objektebenenerkennung: Die Objekte können sich auf verschiedenen, vorab unbe-
kannten Ebenen befinden, falls die Objekte eine planare Oberfläche haben und ihre Kontu-
ren gut in den Kamerabildern sichtbar sind (z.B. gestapelte flache Objekte).

Mit Objektebenenerkennung und KI-basierter Segmentierung: SilhouetteMatchAI bie-
tet ein KI-basiertes Objektsegmentierungsmodell, das Objekte in der Szene erkennt und
mögliche Ebenen für die Objekterkennung extrahiert. Die Ergebnisse der KI-basierten Seg-
mentierung ermöglichen zudem die Berechnung von Objektüberlappungen und das Filtern
von Objekten nach ihrem Überlappungsgrad.

Templates für die Objekterkennung können erstellt werden, indem eine DXF Datei hochgeladen und
die Objekthöhe angegeben wird. Die korrekte Skalierung und Einheit der Konturen wird aus der DXF
Datei extrahiert. Falls die DXF Datei keine Einheit enthält, muss der Nutzer die korrekte Einheit ange-
ben. Wenn die Außenkontur des Objekts in der DXF Datei geschlossen ist, wird automatisch ein 3D
Kollisionsmodell erstellt, indem die Kontur auf die Objekthöhe extrudiert wird. Dieses Modell wird dann
zur Kollisionsprüfung und 3D-Visualisierung verwendet. Das Hochladen der DXF Datei kann in der Web
GUI über guilabel:+ Neues Template erstellen im Abschnitt SilhouetteMatch Templates und Greifpunkte
auf der Module → SilhouetteMatch oder Datenbank → Templates Seite erfolgen.

Roboception bietet hierfür auch einen Template-Generierungsservice auf ihrer Website (https://
roboception.com/de/template-request-de/) an, auf der der Benutzer CAD-Daten oder mit dem System
aufgenommene Daten hochladen kann, um Templates generieren zu lassen.

Templates bestehen aus den prägnanten Kanten eines Objekts. Die Kanten des Templates werden
mit den erkannten Kanten im linken und rechten Kamerabild abgeglichen, wobei die Größe der Ob-
jekte und deren Abstand zur Kamera mit einbezogen wird. Die Posen der erkannten Objekte werden
zurückgegeben und können beispielsweise benutzt werden, um die Objekte zu greifen.

Bemerkung: Auf Kamerapipelines vom Typ zivid oder orbbec wird nur das linke Kamerabild zum
Matching der Templatekanten verwendet.

Das SilhouetteMatch und SilhouetteMatchAI Modul bietet:

• eine intuitiv gestaltete Bedienoberfläche für Inbetriebnahme, Konfiguration und Test auf der
rc_reason_stack Web GUI (Abschnitt 7.1)

Roboception GmbH
Handbuch: rc_reason_stack

164 Rev: 26.01.4
Status: 30.01.2026

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://roboception.com/de/template-request-de/
https://roboception.com/de/template-request-de/
https://roboception.com/de/template-request-de/

6.3. Detektions- und Messmodule

• eine REST-API-Schnittstelle (Abschnitt 7.2) und eine KUKA Ethernet KRL Schnittstelle (Abschnitt
7.5)

• die Möglichkeit, sogenannte Regions of Interest (ROIs) zu definieren, um relevante Teilbereiche
des Kamerabilds auszuwählen (siehe Setzen einer Region of Interest , Abschnitt 6.3.6.3)

• eine integrierte Load Carrier Erkennung (siehe LoadCarrier , Abschnitt 6.3.2), um in Bin-Picking-
Anwendungen („Griff in die Kiste“) Greifpunkte nur für Objekte in dem erkannten Load Carrier zu
berechnen

• die Speicherung von bis zu 50 Templates

• die Definition von bis zu 50 Greifpunkten für jedes Template über eine interaktive Visualisierung
in der Web GUI

• eine Kollisionsprüfung zwischen Greifer und Load Carrier, der kalibrierten Basisebene, anderen
erkannten Objekten, und/oder der Punktwolke

• die Unterstützung von sowohl statisch montierten als auch robotergeführten Kameras. Optional
kann es mit der Hand-Auge-Kalibrierung (Abschnitt 6.4.1) kombiniert werden, um Greifposen in
einem benutzerdefinierten externen Koordinatensystem zu liefern

• Auswahl einer Strategie zum Sortieren der erkannten Objekte und zurückgelieferten Greifpunkte

• eine 3D Visualisierung des Detektionsergebnisses mit Greifpunkten und einer Greiferanimation in
der Web GUI

Bemerkung: Dieses Softwaremodul ist pipelinespezifisch. Änderungen seiner Einstellungen oder
Parameter betreffen nur die zugehörige Kamerapipeline und haben keinen Einfluss auf die anderen
Pipelines, die auf dem rc_reason_stack laufen.
Achtung: Die Objekt-Templates und ihre Greifpunkte werden global gespeichert. Das Anlegen, Än-
dern oder Löschen eines Templates oder seiner Greifpunkte betrifft alle Kamerapipelines.

Taugliche Objekte

Das SilhouetteMatch und SilhouetteMatchAI Modul ist für Objekte ausgelegt, die prägnante Kanten auf
einer Ebene besitzen, welche parallel zu der Ebene ist, auf der die Objekte liegen. Das trifft beispiels-
weise auf flache, nicht-transparente Objekte zu, wie gefräste, lasergeschnittene oder wasserstrahlge-
schnittene Teile. Komplexere Objekte können auch erkannt werden, solange sie prägnante Kanten auf
einer Ebene besitzen, z.B. ein gedrucktes Muster auf einer ebenen Fläche.

Falls die Objekte nicht auf einer gemeinsamen Ebene liegen oder die Basisebene nicht vorab kali-
briert werden kann, brauchen die Objekte eine planare Oberfläche und ihre Konturen müssen gut im
linken und rechten Kamerabild sichtbar sein. Weiterhin müssen die Templates für diese Objekte eine
geschlossene Außenkontur haben.

Taugliche Szene

Eine für das SilhouetteMatch und SilhouetteMatchAI Modul taugliche Szene muss folgende Bedingun-
gen erfüllen:

• Die zu erkennenden Objekte müssen, wie oben beschrieben, tauglich für das SilhouetteMatch
und SilhouetteMatchAI Modul sein.

• Nur Objekte, die zum selben Template gehören, dürfen gleichzeitig sichtbar sein (sortenrein).
Falls auch andere Objekte sichtbar sind, muss eine passende Region of Interest (ROI) festgelegt
werden.

• Im Falle einer kalibrierten Basisebene: Die Verkippung der Basisebene zur Blickrichtung der Ka-
mera darf 10 Grad nicht übersteigen.

Roboception GmbH
Handbuch: rc_reason_stack

165 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

• Im Falle von verschiedenen oder unbekannten Basisebenen: Die Verkippung der planaren Ober-
fläche der Objekte zur Blickrichtung der Kamera darf 25 Grad nicht übersteigen.

• Die Objekte sind weder teilweise noch komplett verdeckt. Mit SilhouetteMatchAI werden leich-
te Überlappungen toleriert und können zum Filtern von Matches mit Überlappungen verwendet
werden.

• Alle sichtbaren Objekte liegen richtig herum.

• Die Objektkanten, welche abgeglichen werden sollen, sind sowohl im linken als auch im rechten
Kamerabild zu sehen.

6.3.6.2 Kalibrierung der Basisebene

Falls alle Objekte auf einer gemeinsamen Ebene liegen, die vorab bekannt ist, sollte diese Ebene ka-
libriert werden, bevor die Objekterkennung gestartet wird. Hierbei wird die Distanz und der Winkel der
Ebene, auf welcher die Objekte liegen, gemessen und persistent auf dem rc_reason_stack gespeichert.

Durch die Trennung der Kalibrierung der Basisebene von der eigentlichen Objekterkennung werden
beispielsweise Szenarien ermöglicht, in denen die Basisebene zeitweise verdeckt ist. Darüber hinaus
wird die Berechnungszeit der Objekterkennung für Szenarien verringert, in denen die Basisebene für
eine gewisse Zeit fixiert ist – die Basisebene muss in diesem Fall nicht fortlaufend neu detektiert werden.

Die Kalibrierung der Basisebene kann mit drei unterschiedlichen Verfahren durchgeführt werden, auf
die im Folgenden näher eingegangen wird:

• AprilTag-basiert

• Stereo-basiert

• Manuell

Die Kalibrierung ist erfolgreich, solange der Normalenvektor der Basisebene höchstens 10 Grad ge-
gen die Blickrichtung der Kamera verkippt ist. Eine erfolgreiche Kalibrierung wird persistent auf dem
rc_reason_stack gespeichert, bis sie entweder gelöscht wird oder eine neue Kalibrierung durchgeführt
wird.

Bemerkung: Um Datenschutzproblemen entgegenzuwirken, wird die Visualisierung der Kalibrierung
der Basisebene nach einem Neustart des rc_reason_stack verschwommen dargestellt.

In Szenarien, in denen die Basisebene nicht direkt kalibriert werden kann, ist es auch möglich, zu ei-
ner zur Basisebene parallel liegenden Ebene zu kalibrieren. In diesem Fall kann der Parameter offset
benutzt werden, um die geschätzte Ebene auf die eigentliche Basisebene zu verschieben. Der Para-
meter offset gibt die Distanz in Metern an, um welche die geschätzte Ebene in Richtung der Kamera
verschoben wird.

In der REST-API ist eine Ebene durch eine Normale (normal) und einen Abstand (distance) definiert.
normal ist ein normalisierter 3-Vektor, welcher die Normale der Ebene spezifiziert. Die Normale zeigt
immer von der Kamera weg. distance repräsentiert den Abstand der Ebene von der Kamera in Richtung
der Normale. normal und distance können auch als 𝑎, 𝑏, 𝑐, bzw. 𝑑 der Ebenengleichung interpretiert
werden:

𝑎𝑥+ 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0

AprilTag-basierte Kalibrierung der Basisebene

Bemerkung: Auf Kamerapipelines vom Typ zivid oder orbbec ist die AprilTag-basierte Basisebe-
nenkalibrierung nicht verfügbar.

Roboception GmbH
Handbuch: rc_reason_stack

166 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Die AprilTag-Erkennung (siehe TagDetect , Abschnitt 6.3.3) wird benutzt, um AprilTags in der Szene zu
finden und eine Ebene durch diese zu legen. Mindestens drei AprilTags müssen so auf der Basisebene
platziert werden, dass sie im linken und rechten Kamerabild zu sehen sind. Die AprilTags sollten ein
möglichst großes Dreieck aufspannen. Je größer das Dreieck ist, desto höher wird die Genauigkeit der
Schätzung der Basisebene. Diese Methode sollte benutzt werden, wenn die Basisebene untexturiert
und kein externer Projektor mit Zufallsmuster angeschlossen ist. Diese Kalibriermethode ist sowohl
über die REST-API-Schnittstelle (Abschnitt 7.2) als auch über die rc_reason_stack Web GUI verfügbar.

Stereo-basierte Kalibrierung der Basisebene

Die 3D-Punktwolke, welche vom Stereo-Matching-Modul berechnet wird, wird benutzt um eine Ebene
in den 3D-Punkten zu finden. Die Region of Interest (ROI) sollte für diese Methode deshalb so gewählt
werden, dass nur die relevante Basisebene eingeschlossen wird. Der Parameter plane_preference
erlaubt es auszuwählen, ob die zur Kamera am nächsten gelegene oder die von der Kamera am wei-
testen entfernte Ebene als Basisebene benutzt wird. Die am nächsten gelegene Ebene kann in Szena-
rien ausgewählt werden, in denen die Basisebene vollständig von Objekten verdeckt wird oder für die
Kalibrierung nicht erreichbar ist. Diese Methode sollte benutzt werden, wenn die Basisebene texturiert
ist oder ein Projektor mit Zufallsmuster angeschlossen ist. Diese Kalibriermethode ist sowohl über die
REST-API-Schnittstelle (Abschnitt 7.2) als auch über die rc_reason_stack Web GUI verfügbar.

Manuelle Kalibrierung der Basisebene

Die Basisebene kann manuell gesetzt werden, falls die Parameter bekannt sind – beispielswei-
se von einer vorangegangenen Kalibrierung. Diese Kalibriermethode ist nur über die REST-API-
Schnittstelle (Abschnitt 7.2) und nicht über die rc_reason_stack Web GUI verfügbar.

6.3.6.3 Setzen einer Region of Interest

Falls Objekte nur in einem Teil des Sichtfelds der Kamera erkannt werden sollen, kann eine 2D Region
of Interest (ROI) gesetzt werden, wie in Region of Interest (Abschnitt 6.5.2.2) beschrieben wird.

6.3.6.4 Setzen von Greifpunkten

Um das SilhouetteMatch und SilhouetteMatchAI Modul direkt in einer Roboteranwendung zu nutzen,
können für jedes Template bis zu 50 Greifpunkte definiert werden. Ein Greifpunkt repräsentiert die ge-
wünschte Position und Orientierung des Roboter-TCPs (Tool Center Point), mit der das Objekt gegriffen
werden kann (siehe Abb. 6.14).

y

z

x
PgraspTCP y

z

x

Abb. 6.14: Definition von Greifpunkten bezogen auf den Roboter-TCP

Jeder Greifpunkt enthält eine id, die eindeutig über alle Greifpunkte eines Objekt-Templates sein muss,
die ID des Templates (template_id), zu dem der Greifpunkt hinzugefügt wird, und die Greifpose (pose)
im Koordinatensystem des Templates. Greifpunkte können über die REST-API-Schnittstelle (Abschnitt
7.2), oder über die interaktive Visualisierung in der Web GUI definiert werden. Zudem kann einem Greif-
punkt eine Priorität (von -2 für sehr niedrig bis 2 für sehr hoch) zugewiesen werden. Prioritäten können

Roboception GmbH
Handbuch: rc_reason_stack

167 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Roboteranwendungen vereinfachen, oder die Rechenzeit der Kollisionsprüfung verkürzen, wenn der Pa-
rameter only_highest_priority_grasp aktiviert ist. In diesem Fall endet die Kollisionsprüfung, wenn
Greifpunkte mit der höchsten Priorität gefunden sind. Weiterhin können Greifpunkte unterschiedlichen
Greifern zugewiesen werden, indem die ID des Greifers (gripper_id) spezifiziert wird. Dieser Grei-
fer wird dann anstelle des Greifers, welcher im detect_object oder detect_object_extended Service
definiert ist, für die Kollisionsprüfung des zugehörigen Greifpunkts verwendet.

Wenn für einen Greifpunkt eine gripper_id angegeben wird, und der zugehörige Greifer
Elemente vom Typ (function_type) FINGER besitzt, kann jeder Greifpunkt auch Werte für
stroke_per_finger_approach_mm und stroke_per_finger_grasp_mm festlegen. Diese Werte geben
die Verschiebung eines Fingers in Millimetern an, um die das Fingerelement und alle sei-
ne Kind-Elemente von der zero_pose zur pose des Fingerelements bewegt werden. Der Wert
stroke_per_finger_approach_mm gibt die Greiferöffnung während der Annäherung an und wird zur
Kollisionsprüfung verwendet. Der Wert stroke_per_finger_grasp_mm wird nicht für die Kollisions-
prüfung verwendet, sondern enthält Informationen über die Greiferöffnung während des Greifens.
Dieses Feld definiert somit implizit die Bewegungsrichtung des Fingers beim Greifen. Wenn weder
stroke_per_finger_approach_mm noch stroke_per_finger_grasp_mm angegeben werden, dann wird
der Greifer mit den Fingern in der Standardpose zur Kollisionsprüfung verwendet.

Wird ein Greifpunkt auf einem symmetrischen Objekt definiert, werden alle Greifpunkte, die zu diesem
symmetrisch sind, automatisch im detect_object und detect_object_extended Service des Silhou-
etteMatch und SilhouetteMatchAI Moduls mit berücksichtigt. Symmetrische Greifpunkte zu einem ge-
gebenen Greifpunkt können mittels des get_symmetric_grasps Services abgefragt werden und in der
Web GUI visualisiert werden.

Benutzer können ebenfalls Replikationen eines Greifpunktes um eine selbst-definierte Achse definie-
ren. Eine Replikation generiert mehrere Greifpunkte und sorgt dafür, dass Benutzer nicht zu viele Greif-
punkte manuell setzen müssen. Der Ursprung der Replikation ist als Koordinatensystem im Objektkoor-
dinatensystem definiert und die x-Achse dieses Koordinatensystems entspricht der Replikationsachse.
Der Greifpunkt wird repliziert, indem er ausgehend von seiner ursprünglichen Pose um diese x-Achse
gedreht wird. Die Replikation erfolgt in step_x_deg-Grad Schritten. Der Bereich wird durch die minima-
len und maximalen Endpunkte min_x_deg und max_x_deg bestimmt. Der minimale (maximale) Endpunkt
muss nicht-positiv (nicht-negativ) sein.

Setzen von Greifpunkten in der Web GUI

Die rc_reason_stack Web GUI bietet eine interaktive und intuitive Möglichkeit, Greifpunkte für Objekt-
Templates zu setzen. Im ersten Schritt muss das Objekt-Template auf den rc_reason_stack hochgela-
den werden. Das kann über die Web GUI in einer beliebigen Kamerapipeline unter Module → Silhou-
etteMatch erfolgen, indem im Abschnitt Templates und Greifpunkte auf + Neues Template hinzufügen
geklickt wird, oder unter Datenbank → Templates im Abschnitt SilhouetteMatch Templates und Greif-
punkte. Wenn der Upload abgeschlossen ist, erscheint ein Fenster mit einer 3D-Visualisierung des
Templates, in dem Greifpunkte hinzugefügt oder existierende Greifpunkte bearbeitet werden können.
Dasselbe Fenster erscheint, wenn ein vorhandenes Template bearbeitet wird. Wenn das Template ein
Kollisionsmodell oder ein Visualisierungsmodell enthält, wird dieses Modell ebenfalls angezeigt.

Dieses Fenster bietet zwei Möglichkeiten, um Greifpunkte zu setzen:

1. Greifpunkte manuell hinzufügen: Durch Klicken auf das + Symbol wird ein neuer Greifpunkt im
Ursprung des Templates angelegt. Diesem Greifpunkt kann ein eindeutiger Name gegeben wer-
den, der seiner ID entspricht. Die gewünschte Pose des Greifpunkts im Koordinatensystem des
Templates kann in den Feldern für Position und Roll/Pitch/Yaw eingegeben werden. Die Greif-
punkte können frei platziert werden, auch außerhalb oder innerhalb des Templates, und werden
mit ihrer Orientierung zur Überprüfung in der Visualisierung veranschaulicht.

2. Greifpunkte interaktiv hinzufügen: Greifpunkte können interaktiv zu einem Template hinzuge-
fügt werden, indem zuerst auf den Button Greifpunkt hinzufügen oben rechts in der Visualisierung
und anschließend auf den gewünschten Punkt auf dem Template geklickt wird. Wenn ein 3D-
Modell angezeigt wird, wird der Greifpunkt an die Oberfläche des Modells angeheftet, andernfalls
an die Template-Oberfläche. Die Orientierung des Greifpunkts entspricht einem rechtshändigen

Roboception GmbH
Handbuch: rc_reason_stack

168 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Koordinatensystem, sodass die z-Achse senkrecht auf der Template-Oberfläche steht und in das
Template hinein gerichtet ist. Die Position und Orientierung des Greifpunkts im Koordinatensystem
des Templates ist auf der rechten Seite angezeigt. Die Position und Orientierung des Greifpunkts
kann auch interaktiv verändert werden. Für den Fall, dass An Oberfläche anheften in der Visua-
lisierung deaktiviert ist (das ist der Standardwert), kann der Greifpunkt in allen drei Dimensionen
frei verschoben und gedreht werden, indem in der Visualisierung auf Greifpunkt bewegen geklickt
wird und der Greifpunkt dann entlang der Achse zur gewünschten Position verschoben wird. Die
Orientierung des Greifpunkts kann ebenfalls interaktiv verändert werden, indem die Achse mit der
Maus rotiert wird. Wenn An Oberfläche anheften nicht aktiv ist, kann der Greifpunkt nur auf der
Objektoberfläche verschoben und rotiert werden.

Benutzer können auch eine Greifpunktpriorität festlegen, indem sie den Schieberegler Priorität ändern.
Ein dedizierter Greifer kann im Dropdown-Feld Greifer ausgewählt werden.

Durch Aktivieren des Kontrollkästchens Replizieren können Benutzer den Greifpunkt um eine benutzer-
definierte Achse replizieren. Die Replikationsachse und die generierten Greifpunkte werden visualisiert.
Die Lage und Ausrichtung der Replikationsachse relativ zum Objektkoordinatensystem kann interaktiv
angepasst werden, indem im Visualisierungsmenü auf Replikationsachse bewegen geklickt und die
Achse an die gewünschte Position und Ausrichtung gezogen wird. Die Greifpunkte werden innerhalb
des angegebenen Drehbereichs mit der ausgewählten Schrittgröße repliziert. Benutzer können eine
Visualisierung die replizierten Greifpunkte durchlaufen, indem sie die Leiste unter Durchlaufen n repl.
Greifpunkte im Abschnitt Ansichtsoptionen des Visualisierungsmenüs ziehen. Wenn für den Greifpunkt
ein Greifer ausgewählt ist oder im Visualisierungsmenü ein Greifer ausgewählt wurde, wird der Greifer
auch am aktuell ausgewählten Greifpunkt angezeigt.

Wenn das Template Symmetrien hat, können die Greifpunkte, die symmetrisch zum definierten Greif-
punkt sind, zusammen mit ihren Replikationen (sofern definiert) durch Aktivieren von . . . Symmetrien im
Abschnitt Ansichtsoptionen des Visualisierungsmenüs angezeigt werden. Visualisierungen der symme-
trischen Greifpunkte können ebenfalls durchlaufen werden, indem die Leiste unter Durchlaufe n symm.
Greifpunkte bewegt wird.

Setzen von Greifpunkten über die REST-API

Greifpunkte können über die REST-API-Schnittstelle (Abschnitt 7.2) mithilfe des set_grasp oder
set_all_grasps Services gesetzt werden (siehe Interne Services, Abschnitt 6.3.6.12). Ein Greifpunkt
besteht aus der id, die eindeutig über alle Greifpunkte eines Objekt-Templates sein muss, der ID des
Templates (template_id), zu dem der Greifpunkt hinzugefügt wird, und der Greifpose (pose). Die Pose
ist im Koordinatensystem des Templates angegeben und besteht aus einer Position (position) in Me-
tern und einer Orientierung (orientation) als Quaternion. Ein dedizierter Greifer kann durch Setzen
des Feldes gripper_id angegeben werden. Die priority wird durch einen ganzzahligen Wert ange-
geben, der von -2 für sehr niedrig bis 2 für sehr hoch reicht. Der Replikationsursprung ist als eine
Transformation im Koordinatensystem des Objekts definiert und die x-Achse der Transformation ent-
spricht der Replikationsachse. Der Replikationsbereich wird durch die Felder min_x_deg und max_x_deg
und die Schrittweite step_x_deg gesteuert.

6.3.6.5 Setzen der bevorzugten TCP-Orientierung

Das SilhouetteMatch und SilhouetteMatchAI Modul berechnet die Erreichbarkeit von Greifpunkten ba-
sierend auf der bevorzugten Orientierung des TCPs. Die bevorzugte Orientierung kann über den Ser-
vice set_preferred_orientation oder über die SilhouetteMatch-Seite in der Web GUI gesetzt werden.
Die resultierende Richtung der z-Achse des TCP wird genutzt, um Greifpunkte zu verwerfen, die der
Greifer nicht erreichen kann. Weiterhin kann die bevorzugte Orientierung genutzt werden, um die er-
reichbaren Greifpunkte zu sortieren, indem die entsprechende Sortierstrategie ausgewählt wird.

Die bevorzugte TCP-Orientierung kann im Kamerakoordinatensystem oder im externen Koordinaten-
system gesetzt werden, wenn eine Hand-Auge-Kalibrierung verfügbar ist. Wenn die bevorzugte TCP-
Orientierung im externen Koordinatensystem definiert ist, und die Kamera am Roboter montiert ist,
muss bei jedem Aufruf der Objekterkennung die aktuelle Roboterpose angegeben werden. Wenn keine

Roboception GmbH
Handbuch: rc_reason_stack

169 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

bevorzugte TCP-Orientierung gesetzt wird, wird die Orientierung der linken Kamera (siehe Coordinate
frames im rc_visard Handbuch) als die bevorzugte TCP-Orientierung genutzt.

6.3.6.6 Setzen der Sortierstrategie

Die vom detect_object und detect_object_extended Service zurückgelieferten Objekte und Greif-
punkte werden gemäß einer Sortierstrategie sortiert, die vom Nutzer gewählt werden kann. Folgen-
de Sortierstrategien sind verfügbar und können über die Web GUI (Abschnitt 7.1) oder über den
set_sorting_strategies Service gesetzt werden:

• preferred_orientation: Matches und Greifpunkte mit der geringsten Rotationsänderung einer
gewählten Achse (axis), oder aller Achsen, wenn axis leer ist, bezogen auf die bevorzugte TCP-
Orientierung werden zuerst zurückgeliefert.

• direction: Objekte und Greifpunkte mit dem kleinsten Abstand entlang der gesetzten Richtung
vector im angegebenen Referenzkoordinatensystem pose_frame werden zuerst zurückgeliefert.

• distance_to_point: Objekte und Greifpunkte mit dem kleinsten oder größten (falls
farthest_first auf true gesetzt ist) Abstand von einem gesetzten Sortierpunkt point im an-
gegebenen Referenzkoordinatensystem pose_frame werden zuerst zurückgeliefert.

Wenn keine Sortierstrategie gesetzt ist, oder die Standard-Sortierstrategie in der Web GUI
ausgewählt ist, geschieht die Sortierung der Greifpunkte basierend auf einer Kombination von
preferred_orientation und dem kleinsten Abstand entlang der z-Achse der bevorzugten TCP-
Orientierung von der Kamera.

6.3.6.7 Objekterkennung

Um eine Objekterkennung durchzuführen, müssen im Allgemeinen die folgenden Serviceargumente an
das SilhouetteMatch und SilhouetteMatchAI Modul übergeben werden:

• das Template des Objekts, welches in der Szene erkannt werden soll

• das Koordinatensystem, in dem die Posen der detektierten Objekte zurückgegeben werden sollen
(siehe Hand-Auge-Kalibrierung, Abschnitt 6.3.6.8)

Optional können auch folgende Serviceargumente an das SilhouetteMatch und SilhouetteMatchAI Mo-
dul übergeben werden:

• Ein Flag object_plane_detection, welches bestimmt, ob die Oberflächenebene der Objekte für
die Erkennung verwendet werden soll anstelle einer kalibrierten Basisebene.

• ein Versatz offset, falls Objekte nicht direkt auf der Basisebene liegen, sondern auf einer zu die-
ser parallelen Ebene. Der Versatz bezeichnet die Distanz beider Ebenen in Richtung der Kamera.
Wenn dieser Wert nicht gesetzt wird, wird ein Versatz von 0 angenommen. Der Versatz darf nicht
gesetzt werden, wenn object_plane_detection true ist.

• die ID des Load Carriers, der die zu detektierenden Objekte enthält

• die ID der Region of Interest, innerhalb der nach dem Load Carrier gesucht wird, oder – falls kein
Load Carrier angegeben ist – die Region of Interest, innerhalb der Objekte erkannt werden sollen.
Wenn keine ROI gesetzt wird, werden Objekte im gesamten Kamerabild gesucht.

• die aktuelle Roboterpose, wenn die Kamera am Roboter montiert ist und als Koordinatensystem
external gewählt wurde, oder die bevorzugte TCP-Orientierung im externen Koordinatensystem
angegeben ist

• Informationen für die Kollisionsprüfung: Die ID des Greifers, um die Kollisionsprüfung zu aktivie-
ren, und optional ein Greif-Offset, der die Vorgreifposition definiert. Details zur Kollisionsprüfung
sind in CollisionCheck (Abschnitt 6.3.6.8) gegeben.

Wenn object_plane_detection nicht true ist, können Objekte erst nach einer erfolgreichen Kalibrierung
der Basisebene erkannt werden. Es muss sichergestellt werden, dass sich Position und Orientierung

Roboception GmbH
Handbuch: rc_reason_stack

170 Rev: 26.01.4
Status: 30.01.2026

https://doc.rc-visard.com/latest/en/hardware_spec.html#sect-coordinate-frames
https://doc.rc-visard.com/latest/en/hardware_spec.html#sect-coordinate-frames

6.3. Detektions- und Messmodule

der Basisebene zwischen Kalibrierung und Objekterkennung nicht ändern. Anderenfalls muss die Kali-
brierung erneuert werden.

Wenn object_plane_detection auf true gesetzt ist, ist eine Kalibrierung der Basisebene nicht nötig und
eine ggf. existierende Kalibrierung wird ignoriert. Während der Erkennung wird die Szene in planare
Flächen unterteilt und das Matching der Templatekanten wird für jede dieser Ebenen durchgeführt,
solange sie nicht mehr als 25° in Bezug auf die Sichtachse der Kamera verkippt ist, und solange ihre
Größe ausreichend ist für das gewählte Template. Wenn ein Match gefunden wird, wird dessen Position
und Orientierung durch Kanten im Kamerabild und durch die Punktwolke innerhalb der Außenkontur
des Templates verfeinert. Aus diesem Grund muss die Außenkontur des Templates geschlossen und
die Oberfläche des Objekts planar sein.

Wenn SilhouetteMatchAI verfügbar ist und object_plane_detection auf true gesetzt ist, kann ein Ob-
jektsegmentierungsmodell object_segmentation_model angegeben werden, das für die KI-basierte
Segmentierung von Objekten anstelle des Unterteilens der Szene in planare Flächen verwendet
wird. Die resultierenden Objektmasken werden verwendet, um Oberflächenebenen für das Template-
Matching zu extrahieren und ermöglichen zudem die Berechnung von Objektüberlappungen, die zum
Filtern verwendet werden, falls max_object_overlap auf einen Wert kleiner als 1 gesetzt ist. Das aktuell
unterstützte Objektsegmentierungsmodell ist SHEET_METAL (Blech).

Im Ausprobieren-Abschnitt der Seite SilhouetteMatch der Web GUI kann die Objektdetektion auspro-
biert werden. Verschiedene Bild-Streams können ausgewählt werden, um Zwischenergebnisse und die
finalen Matches anzuzeigen.

Das „Template“ Bild zeigt das zu erkennende Template in Grün mit den Greifpunkten
(siehe Setzen von Greifpunkten, Abschnitt 6.3.6.4) in Grün. Das Template wird verformt
dargestellt, passend zu Abstand und Verkippung der kalibrierten Basisebene, oder - falls
object_plane_detection auf true gesetzt war, der höchsten erkannten Ebene. Die entspre-
chende Ebene ist in Dunkelblau dargestellt.

Das „Zwischenergebnis“ Bild zeigt die Kanten im linken Bild, die für die Suche nach Mat-
ches verwendet wurden, in Hellblau. Die gewählte Region of Interest wird als petrolfarbenes
Rechteck dargestellt. Eine blau schattierte Fläche auf der linken Seite markiert den Teil des
linken Kamerabilds, welcher nicht mit dem rechten Kamerabild überlappt. In diesem Bereich
können keine Objekte erkannt werden. Wenn die Objektebenenerkennung verwendet wurde
(object_plane_detection ist true), zeigt dieses Bild auch die erkannten planaren Cluster in
der Szene. Cluster, die nicht für das Matching verwendet wurden, weil sie zu klein oder zu
stark geneigt sind, werden mit einem Streifenmuster dargestellt.

Das „Zwischenergebnis rechts“ Bild zeigt die Kanten im rechten Bild, die für die Suche
nach Matches verwendet wurden, in Hellblau. Die gewählte Region of Interest wird als petrol-
farbenes Rechteck dargestellt. Eine blau schattierte Fläche auf der rechten Seite markiert
den Teil des rechten Kamerabilds, welcher nicht mit dem linken Kamerabild überlappt. In
diesem Bereich können keine Objekte erkannt werden.

Bemerkung: Auf Kamerapipelines vom Typ zivid oder orbbec ist das „Zwischenergebnis rechts“
nicht verfügbar.

Das „Ergebnis“ Bild zeigt das Detektionsergebnis. Die Kanten, die zur Verfeinerung der Match Posen
genutzt wurden, werden in hellem Blau und erkannte Objekte (instances) in Grün visualisiert. Blaue
Punkte markieren jeweils den Ursprung der detektierten Objekte, wie im Template festgelegt. Kollisi-
onsfreie Greifpunkte sind als grüne Punkte dargestellt, ungeprüfte Greifpunkte als gelbe Punkte, und
kollidierende Greifpunkte werden als rote Punkte visualisiert.

Die Posen der Objektursprünge werden im gewählten Koordinatensystem als Liste (instances) zurück-
gegeben. Falls die kalibrierte Basisebene für die Erkennung genutzt wurde (object_plane_detection
nicht oder false gesetzt), wird die Orientierung der erkannten Objekte mit mit der Normalen der Basi-
sebene ausgerichtet. Andernfalls ist die Orientierung der Objekte an der Normalen der Ebene ausge-
richtet, die in die zugehörigen Objektpunkte in der 3D Punktwolke eingepasst wurde.

Wenn das ausgewählte Template auch Greifpunkte hat, dann wird zusätzlich zu den erkannten Objekten
auch eine Liste von Greifpunkten (grasps) für alle erkannten Objekte zurückgegeben. Die Posen der

Roboception GmbH
Handbuch: rc_reason_stack

171 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Greifpunkte sind im gewünschten Koordinatensystem angegeben und die Liste ist gemäß der gewählten
Sortierstrategie sortiert (siehe Setzen der Sortierstrategie, Abschnitt 6.3.6.6). Die erkannten Objekte
und die Greifpunkte können über ihre UUIDs einander zugeordnet werden.

Falls das Template eine kontinuierliche Rotationssymmetrie aufweist (z.B. zylindrische Objekte), besit-
zen alle Ergebnisposen die gleiche Orientierung. Weiterhin werden alle Symmetrien eines Greifpunkts
auf Erreichbarkeit und Kollisionsfreiheit geprüft, und anschließend nur der jeweilige beste gemäß der
gewählten Sortierstrategie zurückgeliefert.

Für Objekte mit einer diskreten Symmetrie (z.B. prismatische Objekte), werden alle kollisionsfreien
Symmetrien jedes Greifpunkts, die entsprechend der gesetzten bevorzugten TCP-Orientierung erreich-
bar sind, zurückgeliefert, und gemäß der gewählten Sortierstrategie sortiert.

Die Detektionsergebnisse und Berechnungszeiten werden durch Laufzeitparameter beeinflusst, welche
weiter unten aufgezählt und beschrieben werden. Unsachgemäße Parameterwerte können zu Zeitüber-
schreitungen im Detektionsprozess des SilhouetteMatch und SilhouetteMatchAI Moduls führen.

6.3.6.8 Wechselwirkung mit anderen Modulen

Die folgenden auf dem rc_reason_stack laufenden Module liefern Daten für das SilhouetteMatch und
SilhouetteMatchAI Modul oder haben Einfluss auf die Datenverarbeitung.

Bemerkung: Jede Konfigurationsänderung dieser Module kann direkte Auswirkungen auf die Qua-
lität oder das Leistungsverhalten des SilhouetteMatch und SilhouetteMatchAI Moduls haben.

Kamera- und Tiefendaten

Das SilhouetteMatch und SilhouetteMatchAI Modul verarbeitet intern die rektifizierten Bilder des Ka-
mera Modul (rc_camera, Abschnitt 6.1). Es sollte deshalb auf eine passende Belichtungszeit geachtet
werden, um optimale Ergebnisse zu erhalten.

Für die Kalibrierung der Basisebene mit der Stereo-Methode, für die Load Carrier Erkennung, für die
automatische Objektebenenerkennung und für die Kollisionsprüfung mit der Punktwolke wird das Dis-
paritätsbild des Stereo-Matching Modul (rc_stereomatching, Abschnitt 6.2.2) verarbeitet.

Für das Erkennen von Objekten mit einer kalibrierten Basisebene, ohne Load Carrier und ohne Kolli-
sionsprüfung mit der Punktwolke sollte das Stereo-Matching-Modul nicht parallel zum SilhouetteMatch
und SilhouetteMatchAI Modul ausgeführt werden, da die Laufzeit der Objekterkennung sonst negativ
beeinflusst wird.

Für beste Ergebnisse wird empfohlen, Glättung (Abschnitt 6.2.2.1) für das Stereo-Matching Modul zu
aktivieren.

IOControl und Projektor-Kontrolle

Wenn der rc_reason_stack in Verbindung mit einem externen Musterprojektor und dem Modul IOCon-
trol und Projektor-Kontrolle (rc_iocontrol, Abschnitt 6.4.4) betrieben wird, sollte der Projektor für die
stereobasierte Kalibrierung der Basisebene, für die automatische Objektebenenerkennung und für die
Kollisionsprüfung mit der Punktwolke benutzt werden.

Das projizierte Muster darf während der Objektdetektion nicht im linken oder rechten Kamerabild sicht-
bar sein, da es den Detektionsvorgang behindert. Daher wird empfohlen, den Projektor an GPIO Out
1 anzuschließen und den Aufnahmemodus des Stereokamera-Moduls auf SingleFrameOut1 zu setzen
(siehe Stereomatching-Parameter , Abschnitt 6.2.2.1), damit bei jedem Aufnahme-Trigger ein Bild mit
und ohne Projektormuster aufgenommen wird.

Alternativ kann der verwendete digitale Ausgang in den Betriebsmodus ExposureAlternateActive ge-
schaltet werden (siehe Beschreibung der Laufzeitparameter , Abschnitt 6.4.4.1).

Roboception GmbH
Handbuch: rc_reason_stack

172 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

In beiden Fällen sollte die Belichtungszeitregelung (exp_auto_mode) auf AdaptiveOut1 gesetzt werden,
um die Belichtung beider Bilder zu optimieren.

Hand-Auge-Kalibrierung

Wenn die Kamera zu einem Roboter kalibriert ist, kann das SilhouetteMatch und SilhouetteMatchAI Mo-
dul die Ergebnisposen automatisch im Roboterkoordinatensystem liefern. Für die Services (Abschnitt
6.3.6.11) des SilhouetteMatch und SilhouetteMatchAI Moduls kann das Referenzkoordinatensystem
aller Posen über das Argument pose_frame angegeben werden.

Es kann zwischen den folgenden zwei Werten für pose_frame gewählt werden:

1. Kamera-Koordinatensystem (camera): Alle Posen und Ebenenparameter werden im Kamera-
Koordinatensystem angegeben.

2. Benutzerdefiniertes externes Koordinatensystem (external): Alle Posen und Ebenenpa-
rameter sind im sogenannten externen Koordinatensystem angegeben, welches vom Nutzer
während der Hand-Auge-Kalibrierung gewählt wurde. In diesem Fall bezieht das Silhouette-
Match und SilhouetteMatchAI Modul alle notwendigen Informationen über die Kameramonta-
ge und die kalibrierte Hand-Auge-Transformation automatisch vom internen Modul Hand-Auge-
Kalibrierung (Abschnitt 6.4.1). Für den Fall einer robotergeführten Kamera ist vom Nutzer zusätz-
lich die jeweils aktuelle Roboterpose robot_pose anzugeben.

Zulässige Werte zur Angabe des Referenzkoordinatensystems sind camera und external. Andere Wer-
te werden als ungültig zurückgewiesen.

Bemerkung: Wurde keine Hand-Auge-Kalibrierung durchgeführt, muss als Referenzkoordinaten-
system pose_frame immer camera angegeben werden.

Bemerkung: Wird die Hand-Auge-Kalibrierung nach einer Kalibrierung der Basisebene verändert,
wird die Kalibrierung der Basisebene als ungültig markiert und muss erneuert werden.

Für den Fall einer robotergeführten Kamera ist es abhängig von pose_frame, der bevorzugten TCP-
Orientierung und der Sortierrichtung bzw. des Sortierpunktes nötig, zusätzlich die aktuelle Roboterpose
(robot_pose) zur Verfügung zu stellen:

• Wenn external als pose_frame ausgewählt ist, ist die Angabe der Roboterpose obligatorisch.

• Wenn die bevorzugte TCP-Orientierung in external definiert ist, ist die Angabe der Roboterpose
obligatorisch.

• Wenn die Sortierrichtung in external definiert ist, ist die Angabe der Roboterpose obligatorisch.

• Wenn der Sortierpunkt für die Abstandssortierung in external definiert ist, ist die Angabe der
Roboterpose obligatorisch.

• In allen anderen Fällen ist die Angabe der Roboterpose optional.

Wenn die aktuelle Roboterpose während der Kalibrierung der Basisebene angegeben wird, wird sie
persistent auf dem rc_reason_stack gespeichert. Falls für die Services get_base_plane_calibration,
detect_objects oder detect_object_extended die dann aktuelle Roboterpose ebenfalls angegeben
wird, wird die Basisebene automatisch zu der neuen Roboterpose transformiert. Das erlaubt dem Be-
nutzer, die Roboterpose (und damit die Pose der Kamera) zwischen Kalibrierung der Basisebene und
Objekterkennung zu verändern.

Bemerkung: Eine Objekterkennung kann nur durchgeführt werden, wenn die Verkippung der Basi-
sebene zur Sichtachse der Kamera ein 10-Grad-Limit nicht übersteigt.

Roboception GmbH
Handbuch: rc_reason_stack

173 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

LoadCarrier

Das SilhouetteMatch und SilhouetteMatchAI Modul nutzt die Funktionalität zur Load Carrier Erkennung
aus dem LoadCarrier Modul (rc_load_carrier, Abschnitt 6.3.2) mit den Laufzeitparametern, die für
dieses Modul festgelegt wurden. Wenn sich jedoch mehrere Load Carrier in der Szene befinden, die
zu der angegebenen Load Carrier ID passen, wird nur einer davon zurückgeliefert. In diesem Fall sollte
eine Region of Interest gesetzt werden, um sicherzustellen, dass immer derselbe Load Carrier für das
SilhouetteMatch und SilhouetteMatchAI Modul verwendet wird.

CollisionCheck

Die Kollisionsprüfung kann für die Greifpunktberechnung des SilhouetteMatch und SilhouetteMatchAI
Moduls aktiviert werden, indem das collision_detection Argument an den detect_object Service
übergeben wird. Es enthält die ID des benutzten Greifers und optional einen Greif-Offset. Der Greifer
muss im GripperDB Modul definiert werden (siehe Erstellen eines Greifers, Abschnitt 6.5.3.2) und De-
tails über die Kollisionsprüfung werden in Integrierte Kollisionsprüfung in anderen Modulen (Abschnitt
6.4.2.2) gegeben.

Alternativ können Greifpunkten individuell Greifer IDs zugewiesen werden, und die Kollisionsprüfung
kann für alle Greifpunkte mit einer Greifer ID über den Laufzeitparameter check_collisions einge-
schaltet werden.

Zusätzlich wird auf Kollisionen zwischen dem Greifer und der kalibrierten Basisebene geprüft, wenn der
Laufzeitparameter check_collisions_with_base_plane auf true gesetzt ist. Wenn das ausgewählte
Template ein Kollisionsmodell enthält und der Laufzeitparameter check_collisions_with_matches true
ist, wird außerdem auch auf Kollisionen zwischen dem Greifer und den anderen detektierten Objekten
(nicht begrenzt auf die Anzahl max_number_of_detected_objects) geprüft, wobei das Objekt, auf dem
sich der jeweilige Greifpunkt befindet, von der Prüfung ausgenommen ist.

Wenn der Laufzeitparameter check_collisions_with_point_cloud auf true gesetzt ist, werden auch
Kollisionen zwischen dem Greifer und einer wasserdichten Version der Punktwolke geprüft. Wenn diese
Funktionalität in Kombination mit Sauggreifern genutzt wird, muss sichergestellt werden, dass sich der
TCP außerhalb der Greifergeometrie befindet, oder dass die Greifpunkte oberhalb der Objektoberfläche
definiert sind. Andernfalls wird für jeden Greifpunkt eine Kollision zwischen Greifer und Punktwolke
erkannt.

Wenn der Laufzeitparameter check_collisions_during_retraction auf true gesetzt ist, und ein Load
Carrier sowie ein Greif-Offset angegeben wurden, wird jeder Greifpunkt auf Kollisionen zwischen dem
Objekt im Greifer und den Wänden des Load Carriers während der Entnahme geprüft. Die Prüfung
findet auf der gesamten linearen Trajektorie von der Greifposition bis zurück zur Vorgreifposition statt.

Wenn die Kollisionsprüfung aktiviert ist, werden nur Greifpunkte zurückgeliefert, die kollisionsfrei sind,
oder die nicht auf Kollisionen geprüft werden konnten (z.B. weil kein Greifer angegeben wurde). In der
Ergebnis-Visualisierung oben auf der SilhouetteMatch-Seite der Web GUI werden kollisionsfreie Greif-
punkte grün dargestellt, ungeprüfte Greifpunkte gelb und kollidierende Greifpunkte rot. Die erkannten
Objekte, die bei der Kollisionsprüfung betrachtet werden, werden mit grünen Kanten visualisiert.

Die Laufzeitparameter des CollisionCheck-Moduls beeinflussen die Kollisionserkennung wie in
CollisionCheck-Parameter (Abschnitt 6.4.2.3) beschrieben.

6.3.6.9 Parameter

Das SilhouetteMatch und SilhouetteMatchAI Modul wird in der REST-API als rc_silhouettematch
bezeichnet und in der Web GUI (Abschnitt 7.1) in der gewünschten Pipeline unter Module → Sil-
houetteMatch dargestellt. Der Benutzer kann die Parameter entweder dort oder über die REST-API-
Schnittstelle (Abschnitt 7.2) ändern.

Roboception GmbH
Handbuch: rc_reason_stack

174 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Übersicht über die Parameter

Dieses Softwaremodul bietet folgende Laufzeitparameter:

Tab. 6.38: Laufzeitparameter des rc_silhouettematch-Moduls
Name Typ Min. Max. Default Beschreibung
check_collisions bool false true false Gibt an, ob Kollisionen geprüft wer-

den sollen, wenn ein Greifer für
einen Greifpunkt definiert wurde

check_collisions_during_-
retraction

bool false true false Gibt an, ob Kollisionen zwischen
dem Objekt im Greifer und dem
Load Carrier während der Entnah-
me geprüft werden

check_collisions_with_-
base_plane

bool false true true Gibt an, ob Kollisionen zwischen
Greifer und der Basisebene geprüft
werden

check_collisions_with_-
matches

bool false true true Gibt an, ob Kollisionen zwischen
Greifer und anderen Matches ge-
prüft werden

check_collisions_with_-
point_cloud

bool false true false Gibt an, ob Kollisionen zwischen
Greifer und der Punktwolke geprüft
werden

edge_sensitivity float64 0.1 1.0 0.7 Empfindlichkeit der Kantenerken-
nung

match_max_distance float64 0.1 10.0 3.0 Der maximale tolerierte Abstand
zwischen dem Template und den
detektierten Kanten im Bild in Pixeln

match_percentile float64 0.7 1.0 0.8 Der Anteil der Template-Pixel, die
innerhalb der maximalen Matching-
distanz liegen müssen, um ein Ob-
jekt erfolgreich zu detektieren

max_number_of_detected_-
objects

int32 1 20 10 Maximale Anzahl der zu detektie-
renden Objekte

max_object_overlap float64 0.0 1.0 0.05 Maximaler Anteil der Objektoberflä-
che, der von anderen segmentier-
ten Objekten überlappt werden darf

only_highest_priority_-
grasps

bool false true false Falls aktiviert werden nur Greif-
punkte der höchsten Priorität zu-
rückgegeben.

point_cloud_enhancement string - - Off Art der Verbesserung der Punktwol-
ke mit der Basisebene: [Off, Repla-
ceBright]

quality string - - High Quality: [Low, Medium, High]

Beschreibung der Laufzeitparameter

Die Laufzeitparameter werden zeilenweise auf der SilhouetteMatch und SilhouetteMatchAI Seite in der
Web GUI dargestellt. Im folgenden wird der Name des Parameters in der Web GUI in Klammern hinter
dem eigentlichen Parameternamen angegeben. Die Parameter sind in derselben Reihenfolge wie in der
Web GUI aufgelistet:

max_number_of_detected_objects (Maximale Objektanzahl)

Dieser Parameter gibt an, wie viele Objekte maximal in der Szene erkannt wer-
den sollen. Falls mehr als die angegebene Zahl an Objekten gefunden wurden,

Roboception GmbH
Handbuch: rc_reason_stack

175 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

werden nur die am besten zur gewählten Sortierstrategie passenden Ergebnisse
zurückgeliefert.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?max_

→˓number_of_detected_objects=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?max_number_of_detected_

→˓objects=<value>

quality (Qualität)

Die Objekterkennung kann auf Bildern mit unterschiedlicher Auflösung durchge-
führt werden: High (Hoch, volle Auflösung), Medium (Mittel, halbe Auflösung) oder
Low (Niedrig, Viertel-Auflösung). Je niedriger die Auflösung ist, desto niedriger ist
die Berechnungszeit der Objekterkennung, aber desto weniger Objektdetails sind
erkennbar.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?
→˓quality=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?quality=<value>

match_max_distance (Maximale Matchingdistanz)

Dieser Parameter gibt den maximal tolerierten Abstand zwischen dem Template
und den detektierten Kanten im Bild in Pixeln an. Falls das Objekt durch das Tem-
plate nicht exakt genug beschrieben wird, wird es möglicherweise nicht erkannt,
wenn dieser Wert zu klein ist. Höhere Werte können jedoch im Fall von komple-
xen Szenen und bei ähnlichen Objekten zu Fehldetektionen führen, und auch die
Berechnungszeit erhöhen.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?match_

→˓max_distance=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?match_max_distance=<value>

match_percentile (Matching Perzentil)

Dieser Parameter kontrolliert, wie strikt der Detektionsprozess sein soll. Das Mat-
ching Perzentil gibt den Anteil der Template-Pixel an, die innerhalb der maximalen

Roboception GmbH
Handbuch: rc_reason_stack

176 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Matchingdistanz liegen müssen, um ein Objekt erfolgreich zu detektieren. Je hö-
her der Wert, desto exakter muss ein Match sein, um als gültig angesehen zu
werden.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?match_

→˓percentile=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?match_percentile=<value>

edge_sensitivity (Kantenempfindlichkeit)

Der Parameter beeinflusst, wie viele Kanten im linken und rechten Kamerabild ge-
funden werden. Umso größer dieser Parameter gewählt wird, umso mehr Kanten
werden für die Erkennung benutzt. Eine große Anzahl von Kanten im Bild kann die
Erkennung verlangsamen. Es muss sichergestellt werden, dass die Kanten der zu
erkennenden Objekte sowohl im linken als auch im rechten Kamerabild detektiert
werden.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?edge_

→˓sensitivity=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?edge_sensitivity=<value>

max_object_overlap (Maximale Objektüberlappung)

Dieser Parameter ist nur für SilhouetteMatchAI verfügbar und bestimmt den maximalen An-
teil eines Objekts, der von anderen Objekten überlappt sein darf. Objekte mit größeren Über-
lappungswerten werden verworfen. Ein Wert von 1 schaltet den Überlappungscheck aus.
Überlappungen werden nur geprüft, wenn ein Modell zur Objektsegmentierung ausgewählt
wurde.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?max_

→˓object_overlap=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?max_object_overlap=<value>

only_highest_priority_grasps (Nur Greifpunkte höchster Priorität)

Wenn dieser Parameter auf true gesetzt ist, werden ausschließlich Greifpunkte der höchs-
ten Priorität zurückgegeben. Sofern die Kollisionsprüfung aktiviert ist, werden ausschließlich

Roboception GmbH
Handbuch: rc_reason_stack

177 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

kollisionsfreie Greifpunkt der höchstmöglichen Priorität zurückgegeben. Dadurch kann Re-
chenzeit gespart und die Anzahl der applikationsseitig zu verarbeitenden Greifpunkte redu-
ziert werden.

Ohne Kollisionsprüfung werden nur Greifpunkt der höchsten Priorität zurückgegeben.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?only_

→˓highest_priority_grasps=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?only_highest_priority_

→˓grasps=<value>

check_collisions (Kollisionsprüfung)

Wenn diese Option aktiv ist, wird die Kollisionsprüfung für alle Greifpunkte durch-
geführt, denen eine Greifer ID zugewiesen wurde, auch wenn kein Standardgreifer
im detect_object Service gesetzt wurde. Wenn ein Load Carrier verwendet wird,
wird die Kollisionsprüfung immer zwischen dem Greifer und dem Load Carrier
durchgeführt. Kollisionen mit der Punktwolke oder anderen Matches werden nur
geprüft, wenn die zugehörigen Laufzeitparameter aktiv sind.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?check_

→˓collisions=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?check_collisions=<value>

check_collisions_with_base_plane (Kollisionsprüfung mit Basisebene)

Dieser Parameter wird nur beachtet, wenn die Kollisionsprüfung durch Übergabe
eines Greifers an den detect_object Service oder durch Setzen des Parame-
ters check_collisions aktiviert ist. Wenn check_collisions_with_base_plane
auf true gesetzt ist, werden alle Greifpunkte auf Kollisionen zwischen dem Greifer
und der kalibrierten Basisebene geprüft. Nur Greifpunkte, bei denen der Greifer
nicht in Kollision mit der Basisebene wäre, werden zurückgeliefert.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?check_

→˓collisions_with_base_plane=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?check_collisions_with_

→˓base_plane=<value>

Roboception GmbH
Handbuch: rc_reason_stack

178 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

check_collisions_with_matches (Kollisionsprüfung mit Matches)

Dieser Parameter wird nur beachtet, wenn die Kollisionsprüfung durch Übergabe
eines Greifers an den detect_object Service oder durch Setzen des Parame-
ters check_collisions aktiviert ist. Wenn check_collisions_with_matches auf
true gesetzt ist und die Kollisionsprüfung durch Übergabe eines Greifers an den
detect_object Service aktiviert ist, werden alle Greifpunkte auf Kollisionen zwi-
schen dem Greifer und den anderen detektierten Objekten (nicht begrenzt auf
die Anzahl max_number_of_detected_objects) geprüft. Nur Greifpunkte, bei de-
nen der Greifer nicht in Kollision mit anderen detektierten Objekten wäre, werden
zurückgeliefert.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?check_

→˓collisions_with_matches=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?check_collisions_with_

→˓matches=<value>

check_collisions_with_point_cloud (Kollisionsprüfung mit Punktwolke)

Dieser Parameter wird nur beachtet, wenn die Kollisionsprüfung durch Übergabe
eines Greifers an den detect_object Service oder durch Setzen des Parameters
check_collisions aktiviert ist. Wenn check_collisions_with_point_cloud auf
true gesetzt ist, werden alle Greifpunkte auf Kollisionen zwischen dem Greifer und
einer wasserdichten Version der Punktwolke geprüft. Nur Greifpunkte, bei denen
der Greifer nicht in Kollision mit dieser Punktwolke wäre, werden zurückgeliefert.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?check_

→˓collisions_with_point_cloud=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?check_collisions_with_

→˓point_cloud=<value>

point_cloud_enhancement (Verbesserung mit Basisebene)

Dieser Parameter wird nur beachtet, wenn check_collisions_with_point_cloud
auf true gesetzt ist und die Detektion ohne Objektebenenerken-
nung (object_plane_detection ist false) ausgelöst wurde. Standard-
mäßig ist point_cloud_enhancement auf Off (Aus) gesetzt. Wenn
point_cloud_enhancement auf ReplaceBright (Helle Bildpunkte ersetzen)
gesetzt wird, wird die kalibrierte Basisebene verwendet, um die Punktwolke für
die Kollisionsprüfung zu verbessern. Dazu werden Punkte, die zu hellen Pixeln
im Bild oder in der gewählten 2D Region of Interest gehören, auf den Tiefenwert
der kalibrierten Basisebene gesetzt. Dieser Parameter sollte genutzt werden,
wenn dunkle Objekten auf texturlosem, hellem Untergrund liegen, z.B. auf einem
Lichttisch.

Roboception GmbH
Handbuch: rc_reason_stack

179 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?point_

→˓cloud_enhancement=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?point_cloud_enhancement=
→˓<value>

check_collisions_during_retraction (Kollisionsprüfung während Entnahme)

Dieser Parameter wird nur beachtet, wenn die Kollisionsprüfung durch Übergabe
eines Greifers an den detect_object Service oder durch Setzen des Parameters
check_collisions aktiviert ist. Wenn check_collisions_during_retraction auf
true gesetzt ist und ein Load Carrier sowie ein Greif-Offset angegeben wurden,
wird jeder Greifpunkt auf Kollisionen zwischen dem Objekt im Greifer und den
Wänden des Load Carriers während der Entnahme geprüft. Die Prüfung findet auf
der gesamten linearen Trajektorie von der Greifposition bis zurück zur Vorgreifpo-
sition statt. Es werden nur kollisionsfreie Greifpunkte zurückgeliefert.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?check_

→˓collisions_during_retraction=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?check_collisions_during_

→˓retraction=<value>

6.3.6.10 Statuswerte

Dieses Modul meldet folgende Statuswerte.

Tab. 6.39: Statuswerte des rc_silhouettematch-Moduls
Name Beschreibung
data_acquisition_time Zeit in Sekunden, für die beim letzten Aufruf auf Bilddaten

gewartet werden musste
last_timestamp_processed Zeitstempel des letzten verarbeiteten Bilddatensatzes
load_carrier_detection_time Berechnungszeit für die letzte Load Carrier Detektion in

Sekunden
‘‘processing_time‘ Berechnungszeit für die letzte Detektion (einschließlich Load

Carrier Detektion) in Sekunden

6.3.6.11 Services

Die angebotenen Services des rc_silhouettematch-Moduls können mithilfe der REST-API-
Schnittstelle (Abschnitt 7.2) oder der rc_reason_stack Web GUI (Abschnitt 7.1) ausprobiert und ge-
testet werden.

Das SilhouetteMatch und SilhouetteMatchAI Modul bietet folgende Services.

Roboception GmbH
Handbuch: rc_reason_stack

180 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

detect_object

führt eine Objekterkennung durch, wie in Objekterkennung (Abschnitt 6.3.6.7) beschrieben.
Der Service gibt die Posen aller gefundenen Objektinstanzen zurück.

Details

Das Zeitverhalten dieses Services garantiert, dass nur Bilddaten zur Erkennung benutzt
werden, welche nach dem Anfragezeitpunkt generiert wurden.

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/detect_

→˓object

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/detect_object

Request

Obligatorische Serviceargumente:

object_id in object_to_detect: ID des Templates, welches erkannt werden soll.

pose_frame: siehe Hand-Auge-Kalibrierung (Abschnitt 6.3.6.8).

Potentiell obligatorische Serviceargumente:

robot_pose: siehe Hand-Auge-Kalibrierung (Abschnitt 6.3.6.8).

Optionale Serviceargumente:

object_plane_detection: false wenn Objekte auf einer kalibrierten Basisebene
liegen, true wenn die Objekte planare Oberflächen haben und die Basisebene
unbekannt ist oder die Objekte auf mehreren verschiedenen Ebenen liegen, z.B.
auf Stapeln.

offset: Versatz in Metern, um welche die Basisebene in Richtung der Kamera
verschoben werden soll.

load_carrier_id: ID des Load Carriers, welcher die zu erkennenden Objekte ent-
hält.

collision_detection: siehe Integrierte Kollisionsprüfung in anderen Modu-
len (Abschnitt 6.4.2.2)

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"load_carrier_id": "string",
"object_plane_detection": "bool",
"object_segmentation_model": "string",
"object_to_detect": {
"object_id": "string",
"region_of_interest_2d_id": "string"

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

181 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

},
"offset": "float64",
"pose_frame": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

Die maximale Anzahl der zurückgegebenen Instanzen kann über den
max_number_of_detected_objects-Parameter kontrolliert werden.

object_id: ID des erkannten Templates.

instances: Liste der erkannten Objektinstanzen, sortiert gemäß der gewählten Sortierstra-
tegie.

grasps: Liste von Greifpunkten auf den erkannten Objekten. Die Greifpunkte sind gemäß der
gewählten Sortierstrategie sortiert. Die instance_uuid gibt eine Referenz auf das detektier-
te Objekt in instances an, zu dem dieser Greifpunkt gehört. Die Liste der Greifpunkte wird
auf die 100 besten Greifpunkte gekürzt, falls mehr erreichbare Greifpunkte gefunden wer-
den. Jeder Greifpunkt enthält ein Flag collision_checked und das Feld gripper_id (siehe
Integrierte Kollisionsprüfung in anderen Modulen Abschnitt 6.4.2.2).

load_carriers: Liste der erkannten Load Carrier (Behälter).

timestamp: Zeitstempel des Bildes, das für die Erkennung benutzt wurde.

return_code: enthält mögliche Warnungen oder Fehlercodes und Nachrichten.

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "detect_object",
"response": {
"grasps": [

{
"collision_checked": "bool",
"gripper_id": "string",
"id": "string",
"instance_uuid": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

182 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"z": "float64"
}

},
"pose_frame": "string",
"priority": "int8",
"stroke_per_finger_approach_mm": "float64",
"stroke_per_finger_grasp_mm": "float64",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"uuid": "string"

}
],
"instances": [
{

"grasp_uuids": [
"string"

],
"id": "string",
"object_id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"timestamp": {
"nsec": "int32",
"sec": "int32"

},
"uuid": "string"

}
],
"load_carriers": [

{
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

183 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {
"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"object_id": "string",
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

detect_object_extended

führt eine Objekterkennung durch. Dieser Service verhält sich analog zu detect_object, gibt
aber die Instanzinformationen für jeden Greifpunkt direkt zurück, anstatt sie in einer separa-
ten Liste zu speichern. Dies ermöglicht ein einfacheres Parsen, wenn z.B. die Objektposen
für jeden Greifpunkt benötigt werden, um das Objekt platziert abzulegen.

Details

Das Zeitverhalten dieses Services garantiert, dass nur Bilddaten zur Erkennung benutzt
werden, welche nach dem Anfragezeitpunkt generiert wurden.

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/detect_

→˓object_extended

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/detect_object_extended

Request

Siehe detect_object Service.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

Roboception GmbH
Handbuch: rc_reason_stack

184 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

{
"args": {

"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"load_carrier_id": "string",
"object_plane_detection": "bool",
"object_segmentation_model": "string",
"object_to_detect": {
"object_id": "string",
"region_of_interest_2d_id": "string"

},
"offset": "float64",
"pose_frame": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

Die maximale Anzahl der zurückgegebenen Instanzen kann über den
max_number_of_detected_objects-Parameter kontrolliert werden.

object_id: ID des erkannten Templates.

grasps: Liste von Greifpunkten auf den erkannten Objekten. Die Greifpunkte sind gemäß
der gewählten Sortierstrategie sortiert. Jeder Greifpunkt enthält ein Feld instance mit Infor-
mationen zum detektierten Objekt, z.B. seiner Pose. Die Liste der Greifpunkte wird auf die
100 besten Greifpunkte gekürzt, falls mehr erreichbare Greifpunkte gefunden werden. Jeder
Greifpunkt enthält ein Flag collision_checked und das Feld gripper_id (siehe Integrierte
Kollisionsprüfung in anderen Modulen Abschnitt 6.4.2.2).

load_carriers: Liste der erkannten Load Carrier (Behälter).

timestamp: Zeitstempel des Bildes, das für die Erkennung benutzt wurde.

return_code: enthält mögliche Warnungen oder Fehlercodes und Nachrichten.

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "detect_object_extended",
"response": {

"grasps": [
{

"collision_checked": "bool",
"gripper_id": "string",

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

185 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"id": "string",
"instance": {
"object_id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"uuid": "string"

},
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"priority": "int8",
"stroke_per_finger_approach_mm": "float64",
"stroke_per_finger_grasp_mm": "float64",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"uuid": "string"

}
],
"load_carriers": [
{

"height_open_side": "float64",
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

186 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {
"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"object_id": "string",
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

calibrate_base_plane

führt die Kalibrierung der Basisebene durch, wie in Kalibrierung der Basisebene (Abschnitt
6.3.6.2) beschrieben.

Details

Eine erfolgreiche Kalibrierung der Basisebene wird persistent auf dem rc_reason_stack
gespeichert und vom Service zurückgegeben. Die Kalibrierung ist dauerhaft – auch über
Firmware-Updates und -Wiederherstellungen hinweg – gespeichert.

Das Zeitverhalten dieses Services garantiert, dass nur Bilddaten zur Erkennung benutzt
werden, welche nach dem Anfragezeitpunkt generiert wurden.

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/
→˓calibrate_base_plane

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/calibrate_base_plane

Request

Roboception GmbH
Handbuch: rc_reason_stack

187 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Obligatorische Serviceargumente:

plane_estimation_method: Methode der Kalibrierung der Basisebene. Gültige
Werte sind STEREO, APRILTAG, MANUAL.

pose_frame: siehe Hand-Auge-Kalibrierung (Abschnitt 6.3.6.8).

Potentiell obligatorische Serviceargumente:

plane wenn für plane_estimation_method MANUAL gewählt ist: Die Ebene, welche
als Basisebene gesetzt wird.

robot_pose: siehe Hand-Auge-Kalibrierung (Abschnitt 6.3.6.8).

region_of_interest_2d_id: ID der Region of Interest für die Kalibrierung der Ba-
sisebene.

Optionale Serviceargumente:

offset: Versatz in Metern, um welchen die geschätzte Ebene in Richtung der
Kamera verschoben wird.

plane_preference in stereo: Ob die der Kamera am nächsten (CLOSEST) gelegene
oder die am weitesten entfernte (FARTHEST) Ebene als Basisebene benutzt wird.
Diese Option kann nur gesetzt werden, falls plane_estimation_method auf STEREO
gesetzt ist. Valide Werte sind CLOSEST und FARTHEST. Falls der Wert nicht gesetzt
ist, wird FARTHEST verwendet.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"offset": "float64",
"plane": {

"distance": "float64",
"normal": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"plane_estimation_method": "string",
"pose_frame": "string",
"region_of_interest_2d_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"stereo": {

"plane_preference": "string"
}

}
}

Response

plane: kalibrierte Basisebene.

Roboception GmbH
Handbuch: rc_reason_stack

188 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

timestamp: Zeitstempel des Bildes, das für die Kalibrierung benutzt wurde.

return_code: enthält mögliche Warnungen oder Fehlercodes und Nachrichten.

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "calibrate_base_plane",
"response": {

"plane": {
"distance": "float64",
"normal": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string"

},
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

get_base_plane_calibration

gibt die derzeitige Kalibrierung der Basisebene zurück.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/get_

→˓base_plane_calibration

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_base_plane_calibration

Request

Obligatorische Serviceargumente:

pose_frame: siehe Hand-Auge-Kalibrierung (Abschnitt 6.3.6.8).

Potentiell obligatorische Serviceargumente:

robot_pose: siehe Hand-Auge-Kalibrierung (Abschnitt 6.3.6.8).

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"pose_frame": "string",
"robot_pose": {
"orientation": {

"w": "float64",

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

189 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "get_base_plane_calibration",
"response": {

"plane": {
"distance": "float64",
"normal": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string"

},
"return_code": {
"message": "string",
"value": "int16"

}
}

}

delete_base_plane_calibration

löscht die derzeitige Kalibrierung der Basisebene.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/delete_

→˓base_plane_calibration

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/delete_base_plane_

→˓calibration

Request

Dieser Service hat keine Argumente.

Response

Die Definition der Response mit jeweiligen Datentypen ist:

Roboception GmbH
Handbuch: rc_reason_stack

190 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

{
"name": "delete_base_plane_calibration",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_preferred_orientation

speichert die bevorzugte TCP-Orientierung zum Berechnen der Erreichbarkeit der Greif-
punkte, die zur Filterung und optional zur Sortierung der vom detect_object und
detect_object_extended Service zurückgelieferten Greifpunkte verwendet wird (siehe Set-
zen der bevorzugten TCP-Orientierung, Abschnitt 6.3.6.5).

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/set_

→˓preferred_orientation

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/set_preferred_orientation

Request

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string"

}
}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "set_preferred_orientation",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

Roboception GmbH
Handbuch: rc_reason_stack

191 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

get_preferred_orientation

gibt die bevorzugte TCP-Orientierung zurück, die für die Filterung und optional zur Sortie-
rung der vom detect_object und detect_object_extended Service zurückgelieferten Greif-
punkte verwendet wird (siehe Setzen der bevorzugten TCP-Orientierung, Abschnitt 6.3.6.5).

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/get_

→˓preferred_orientation

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_preferred_orientation

Request

Dieser Service hat keine Argumente.

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "get_preferred_orientation",
"response": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_sorting_strategies

speichert die gewählte Strategie zur Sortierung der erkannten Objekte und Greifpunkte, die
vom detect_object und detect_object_extended Service zurückgeliefert werden (siehe
Objekterkennung, Abschnitt 6.3.6.7).

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/set_

→˓sorting_strategies

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/set_sorting_strategies

Roboception GmbH
Handbuch: rc_reason_stack

192 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Request

Nur eine Sortierstrategie darf einen Gewichtswert weight größer als 0 haben. Wenn alle
Werte für weight auf 0 gesetzt sind, wird die Standardsortierstrategie verwendet.

Wenn der Wert weight für direction gesetzt ist, muss vector den Richtungsvektor enthal-
ten und pose_frame auf camera oder external gesetzt sein.

Wenn der Wert weight für distance_to_point gesetzt ist, muss point den Sortierpunkt
enthalten und pose_frame auf camera oder external gesetzt sein.

Wenn der Wert weight für preferred_orientation gesetzt ist, kann axis auf x, y oder z
gesetzt werden, um nur Rotationsunterschiede zwischen diesen Achsen zu berücksichtigen.
Wenn axis nicht gesetzt wird, wird die volle Rotationsdifferenz zur Sortierung verwendet.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"direction": {
"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"distance_to_point": {
"farthest_first": "bool",
"point": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"weight": "float64"

},
"preferred_orientation": {
"axis": "string",
"weight": "float64"

}
}

}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "set_sorting_strategies",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_sorting_strategies

gibt die gewählte Sortierstrategie zurück, die zur Sortierung der vom detect_object und
detect_object_extended Service zurückgelieferten Objekte und Greifpunkte verwendet

Roboception GmbH
Handbuch: rc_reason_stack

193 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

wird (siehe Objekterkennung, Abschnitt 6.3.6.7).

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/get_

→˓sorting_strategies

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_sorting_strategies

Request

Dieser Service hat keine Argumente.

Response

Wenn alle Werte für weight 0 sind, wird die Standardsortierstrategie verwendet.

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "get_sorting_strategies",
"response": {
"direction": {

"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"distance_to_point": {
"farthest_first": "bool",
"point": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"weight": "float64"

},
"preferred_orientation": {
"axis": "string",
"weight": "float64"

},
"return_code": {
"message": "string",
"value": "int16"

}
}

}

trigger_dump

speichert die Detektion auf dem angeschlossenen USB Speicher, die dem übergebenen
Zeitstempel entspricht, oder die letzte, falls kein Zeitstempel angegeben wurde.

Details

Roboception GmbH
Handbuch: rc_reason_stack

194 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/trigger_

→˓dump

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/trigger_dump

Request

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"comment": "string",
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "trigger_dump",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

reset_defaults

stellt die Werkseinstellungen der Parameter und die bevorzugte TCP-Orientierung sowie die
Sortierstrategie dieses Moduls wieder her und wendet sie an („factory reset“). Dies betrifft
nicht die konfigurierten Templates und die Kalibrierung der Basisebene.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/reset_

→˓defaults

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/reset_defaults

Request

Dieser Service hat keine Argumente.

Response

Die Definition der Response mit jeweiligen Datentypen ist:

Roboception GmbH
Handbuch: rc_reason_stack

195 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.3.6.12 Interne Services

Die folgenden Services für die Konfiguration von Greifpunkten können sich in Zukunft ohne weitere
Ankündigung ändern. Es wird empfohlen, das Setzen, Abrufen und Löschen von Greifpunkten über die
Web GUI vorzunehmen.

Bemerkung: Das Konfigurieren von Greifpunkten ist global für alle Templates auf dem
rc_reason_stack und hat Einfluss auf alle Kamerapipelines.

set_grasp

speichert einen Greifpunkt für das angegebene Template auf dem rc_reason_stack.
Alle Greifpunkte sind dauerhaft gespeichert, auch über Firmware-Updates und -
Wiederherstellungen hinweg.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/set_

→˓grasp

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/set_grasp

Request

Die Definition des Typs grasp wird in Setzen von Greifpunkten (Abschnitt 6.3.6.4) beschrie-
ben.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"grasp": {
"gripper_id": "string",
"id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

196 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"y": "float64",
"z": "float64"

}
},
"priority": "int8",
"replication": {

"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"stroke_per_finger_approach_mm": "float64",
"stroke_per_finger_grasp_mm": "float64",
"template_id": "string"

}
}

}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "set_grasp",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_all_grasps

Ersetzt die gesamte Liste von Greifpunkten auf dem rc_reason_stack für das angegebene
Template.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/set_all_

→˓grasps

API Version 1 (veraltet)

Roboception GmbH
Handbuch: rc_reason_stack

197 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/set_all_grasps

Request

Die Definition des Typs grasp wird in Setzen von Greifpunkten (Abschnitt 6.3.6.4) beschrie-
ben.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"grasps": [
{

"gripper_id": "string",
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"priority": "int8",
"replication": {
"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"stroke_per_finger_approach_mm": "float64",
"stroke_per_finger_grasp_mm": "float64",
"template_id": "string"

}
],
"template_id": "string"

}
}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "set_all_grasps",
"response": {

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

198 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_grasps

gibt alle definierten Greifpunkte mit den angegebenen IDs (grasp_ids) zurück, die zu den
Templates mit den angegebenen template_ids gehören.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/get_

→˓grasps

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_grasps

Request

Wenn keine grasp_ids angegeben werden, werden alle Greifpunkte zu den angegebenen
template_ids zurückgeliefert. Wenn keine template_ids angegeben werden, werden alle
Greifpunkte mit den geforderten grasp_ids zurückgeliefert. Wenn gar keine IDs angegeben
werden, werden alle gespeicherten Greifpunkte zurückgeliefert.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"grasp_ids": [
"string"

],
"template_ids": [
"string"

]
}

}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "get_grasps",
"response": {
"grasps": [

{
"gripper_id": "string",
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

199 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"z": "float64"
},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"priority": "int8",
"replication": {
"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"stroke_per_finger_approach_mm": "float64",
"stroke_per_finger_grasp_mm": "float64",
"template_id": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

delete_grasps

löscht alle Greifpunkte mit den angegebenen grasp_ids, die zu den Templates mit den an-
gegebenen template_ids gehören.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/delete_

→˓grasps

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/delete_grasps

Request

Wenn keine grasp_ids angegeben werden, werden alle Greifpunkte gelöscht, die zu den
Templates mit den angegebenen template_ids gehören. Die Liste template_ids darf nicht

Roboception GmbH
Handbuch: rc_reason_stack

200 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

leer sein.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"grasp_ids": [
"string"

],
"template_ids": [
"string"

]
}

}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "delete_grasps",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_symmetric_grasps

gibt alle Greifpunkte zurück, die symmetrisch zum angegebenen Greifpunkt sind.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/services/get_

→˓symmetric_grasps

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_symmetric_grasps

Request

Die Definition des Typs grasp wird in Setzen von Greifpunkten (Abschnitt 6.3.6.4) beschrie-
ben.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"grasp": {
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

201 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"replication": {

"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"template_id": "string"

}
}

}

Response

Der erste Greifpunkt in der Rückgabeliste ist derselbe, der dem Service übergeben wurde.
Wenn das Template keine exakte Symmetrie hat, wird nur der übergebene Greifpunkt zu-
rückgeliefert. Wenn das Template eine kontinuierliche Symmetrie hat (z.B. ein zylindrisches
Objekt), werden nur 12 gleichverteilte Greifpunkte zurückgeliefert.

Die Definition des Typs grasp wird in Setzen von Greifpunkten (Abschnitt 6.3.6.4) beschrie-
ben.

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "get_symmetric_grasps",
"response": {

"grasps": [
{

"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"replication": {
"max_x_deg": "float64",
"min_x_deg": "float64",

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

202 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"origin": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"template_id": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.3.6.13 Rückgabecodes

Zusätzlich zur eigentlichen Serviceantwort gibt jeder Service einen sogenannten return_code beste-
hend aus einem Integer-Wert und einer optionalen Textnachricht zurück. Erfolgreiche Service-Anfragen
werden mit einem Wert von 0 quittiert. Positive Werte bedeuten, dass die Service-Anfrage zwar erfolg-
reich bearbeitet wurde, aber zusätzliche Informationen zur Verfügung stehen. Negative Werte bedeuten,
dass Fehler aufgetreten sind.

Roboception GmbH
Handbuch: rc_reason_stack

203 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Tab. 6.40: Rückgabecodes und Warnungen der Services des Sil-
houetteMatch und SilhouetteMatchAI Moduls

Code Beschreibung
0 Erfolgreich
-1 Ungültige(s) Argument(e)
-3 Ein interner Timeout ist aufgetreten, beispielsweise während der Objekterkennung.
-4 Die maximal erlaubte Zeitspanne für die interne Akquise der Bilddaten wurde

überschritten.
-7 Daten konnten nicht in den persistenten Speicher geschrieben oder vom persistenten

Speicher gelesen werden.
-8 Das Modul befindet sich in einem Zustand, in welchem dieser Service nicht aufgerufen

werden kann. Beispielsweise kann detect_object nicht aufgerufen werden, solange keine
Kalibrierung der Basisebene durchgeführt wurde.

-10 Das neue Element konnte nicht hinzugefügt werden, da die maximal speicherbare Anzahl
an ROIs oder Templates überschritten wurde.

-100 Ein interner Fehler ist aufgetreten.
-101 Die Erkennung der Basisebene schlug fehl.
-102 Die Hand-Auge-Kalibrierung hat sich seit der letzten Kalibrierung der Basisebene

verändert.
-104 Die Verkippung zwischen der Basisebene und der Sichtachse der Kamera überschreitet

das 10-Grad-Limit.
10 Die maximale Anzahl an ROIs oder Templates wurde erreicht.
11 Ein bestehendes Element wurde überschrieben.

100 Die angefragten Load Carrier wurden in der Szene nicht gefunden.
101 Keiner der Greifpunkte ist erreichbar.
102 Der detektierte Load Carrier ist leer.
103 Alle berechneten Greifpunkte sind in Kollision.
107 Die Basisebene wurde nicht zur aktuellen Kamerapose transformiert, z.B. weil keine

Roboterpose während der Kalibrierung der Basisebene angegeben wurde.
108 Das Template ist überholt.
109 Die Ebene für die Objekterkennung passt nicht zum Load Carrier, z.B. liegen die Objekte

unterhalb des Load Carrier Bodens.
111 Die Pose des Detektionsergebnisses konnte nicht mit der Punktwolke verfeinert werden,

da die Außenkontur des Templates nicht geschlossen ist.
113 Kein Greifer für die Kollisionsprüfung gefunden.
114 Kollisionsprüfung während Entnahme wurde nicht durchgeführt, z.B. weil kein Load

Carrier oder kein Greif-Offset angegeben wurden.
151 Das Objekt-Template hat eine kontinuierliche Symmetrie.
999 Zusätzliche Hinweise für die Anwendungsentwicklung

6.3.6.14 Template API

Für den Upload, Download, das Auflisten und Löschen von Templates werden spezielle REST-API-
Endpunkte zur Verfügung gestellt. Templates können auch über die Web GUI hoch- und runtergeladen
werden. Die Templates beinhalten die Greifpunkte, falls Greifpunkte konfiguriert wurden. Bis zu 50
Templates können gleichzeitig auf dem rc_reason_stack gespeichert werden.

GET /templates/rc_silhouettematch
listet alle rc_silhouettematch-Templates auf.

Musteranfrage

GET /api/v2/templates/rc_silhouettematch HTTP/1.1

Musterantwort

Roboception GmbH
Handbuch: rc_reason_stack

204 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": "string"
}

]

Antwort-Header

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung (Rückgabewert: Array der Templates)

• 404 Not Found – Modul nicht gefunden

Referenzierte Datenmodelle

• Template (Abschnitt 7.2.3)

GET /templates/rc_silhouettematch/{id}
ruft ein rc_silhouettematch-Template ab. Falls der angefragte Content-Typ application/octet-
stream ist, wird das Template als Datei zurückgegeben.

Musteranfrage

GET /api/v2/templates/rc_silhouettematch/<id> HTTP/1.1

Musterantwort

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameter

• id (string) – ID des Templates (obligatorisch)

Antwort-Header

• Content-Type – application/json application/ubjson application/octet-stream

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung (Rückgabewert: Template)

• 404 Not Found – Modul oder Template wurden nicht gefunden.

Referenzierte Datenmodelle

• Template (Abschnitt 7.2.3)

PUT /templates/rc_silhouettematch/{id}
erstellt oder aktualisiert ein rc_silhouettematch-Template.

Musteranfrage

PUT /api/v2/templates/rc_silhouettematch/<id> HTTP/1.1
Accept: multipart/form-data application/json

Musterantwort

Roboception GmbH
Handbuch: rc_reason_stack

205 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.3. Detektions- und Messmodule

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameter

• id (string) – ID des Templates (obligatorisch)

Formularparameter

• file – Template-Datei oder DXF-Datei (obligatorisch)

• object_height – Objekthöhe in Metern, benötigt bei DXF-Upload (optional)

• units – Einheit für DXF Datei falls nicht in Datei enthalten (mögliche Werte: mm,
cm, m, in, ft) (optional)

Anfrage-Header

• Accept – multipart/form-data application/json

Antwort-Header

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung (Rückgabewert: Template)

• 400 Bad Request – Template ist ungültig oder die maximale Zahl an Templates
wurde erreicht.

• 403 Forbidden – Verboten, z.B. weil keine gültige Lizenz für das
SilhouetteMatch-Modul vorliegt.

• 404 Not Found – Modul oder Template wurden nicht gefunden.

• 413 Request Entity Too Large – Template ist zu groß.

Referenzierte Datenmodelle

• Template (Abschnitt 7.2.3)

DELETE /templates/rc_silhouettematch/{id}
entfernt ein rc_silhouettematch-Template.

Musteranfrage

DELETE /api/v2/templates/rc_silhouettematch/<id> HTTP/1.1
Accept: application/json application/ubjson

Parameter

• id (string) – ID des Templates (obligatorisch)

Anfrage-Header

• Accept – application/json application/ubjson

Antwort-Header

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung

Roboception GmbH
Handbuch: rc_reason_stack

206 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

6.3. Detektions- und Messmodule

• 403 Forbidden – Verboten, z.B. weil keine gültige Lizenz für das
SilhouetteMatch-Modul vorliegt.

• 404 Not Found – Modul oder Template wurden nicht gefunden.

6.3.7 CADMatch

6.3.7.1 Einleitung

Das CADMatch Modul ist ein optionales Modul des rc_reason_stack und benötigt eine eigene Li-
zenz (Abschnitt 8.2), welche erworben werden muss.

Dieses Modul bietet eine gebrauchsfertige Lösung für die 3D-Objekterkennung anhand von CAD-
Templates und liefert Greifpunkte für allgemeine Greifer. Die Objekte können sich in einer Kiste (Bin,
Load Carrier) oder frei platziert im Erfassungsbereich der Kamera befinden.

Für jedes Objekt, das mit dem CADMatch-Modul erkannt werden soll, wird ein Template benötigt. Um
Templates zu erhalten, setzen Sie sich bitte mit dem Roboception Support (Kontakt , Abschnitt 10) in
Verbindung.

Bemerkung: Dieses Softwaremodul ist pipelinespezifisch. Änderungen seiner Einstellungen oder
Parameter betreffen nur die zugehörige Kamerapipeline und haben keinen Einfluss auf die anderen
Pipelines, die auf dem rc_reason_stack laufen.
Achtung: Die Objekt-Templates und ihre Greifpunkte und Posenvorgaben werden global gespeichert.
Das Anlegen, Ändern oder Löschen eines Templates, seiner Greifpunkte oder Posenvorgaben betrifft
alle Kamerapipelines.

Das CADMatch-Modul bietet darüber hinaus:

• eine intuitiv gestaltete Bedienoberfläche für Inbetriebnahme, Konfiguration und Test auf der
rc_reason_stack Web GUI (Abschnitt 7.1)

• eine REST-API-Schnittstelle (Abschnitt 7.2) und eine KUKA Ethernet KRL Schnittstelle (Abschnitt
7.5)

• die Möglichkeit, sogenannte Regions of Interest (ROIs) zu definieren, um relevante Teilbereiche
der Szene auszuwählen (siehe RoiDB, Abschnitt 6.5.2)

• eine integrierte Load Carrier Erkennung (siehe LoadCarrier , Abschnitt 6.3.2), um in Bin-Picking-
Anwendungen („Griff in die Kiste“) Greifpunkte nur für Objekte in dem erkannten Load Carrier zu
berechnen

• die Unterstützung von Load Carriern mit Abteilen, sodass Greifpunkte für Objekte nur in einem
definierten Teilvolumen des Load Carriers berechnet werden

• die Option benutzerdefinierte Posenvorgaben zu nutzen.

• die Speicherung von bis zu 50 Templates

• die Definition von bis zu 100 Greifpunkten für jedes Template über eine interaktive Visualisierung
in der Web GUI

• eine Kollisionsprüfung zwischen Greifer und Load Carrier, anderen erkannten Objekten, und/oder
der Punktwolke

• eine Kollisionsprüfung zwischen dem Objekt im Greifer und den Wänden des Load Carriers wäh-
rend der Entnahme

• die Unterstützung von sowohl statisch montierten als auch robotergeführten Kameras. Optional
kann es mit der Hand-Auge-Kalibrierung (Abschnitt 6.4.1) kombiniert werden, um Greifposen in
einem benutzerdefinierten externen Koordinatensystem zu liefern.

• Auswahl einer Strategie zum Sortieren der erkannten Objekte und zurückgelieferten Greifpunkte

Roboception GmbH
Handbuch: rc_reason_stack

207 Rev: 26.01.4
Status: 30.01.2026

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.3. Detektions- und Messmodule

• eine 3D Visualisierung des Detektionsergebnisses mit Greifpunkten und einer Greiferanimation in
der Web GUI

6.3.7.2 Setzen von Greifpunkten

Das CADMatch-Modul erkennt 3D-Objekte in einer Szene basierend auf einem CAD-Template und
liefert die Posen der Objektursprünge zurück. Um das CADMatch-Modul direkt in einer Roboteranwen-
dung zu nutzen, können für jedes Template bis zu 100 Greifpunkte definiert werden. Ein Greifpunkt
repräsentiert die gewünschte Position und Orientierung des Roboter-TCPs (Tool Center Point), mit der
das Objekt gegriffen werden kann.

Weitere Details sind unter Setzen von Greifpunkten (Abschnitt 6.3.6.4) beschrieben.

Setzen von Greifpunkten in der Web GUI

Die rc_reason_stack Web GUI bietet eine interaktive und intuitive Möglichkeit, Greifpunkte für Objekt-
Templates zu setzen. Im ersten Schritt muss das Objekt-Template auf den rc_reason_stack hochgela-
den werden. Das kann über die Web GUI in einer beliebigen Kamerapipeline unter Module → CAD-
Match erfolgen, indem im Abschnitt Templates, Greifpunkte und Posenvorgaben auf + Neues Template
hinzufügen geklickt wird, oder unter Datenbank → Templates im Abschnitt CADMatch Templates, Greif-
punkte und Posenvorgaben. Wenn der Upload abgeschlossen ist, erscheint ein Fenster mit einer 3D-
Visualisierung des Objekts, in dem Greifpunkte hinzugefügt oder existierende Greifpunkte bearbeitet
werden können. Dasselbe Fenster erscheint, wenn ein vorhandenes Template bearbeitet wird.

Weitere Details werden in Setzen von Greifpunkten in der Web GUI (Abschnitt 6.3.6.4) beschrieben.

Setzen von Greifpunkten über die REST-API

Greifpunkte können über die REST-API-Schnittstelle (Abschnitt 7.2) mithilfe des set_grasp oder
set_all_grasps Services gesetzt werden (siehe Interne Services, Abschnitt 6.3.7.11).

Weitere Details werden in Setzen von Greifpunkten über die REST-API (Abschnitt 6.3.6.4) beschrieben.

6.3.7.3 Setzen von Posenvorgaben

Das CADMatch Modul bietet die Möglichkeit, Posenvorgaben für die zu erkennenden Objekte zu de-
finieren. Wenn eine Posenvorgabe gesetzt ist, nutzt die Objekterkennung diese Pose und führt nur
eine Verfeinerung durch. Dadurch wird die Erkennung deutlich beschleunigt.:ngonly:‘Die Posenvorga-
ben werden verfeinert um die tatsächlichen Posen der Objekte zu bestimmen. Eine Posenvorgabe stellt
die ungefähre Position und Orientierung des zu erkennenden Objekts dar. Die Pose kann im Kamera-
oder im externen Koordinatensystem definiert werden, wenn eine Hand-Auge-Kalibrierung verfügbar
ist.

Jede Posenvorgabe enthält eine id, die eindeutig über alle Posenvorgaben eines Objekt-Templates
sein muss, die ID des Templates (template_id), zu dem die Posenvorgabe hinzugefügt wird, die Po-
senvorgabe (pose) und das Koordinatensystem (pose_frame) der Pose. Posenvorgaben können über die
REST-API-Schnittstelle (Abschnitt 7.2), oder über die interaktive Visualisierung in der Web GUI definiert
werden. Die Web GUI ermöglicht die interaktive Positionierung des Objekts in der aktuellen Punktwolke.
Dies kann im Reiter „Posenvorgaben“ während des Editieren eines Templates geschehen.

Posenvorgaben können in Anwendungen genutzt werden, in denen die ungefähren Posen der Objekte
im Voraus bekannt sind. Der rc_reason_stack kann bis zu 50 Posenvorgaben pro Template speichern.

6.3.7.4 Setzen der bevorzugten TCP-Orientierung

Das CADMatch-Modul berechnet die Erreichbarkeit von Greifpunkten basierend auf der be-
vorzugten Orientierung des TCPs. Die bevorzugte Orientierung kann über den Service

Roboception GmbH
Handbuch: rc_reason_stack

208 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

set_preferred_orientation oder über die CADMatch-Seite in der Web GUI gesetzt werden. Die be-
vorzugten Orientierung des TCPs wird genutzt, um Greifpunkte zu verwerfen, die der Greifer nicht er-
reichen kann, und kann auch zur Sortierung der Greifpunkte genutzt werden.

Die bevorzugte TCP-Orientierung kann im Kamerakoordinatensystem oder im externen Koordinaten-
system gesetzt werden, wenn eine Hand-Auge-Kalibrierung verfügbar ist. Wenn die bevorzugte TCP-
Orientierung im externen Koordinatensystem definiert ist, und der Sensor am Roboter montiert ist, muss
bei jedem Aufruf der Objekterkennung die aktuelle Roboterpose angegeben werden. Wenn keine be-
vorzugte TCP-Orientierung gesetzt wird, wird die Orientierung der linken Kamera (siehe Coordinate
frames im rc_visard Handbuch) als die bevorzugte TCP-Orientierung genutzt.

6.3.7.5 Setzen der Sortierstrategie

Die vom detect_object und detect_object_extended Service zurückgelieferten Matches und Greif-
punkte werden gemäß einer Sortierstrategie sortiert, die vom Nutzer gewählt werden kann. Folgen-
de Sortierstrategien sind verfügbar und können über die Web GUI (Abschnitt 7.1) oder über den
set_sorting_strategies Service gesetzt werden:

• gravity: die entlang der Gravitationsrichtung am höchsten gelegenen Matches und Greifpunkte
werden zuerst zurückgeliefert.

• match_score: Matches mit dem höchsten Match Score und Greifpunkte auf Objekten mit dem
höchsten Match Score werden zuerst zurückgeliefert.

• preferred_orientation: Matches und Greifpunkte mit der geringsten Rotationsänderung einer
gewählten Achse (axis), oder aller Achsen, wenn axis leer ist, bezogen auf die bevorzugte TCP-
Orientierung werden zuerst zurückgeliefert.

• direction: Matches und Greifpunkte mit dem kleinsten Abstand entlang der gesetzten Sortier-
richtung vector im angegebenen Referenzkoordinatensystem pose_frame werden zuerst zurück-
geliefert.

• distance_to_point: Matches und Greifpunkte mit dem kleinsten oder größten (falls
farthest_first auf true gesetzt ist) Abstand von einem gesetzten Sortierpunkt point im an-
gegebenen Referenzkoordinatensystem pose_frame werden zuerst zurückgeliefert.

Wenn keine Sortierstrategie gesetzt ist, oder die Standard-Sortierstrategie in der Web GUI ausgewählt
ist, geschieht die Sortierung der Greifpunkte basierend auf einer Kombination von match_score und
dem kleinsten Abstand entlang der z-Achse der bevorzugten TCP-Orientierung von der Kamera.

6.3.7.6 Objekterkennung

Das CADMatch-Modul benötigt ein Objekt-Template für die Objekterkennung. Dieses Template enthält
Informationen über die dreidimensionale Form des Objekts und markante Kanten, die im Kamerabild
sichtbar sein können. CADMatch unterstützt auch partielle Objekt-Templates, die nur einen bestimmten
Teil des Objekts beinhalten, der gut erkannt werden kann, zum Beispiel im Fall von Verdeckungen.
Weiterhin gibt es Templates, die eine Posenvorgabe zur Erkennung benötigen, die dann nur mit Hilfe
die Bilddaten verfeinert wird.

Die Objekterkennung ist ein zweistufiger Prozess bestehend aus einem initialen Schätzungsschritt und
einem Posenverfeinerungsschritt. Als erstes wird die initiale Pose des Objekts anhand der Erscheinung
des Objekts im Kamerabild berechnet. Als zweiter Schritt wird die geschätzte Pose anhand der 3D-
Punktwolke und der Kanten im Kamerabild verfeinert. Damit das funktionieren kann, müssen die zu
detektierenden Objekte im linken und rechten Kamerabild sichtbar sein. Wenn Posenvorgaben gesetzt
wurden, findet nur der zweite Verfeinerungsschritt statt, was die Laufzeit deutlich verringert.

Um eine Objekterkennung durchzuführen, können die folgenden Serviceargumente an das CADMatch-
Modul übergeben werden:

• die ID des Objekt-Templates, welches in der Szene erkannt werden soll

Roboception GmbH
Handbuch: rc_reason_stack

209 Rev: 26.01.4
Status: 30.01.2026

https://doc.rc-visard.com/latest/en/hardware_spec.html#sect-coordinate-frames
https://doc.rc-visard.com/latest/en/hardware_spec.html#sect-coordinate-frames

6.3. Detektions- und Messmodule

• das Koordinatensystem, in dem die Posen der detektierten Objekte zurückgegeben werden sollen
(siehe Hand-Auge-Kalibrierung, Abschnitt 6.3.7.7)

Optional können auch folgende Serviceargumente an das CADMatch-Modul übergeben werden:

• die IDs der Posenvorgaben, die ungefähr den Posen der zu erkennenden Objekten entsprechen.
Falls ein Template verwendet wird, das eine Posenvorgabe benötigt, müssen eine oder mehrere
Posenvorgaben angegeben werden.

• die ID des Load Carriers, der die zu detektierenden Objekte enthält

• ein Unterabteil (load_carrier_compartment) innerhalb eines Load Carriers, in dem Objekte er-
kannt werden sollen (siehe Load Carrier Abteile, Abschnitt 6.5.1.3).

• die ID der Region of Interest, innerhalb der nach dem Load Carrier gesucht wird, oder – falls kein
Load Carrier angegeben ist – die Region of Interest, innerhalb der Objekte erkannt werden sollen

• die aktuelle Roboterpose, wenn die Kamera am Roboter montiert ist und als Koordinatensystem
external gewählt wurde, oder die bevorzugte TCP-Orientierung im externen Koordinatensystem
angegeben ist, oder die gewählte Region of Interest im externen Koordinatensystem definiert ist

• Informationen für die Kollisionsprüfung: Die ID des Greifers, um die Kollisionsprüfung zu aktivie-
ren, und optional ein Greif-Offset, der die Vorgreifposition definiert. Details zur Kollisionsprüfung
sind in CollisionCheck (Abschnitt 6.3.7.7) gegeben.

• Datenaufnahme-Modus: Der Nutzer kann auswählen, ob ein neuer Bilddatensatz für die Erken-
nung aufgenommen werden soll (Standardwert), oder ob die Detektion mit den zuletzt verwende-
ten Bilddaten durchgeführt soll.Dies spart die Bildaufnahmezeit, z.B. für den Fall, dass verschie-
dene Templates im selben Bild erkannt werden sollen.

In der Web GUI kann die Objekterkennung in Bereich Ausprobieren auf der CADMatch-Seite getestet
werden.

Die erkannten Objekte werden in einer Liste von matches zurückgeliefert, die entsprechend der ge-
wählten Sortierstrategie sortiert ist. Jedes erkannte Objekt enthält eine uuid (Universally Unique Identi-
fier) und den Zeitstempel (timestamp) des ältesten Bildes, das zur Erkennung benutzt wurde. Die Pose
(pose) eines erkannten Objekts entspricht der Pose des Ursprungs des Koordinatensystems des Objekt-
Templates, das zur Detektion verwendet wurde. Weiterhin wird ein Matching-Score zurückgegeben, der
die Qualität der Erkennung angibt.

Wenn das ausgewählte Template auch Greifpunkte hat (siehe Setzen von Greifpunkten, Abschnitt
6.3.7.2), dann wird zusätzlich zu den erkannten Objekten auch eine Liste von Greifpunkten (grasps) für
alle erkannten Objekte zurückgegeben. Diese Liste ist gemäß der gewählten Sortierstrategie sortiert
(siehe Setzen der Sortierstrategie, Abschnitt 6.3.7.5). Die Posen der Greifpunkte sind im gewünschten
Koordinatensystem angegeben. Die erkannten Objekte und die Greifpunkte können über ihre UUIDs
einander zugeordnet werden.

Für Objekte mit einer diskreten Symmetrie (z.B. prismatische Objekte), werden alle kollisionsfreien
Symmetrien jedes Greifpunkts, die entsprechend der gesetzten bevorzugten TCP-Orientierung erreich-
bar sind, zurückgeliefert, und gemäß der gewählten Sortierstrategie sortiert.

Bei Objekten mit einer kontinuierlichen Symmetrie (z.B. zylindrische Objekte), werden alle Symmetrien
eines Greifpunkts auf Erreichbarkeit und Kollisionsfreiheit geprüft, und anschließend nur der jeweilige
beste gemäß der gewählten Sortierstrategie zurückgeliefert.

Die zurückgegebenen Matches werden im Ergebnisbild auf der CADMatch-Seite der Web GUI mit grü-
nen Kanten dargestellt. Matches, die von anderen Objekten oder Szenenteilen überlappt werden (wenn
max_object_overlap kleiner als 1 ist), werden im Ergebnisbild mit roten Rändern dargestellt, und der
überlappende Bereich ist durch rote Streifen markiert. Zusätzlich werden Matches, die aufgrund eines
niedrigen Scores, aufgrund von Überlappungen oder der maximalen Anzahl von Matches herausgefil-
tert wurden, im Bild Verworfene Matches dargestellt.

Roboception GmbH
Handbuch: rc_reason_stack

210 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Bemerkung: Der erste Aufruf der Objekterkennung mit einem neuen Objekt-Template dauert et-
was länger als die nachfolgenden Aufrufe, weil das Template erst in das CADMatch-Modul geladen
werden muss. Um das zu vermeiden, kann der warmup_template Service genutzt werden, der das
Template lädt damit es bereit ist, wenn die erste Detektion getriggert wird.

6.3.7.7 Wechselwirkung mit anderen Modulen

Die folgenden, intern auf dem rc_reason_stack laufenden Module liefern Daten für das CADMatch-
Modul oder haben Einfluss auf die Datenverarbeitung.

Bemerkung: Jede Konfigurationsänderung dieser Module kann direkte Auswirkungen auf die Qua-
lität oder das Leistungsverhalten des CADMatch-Moduls haben.

Kamera- und Tiefendaten

Folgende Daten werden vom CADMatch-Modul verarbeitet:

• die rektifizierten Bilder des Kamera Modul (rc_camera, Abschnitt 6.1)

• die Disparitäts-, Konfidenz- und Fehlerbilder des Stereo-Matching Modul (rc_stereomatching,
Abschnitt 6.2.2), falls eine Stereokamera verwendet wird. Der Parameter Qualität (quality) des
Stereo-Matching-Moduls muss auf Medium oder höher gesetzt werden (siehe Parameter , Abschnitt
6.2.2.1). Die Einstellung Full oder High wird für CADMatch empfohlen.

• die Disparitäts-, Konfidenz- und Fehlerbilder der Orbbec Modul (rc_orbbec, Abschnitt 6.2.4), falls
eine Orbbec Kamera verwendet wird

• die Disparitäts-, Konfidenz- und Fehlerbilder der Zivid Modul (rc_zivid, Abschnitt 6.2.3), falls eine
zivid Kamera verwendet wird

Für alle genutzten Bilder ist garantiert, dass diese nach dem Auslösen des Services aufgenommen
wurden.

IOControl und Projektor-Kontrolle

Für den Anwendungsfall, dass der rc_reason_stack zusammen mit einem externen Musterprojektor und
dem Modul für IOControl und Projektor-Kontrolle (rc_iocontrol, Abschnitt 6.4.4) betrieben wird, wird
empfohlen, den Projektor an GPIO Out 1 anzuschließen und den Aufnahmemodus des Stereokamera-
Moduls auf SingleFrameOut1 zu setzen (siehe Stereomatching-Parameter , Abschnitt 6.2.2.1), damit bei
jedem Aufnahme-Trigger ein Bild mit und ohne Projektormuster aufgenommen wird.

Alternativ kann der verwendete digitale Ausgang in den Betriebsmodus ExposureAlternateActive ge-
schaltet werden (siehe Beschreibung der Laufzeitparameter , Abschnitt 6.4.4.1).

In beiden Fällen sollte die Belichtungszeitregelung (exp_auto_mode) auf AdaptiveOut1 gesetzt werden,
um die Belichtung beider Bilder zu optimieren.

Hand-Auge-Kalibrierung

Falls die Kamera zu einem Roboter kalibriert wurde, kann das CADMatch-Modul automatisch Posen im
Roboterkoordinatensystem ausgeben. Für die Services (Abschnitt 6.3.7.10) kann das Koordinatensys-
tem der berechneten Posen mit dem Argument pose_frame spezifiziert werden.

Zwei verschiedene Werte für pose_frame können gewählt werden:

Roboception GmbH
Handbuch: rc_reason_stack

211 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

1. Kamera-Koordinatensystem (camera): Alle Posen sind im Kamera-Koordinatensystem angege-
ben und es ist kein zusätzliches Wissen über die Lage der Kamera in seiner Umgebung notwen-
dig. Das bedeutet insbesondere, dass sich ROIs oder Load Carrier, welche in diesem Koordina-
tensystem angegeben sind, mit der Kamera bewegen. Es liegt daher in der Verantwortung des
Anwenders, in solchen Fällen die entsprechenden Posen der Situation entsprechend zu aktuali-
sieren (beispielsweise für den Anwendungsfall einer robotergeführten Kamera).

2. Benutzerdefiniertes externes Koordinatensystem (external): Alle Posen sind im sogenann-
ten externen Koordinatensystem angegeben, welches vom Nutzer während der Hand-Auge-
Kalibrierung gewählt wurde. In diesem Fall bezieht das CADMatch-Modul alle notwendigen In-
formationen über die Kameramontage und die kalibrierte Hand-Auge-Transformation automatisch
vom Modul Hand-Auge-Kalibrierung (Abschnitt 6.4.1). Für den Fall einer robotergeführten Kamera
ist vom Nutzer zusätzlich die jeweils aktuelle Roboterpose robot_pose anzugeben.

Bemerkung: Wenn keine Hand-Auge-Kalibrierung durchgeführt wurde bzw. zur Verfügung steht,
muss als Referenzkoordinatensystem pose_frame immer camera angegeben werden.

Zulässige Werte zur Angabe des Referenzkoordinatensystems sind camera und external. Andere Wer-
te werden als ungültig zurückgewiesen.

Für den Fall einer robotergeführten Kamera ist es abhängig von pose_frame, der bevorzugten TCP-
Orientierung und der Sortierrichtung bzw. des Sortierpunktes nötig, zusätzlich die aktuelle Roboterpose
(robot_pose) zur Verfügung zu stellen:

• Wenn external als pose_frame ausgewählt ist, ist die Angabe der Roboterpose obligatorisch.

• Wenn die bevorzugte TCP-Orientierung in external definiert ist, ist die Angabe der Roboterpose
obligatorisch.

• Wenn die Sortierrichtung in external definiert ist, ist die Angabe der Roboterpose obligatorisch.

• Wenn der Sortierpunkt für die Abstandssortierung in external definiert ist, ist die Angabe der
Roboterpose obligatorisch.

• In allen anderen Fällen ist die Angabe der Roboterpose optional.

LoadCarrier

Das CADMatch Modul nutzt die Funktionalität zur Load Carrier Erkennung aus dem LoadCarrier Modul
(rc_load_carrier, Abschnitt 6.3.2) mit den Laufzeitparametern, die für dieses Modul festgelegt wurden.
Wenn sich jedoch mehrere Load Carrier in der Szene befinden, die zu der angegebenen Load Carrier
ID passen, wird nur einer davon zurückgeliefert. In diesem Fall sollte eine 3D Region of Interest gesetzt
werden, um sicherzustellen, dass immer derselbe Load Carrier für das CADMatch Modul verwendet
wird.

CollisionCheck

Die Kollisionsprüfung kann für die Greifpunktberechnung des CADMatch-Moduls aktiviert werden, in-
dem das collision_detection Argument an den detect_object oder detect_object_extended Ser-
vice übergeben wird. Es enthält die ID des benutzten Greifers und optional einen Greif-Offset. Der Grei-
fer muss im GripperDB Modul definiert werden (siehe Erstellen eines Greifers, Abschnitt 6.5.3.2) und
Details über die Kollisionsprüfung werden in Integrierte Kollisionsprüfung in anderen Modulen (Abschnitt
6.4.2.2) gegeben.

Alternativ können Greifpunkten individuell Greifer IDs zugewiesen werden, und die Kollisionsprüfung
kann für alle Greifpunkte mit einer Greifer ID über den Laufzeitparameter check_collisions einge-
schaltet werden.

Wenn das ausgewählte CADMatch Template eine Kollisionsgeometrie enthält und der Laufzeitparame-
ter check_collisions_with_matches auf true gesetzt ist, werden auch Kollisionen zwischen dem Greifer

Roboception GmbH
Handbuch: rc_reason_stack

212 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

und den anderen detektierten Objekten (nicht limitiert auf die Anzahl max_matches) geprüft. Dabei ist
das Objekt, auf dem sich der jeweilige Greifpunkt befindet, von der Prüfung ausgenommen.

Wenn der Laufzeitparameter check_collisions_with_point_cloud auf true gesetzt ist, werden auch
Kollisionen zwischen dem Greifer und einer wasserdichten Version der Punktwolke geprüft. Wenn diese
Funktionalität in Kombination mit Sauggreifern genutzt wird, muss sichergestellt werden, dass sich der
TCP außerhalb der Greifergeometrie befindet, oder dass die Greifpunkte oberhalb der Objektoberfläche
definiert sind. Andernfalls wird für jeden Greifpunkt eine Kollision zwischen Greifer und Punktwolke
erkannt.

Wenn der Laufzeitparameter check_collisions_during_retraction auf true gesetzt ist, und ein Load
Carrier sowie ein Greif-Offset angegeben wurden, wird jeder Greifpunkt auf Kollisionen zwischen dem
Objekt im Greifer und den Wänden des Load Carriers während der Entnahme geprüft. Die Prüfung
findet auf der gesamten linearen Trajektorie von der Greifposition bis zurück zur Vorgreifposition statt.

Wenn die Kollisionsprüfung aktiviert ist, werden nur Greifpunkte zurückgeliefert, die kollisionsfrei sind,
oder die nicht auf Kollisionen geprüft werden konnten (z.B. weil kein Greifer angegeben wurde). In der
Ergebnis-Visualisierung oben auf der CADMatch-Seite der Web GUI werden kollisionsfreie Greifpunkte
grün dargestellt, ungeprüfte Greifpunkte gelb und kollidierende Greifpunkte rot. Die erkannten Objekte,
die bei der Kollisionsprüfung betrachtet werden, werden mit roten Kanten visualisiert.

Die Laufzeitparameter des CollisionCheck-Moduls beeinflussen die Kollisionserkennung wie in
CollisionCheck-Parameter (Abschnitt 6.4.2.3) beschrieben.

6.3.7.8 Parameter

Das CADMatch-Modul wird in der REST-API als rc_cadmatch bezeichnet und in der Web GUI (Abschnitt
7.1) in der gewünschten Pipeline unter Module → CADMatch dargestellt. Der Benutzer kann die Para-
meter entweder dort oder über die REST-API-Schnittstelle (Abschnitt 7.2) ändern.

Übersicht über die Parameter

Dieses Softwaremodul bietet folgende Laufzeitparameter:

Roboception GmbH
Handbuch: rc_reason_stack

213 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Tab. 6.41: Laufzeitparameter des rc_cadmatch-Moduls
Name Typ Min. Max. Default Beschreibung
check_collisions bool false true false Gibt an, ob Kollisionen geprüft wer-

den sollen, wenn ein Greifer für
einen Greifpunkt definiert wurde

check_collisions_during_-
retraction

bool false true false Gibt an, ob Kollisionen zwischen
dem Objekt im Greifer und dem
Load Carrier während der Entnah-
me geprüft werden

check_collisions_with_-
matches

bool false true true Gibt an, ob Kollisionen zwischen
Greifer und anderen Matches ge-
prüft werden

check_collisions_with_-
point_cloud

bool false true false Gibt an, ob Kollisionen zwischen
Greifer und der Punktwolke geprüft
werden

edge_max_distance float64 0.5 5.0 2.0 Der maximale tolerierte Abstand
zwischen den Templatekanten und
den detektierten Kanten im Bild in
Pixeln

edge_sensitivity float64 0.05 1.0 0.5 Empfindlichkeit des Kantendetek-
tors

grasp_filter_orientation_-
threshold

float64 0.0 180.0 45.0 Maximal erlaubte Orientierungsab-
weichung zwischen Greifpunkt und
bevorzugter TCP-Orientierung in
Grad

max_matches int32 1 30 10 Maximale Anzahl von Matches
max_object_overlap float64 0.0 1.0 1.0 Maximaler Anteil des Objekts, der

von etwas anderem überlappt sein
darf

min_score float64 0.05 1.0 0.3 Minimaler Score für Matches
only_highest_priority_-
grasps

bool false true false Gibt an, ob ausschließlich Greif-
punkte der höchsten Priorität zu-
rückgegeben werden sollen.

prior_selection_mode string - - MatchSorting Methode zur Auswahl von Priors für
die Posenverfeinerung [MatchSor-
ting, PriorAccessibility]

Beschreibung der Laufzeitparameter

Die Laufzeitparameter werden zeilenweise auf der CADMatch-Seite in der Web GUI dargestellt. Im
folgenden wird der Name des Parameters in der Web GUI in Klammern hinter dem eigentlichen Para-
meternamen angegeben. Die Parameter sind in derselben Reihenfolge wie in der Web GUI aufgelistet:

max_matches (Maximale Matches)

ist die maximale Anzahl der zu erkennenden Objekte.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?max_matches=
→˓<value>

API Version 1 (veraltet)

Roboception GmbH
Handbuch: rc_reason_stack

214 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?max_matches=<value>

min_score (Minimaler Score)

ist der minimale Score für die Erkennung nach der Posenverfeinerung. Umso hö-
her dieser Wert ist, umso besser müssen die 2D-Kanten und die 3D-Punktwolke
mit dem angegebenen Template übereinstimmen.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?min_score=
→˓<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?min_score=<value>

edge_sensitivity (Kantenempfindlichkeit)

ist die Empfindlichkeit des Kantendetektors. Umso höher dieser Wert ist, umso
mehr Kanten werden für die Posenverfeinerung genutzt.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?edge_

→˓sensitivity=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?edge_sensitivity=<value>

edge_max_distance (Maximale Kantendistanz)

ist die maximal erlaubte Distanz in Pixeln zwischen den Templatekanten und den
detektierten Kanten im Bild während der Posenverfeinerung.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?edge_max_

→˓distance=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?edge_max_distance=<value>

grasp_filter_orientation_threshold (Maximale Abweichung)

ist die maximale Abweichung der TCP-z-Achse am Greifpunkt von der z-Achse
der bevorzugten TCP-Orientierung in Grad. Es werden nur Greifpunkte zurückge-
liefert, deren Orientierungsabweichung kleiner als der angegebene Wert ist. Falls
der Wert auf Null gesetzt wird, sind alle Abweichungen valide.

Roboception GmbH
Handbuch: rc_reason_stack

215 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?grasp_filter_

→˓orientation_threshold=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?grasp_filter_orientation_

→˓threshold=<value>

prior_selection_mode (Prior-Auswahlmodus)

bestimmt die Methode zur Auswahl der erkannten Priors (ursprüngliche Posen-
schätzungen) für die Posenverfeinerung. Verfügbare Optionen sind MatchSorting und
PriorAccessibility. Bei MatchSorting („Matchsortierung“) werden die Priors entspre-
chend der gesetzten Sortierstrategie ausgewählt. Dies ist der Standardmodus. Bei
PriorAccessibility („Prior-Erreichbarkeit“) werden die Priors entsprechend ihrer Erreich-
barkeit für das Greifen ausgewählt. Dieser Modus sollte für chaotische Szenen mit vielen
überlappenden Objekten verwendet werden, z.B. beim Bin Picking.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?prior_

→˓selection_mode=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?prior_selection_mode=<value>

max_object_overlap (Maximale Objektüberlappung)

Dieser Parameter bestimmt den maximalen Anteil eines Matches, der von anderen Objekten
oder Szenenteilen überlappt sein darf, bezogen auf die Sichtachse der Kamera. Matches mit
größeren Überlappungswerten werden gefiltert. Ein Wert von 1 schaltet den Überlappungs-
check aus. Dieser Parameter kann genutzt werden, um nur Greifpunkte auf Objekten zu
erhalten, die nicht von anderen überlappt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?max_object_

→˓overlap=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?max_object_overlap=<value>

only_highest_priority_grasps (Nur Greifpunkte höchster Priorität)

Wenn dieser Parameter auf true gesetzt ist, werden ausschließlich Greifpunkte der höchs-
ten Priorität zurückgegeben. Sofern die Kollisionsprüfung aktiviert ist, werden ausschließlich
kollisionsfreie Greifpunkt der höchstmöglichen Priorität zurückgegeben. Dadurch kann Re-
chenzeit gespart und die Anzahl der applikationsseitig zu verarbeitenden Greifpunkte redu-
ziert werden.

Roboception GmbH
Handbuch: rc_reason_stack

216 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Ohne Kollisionsprüfung werden ausschließlich Greifpunkte der höchsten Priorität zurückge-
geben.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?only_highest_

→˓priority_grasps=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?only_highest_priority_grasps=
→˓<value>

check_collisions (Kollisionsprüfung)

Wenn diese Option aktiv ist, wird die Kollisionsprüfung für alle Greifpunkte durch-
geführt, denen eine Greifer ID zugewiesen wurde, auch wenn kein Standardgreifer
im detect_object oder detect_object_extended Service gesetzt wurde. Wenn
ein Load Carrier verwendet wird, wird die Kollisionsprüfung immer zwischen dem
Greifer und dem Load Carrier durchgeführt. Kollisionen mit der Punktwolke oder
anderen Matches werden nur geprüft, wenn die zugehörigen Laufzeitparameter
aktiv sind.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?check_

→˓collisions=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?check_collisions=<value>

check_collisions_with_matches (Kollisionsprüfung mit Matches)

Dieser Parameter wird nur beachtet, wenn die Kollisionsprüfung durch Über-
gabe eines Greifers an den detect_object oder detect_object_extended Ser-
vice oder durch Setzen des Parameters check_collisions aktiviert ist. Wenn
check_collisions_with_matches auf true gesetzt ist, werden alle Greifpunkte auf
Kollisionen zwischen dem Greifer und den anderen Matches (nicht begrenzt auf
die Anzahl max_matches) geprüft. Nur Greifpunkte, bei denen der Greifer nicht in
Kollision mit anderen Matches wäre, werden zurückgeliefert.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?check_

→˓collisions_with_matches=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?check_collisions_with_matches=
→˓<value>

Roboception GmbH
Handbuch: rc_reason_stack

217 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

check_collisions_with_point_cloud (Kollisionsprüfung mit Punktwolke)

Dieser Parameter wird nur beachtet, wenn die Kollisionsprüfung durch Über-
gabe eines Greifers an den detect_object oder detect_object_extended Ser-
vice oder durch Setzen des Parameters check_collisions aktiviert ist. Wenn
check_collisions_with_point_cloud auf true gesetzt ist, werden alle Greifpunk-
te auf Kollisionen zwischen dem Greifer und einer wasserdichten Version der
Punktwolke geprüft. Nur Greifpunkte, bei denen der Greifer nicht in Kollision mit
dieser Punktwolke wäre, werden zurückgeliefert.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?check_

→˓collisions_with_point_cloud=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?check_collisions_with_point_

→˓cloud=<value>

check_collisions_during_retraction (Kollisionsprüfung während Entnahme)

Dieser Parameter wird nur beachtet, wenn die Kollisionsprüfung durch Über-
gabe eines Greifers an den detect_object oder detect_object_extended Ser-
vice oder durch Setzen des Parameters check_collisions aktiviert ist. Wenn
check_collisions_during_retraction auf true gesetzt ist und ein Load Carri-
er sowie ein Greif-Offset angegeben wurden, wird jeder Greifpunkt auf Kollisionen
zwischen dem Objekt im Greifer und den Wänden des Load Carriers während der
Entnahme geprüft. Die Prüfung findet auf der gesamten linearen Trajektorie von
der Greifposition bis zurück zur Vorgreifposition statt. Es werden nur kollisionsfreie
Greifpunkte zurückgeliefert.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?check_

→˓collisions_during_retraction=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?check_collisions_during_

→˓retraction=<value>

6.3.7.9 Statuswerte

Das CADMatch-Modul meldet folgende Statuswerte.

Roboception GmbH
Handbuch: rc_reason_stack

218 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Tab. 6.42: Statuswerte des rc_cadmatch-Moduls
Name Beschreibung
data_acquisition_time Zeit in Sekunden, für die beim letzten Aufruf auf Bilddaten

gewartet werden musste
last_timestamp_processed Zeitstempel des letzten verarbeiteten Bilddatensatzes
last_request_timestamp Zeitstempel der letzten Detektionsanfrage
load_carrier_detection_time Berechnungszeit für die letzte Load Carrier Detektion in

Sekunden
object_detection_time Berechnungszeit für die letzte Objekterkennung in Sekunden
processing_time Berechnungszeit für die letzte Detektion (einschließlich Load

Carrier Detektion) in Sekunden
state Aktueller Zustand des CADMatch-Moduls

Folgende state-Werte werden gemeldet.

Tab. 6.43: Mögliche Werte für den Zustand des CADMatch-Moduls
Zustand Beschreibung
IDLE Das Modul ist inaktiv.
RUNNING Das Modul wurde gestartet und ist bereit, Load Carrier und Objekte zu erkennen.
FATAL Ein schwerwiegender Fehler ist aufgetreten.

6.3.7.10 Services

Die angebotenen Services von rc_cadmatch können mithilfe der REST-API-Schnittstelle (Abschnitt 7.2)
oder der rc_reason_stack Web GUI (Abschnitt 7.1) ausprobiert und getestet werden.

Das CADMatch-Modul stellt folgende Services zur Verfügung.

detect_object

führt eine Objekterkennung basierend auf einem Template durch, wie in Objekterken-
nung (Abschnitt 6.3.7.6) beschrieben.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/detect_object

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/detect_object

Request

Obligatorische Serviceargumente:

pose_frame: siehe Hand-Auge-Kalibrierung (Abschnitt 6.3.7.7).

template_id: ID des Templates, welches erkannt werden soll.

Möglicherweise benötigte Serviceargumente:

robot_pose: siehe Hand-Auge-Kalibrierung (Abschnitt 6.3.7.7).

pose_prior_ids: IDs der Posenvorgaben für die zu erkennenden Objekte. Falls
das ausgewählte Template eine Posenvorgabe für die Erkennung benötigt, dann
muss dieses Argument angegeben werden.

Roboception GmbH
Handbuch: rc_reason_stack

219 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Optionale Serviceargumente:

load_carrier_id: ID des Load Carriers, welcher die zu erkennenden Objekte ent-
hält.

load_carrier_compartment: Teilvolumen (Fach oder Abteil) in einem zu detektie-
renden Load Carrier (Behälter), in dem Objekte erkannt werden sollen (siehe Load
Carrier Abteile, Abschnitt 6.5.1.3).

region_of_interest_id: Falls load_carrier_id gesetzt ist, die ID der 3D Region
of Interest, innerhalb welcher nach dem Load Carrier gesucht wird. Andernfalls
die ID der 3D Region of Interest, in der nach Objekten gesucht wird.

collision_detection: siehe Integrierte Kollisionsprüfung in anderen Modu-
len (Abschnitt 6.4.2.2)

data_acquisition_mode: Falls der Aufnahmemodus auf CAPTURE_NEW (Standard-
wert) gesetzt ist, wird ein neuer Bild-Datensatz für die Detektion aufgenommen.
Falls der Modus auf USE_LAST gesetzt wird, wird der Datensatz der vorherigen
Detektion erneut verwendet.“

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"data_acquisition_mode": "string",
"load_carrier_compartment": {

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"pose_prior_ids": [
"string"

],
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

220 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"template_id": "string"

}
}

Response

grasps: Liste von Greifpunkten auf den erkannten Objekten. Die Greifpunkte sind gemäß der
gewählten Sortierstrategie sortiert. Die match_uuid gibt eine Referenz auf das detektierte
Objekt in matches an, zu dem dieser Greifpunkt gehört. Die Liste der Greifpunkte wird auf die
100 besten Greifpunkte gekürzt, falls mehr erreichbare Greifpunkte gefunden werden. Jeder
Greifpunkt enthält ein Flag collision_checked und das Feld gripper_id (siehe Integrierte
Kollisionsprüfung in anderen Modulen Abschnitt 6.4.2.2).

load_carriers: Liste der erkannten Load Carrier (Behälter).

matches: Liste der erkannten Objekte für das angegebene Template, sortiert gemäß der
gewählten Sortierstrategie. Der score gibt an, wie gut das Objekt mit dem Template über-
einstimmt. Die grasp_uuids geben die Greifpunkte in der grasps-Liste an, die auf diesem
Objekt erreichbar sind.

timestamp: Zeitstempel des Bildes, auf dem die Erkennung durchgeführt wurde.

return_code: enthält mögliche Warnungen oder Fehlercodes und Nachrichten.

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "detect_object",
"response": {
"grasps": [

{
"collision_checked": "bool",
"gripper_id": "string",
"id": "string",
"match_uuid": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"priority": "int8",
"stroke_per_finger_approach_mm": "float64",
"stroke_per_finger_grasp_mm": "float64",
"timestamp": {

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

221 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"nsec": "int32",
"sec": "int32"

},
"uuid": "string"

}
],
"load_carriers": [

{
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"matches": [

{
"grasp_uuids": [
"string"

],
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

222 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"score": "float32",
"template_id": "string",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"uuid": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

detect_object_extended

führt eine Objekterkennung basierend auf einem Template durch. Dieser Service verhält
sich analog zu detect_object, gibt aber die Matchinformationen für jeden Greifpunkt direkt
zurück, anstatt sie in einer separaten Liste zu speichern. Dies ermöglicht ein einfacheres
Parsen, wenn z.B. die Matchposen für jeden Greifpunkt benötigt werden, um das Objekt
platziert abzulegen.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/detect_object_

→˓extended

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/detect_object_extended

Request

Siehe detect_object Service.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

223 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

},
"data_acquisition_mode": "string",
"load_carrier_compartment": {

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"pose_prior_ids": [
"string"

],
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"template_id": "string"

}
}

Response

grasps: Liste von Greifpunkten auf den erkannten Objekten. Die Greifpunkte sind gemäß
der gewählten Sortierstrategie sortiert. Jeder Greifpunkt enthält ein Feld match mit Infor-
mationen des detektierten Objekts, z.B. seiner Pose. Die Liste der Greifpunkte wird auf die
100 besten Greifpunkte gekürzt, falls mehr erreichbare Greifpunkte gefunden werden. Jeder
Greifpunkt enthält ein Flag collision_checked und das Feld gripper_id (siehe Integrierte
Kollisionsprüfung in anderen Modulen Abschnitt 6.4.2.2).

load_carriers: Liste der erkannten Load Carrier (Behälter).

timestamp: Zeitstempel des Bildes, auf dem die Erkennung durchgeführt wurde.

return_code: enthält mögliche Warnungen oder Fehlercodes und Nachrichten.

Die Definition der Response mit jeweiligen Datentypen ist:

Roboception GmbH
Handbuch: rc_reason_stack

224 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

{
"name": "detect_object_extended",
"response": {

"grasps": [
{

"collision_checked": "bool",
"gripper_id": "string",
"id": "string",
"match": {

"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"score": "float32",
"template_id": "string",
"uuid": "string"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"priority": "int8",
"stroke_per_finger_approach_mm": "float64",
"stroke_per_finger_grasp_mm": "float64",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"uuid": "string"

}
],
"load_carriers": [

{
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

225 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

set_preferred_orientation

speichert die bevorzugte TCP-Orientierung zum Berechnen der Erreichbarkeit der Greif-
punkte, die zur Filterung und optional zur Sortierung der vom detect_object und
detect_object_extended Service zurückgelieferten Greifpunkte verwendet wird (siehe Set-
zen der bevorzugten TCP-Orientierung, Abschnitt 6.3.7.4).

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/set_preferred_

→˓orientation

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/set_preferred_orientation

Roboception GmbH
Handbuch: rc_reason_stack

226 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Request

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string"

}
}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "set_preferred_orientation",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_preferred_orientation

gibt die bevorzugte TCP-Orientierung zurück, die für die Filterung und optional für die Sortie-
rung der vom detect_object und detect_object_extended Service zurückgelieferten Greif-
punkte verwendet wird (siehe Setzen der bevorzugten TCP-Orientierung, Abschnitt 6.3.7.4).

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/get_preferred_

→˓orientation

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/get_preferred_orientation

Request

Dieser Service hat keine Argumente.

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "get_preferred_orientation",
"response": {

"orientation": {
"w": "float64",
"x": "float64",

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

227 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_sorting_strategies

speichert die gewählte Strategie zur Sortierung der Greifpunkte und erkannten Objekte, die
vom detect_object und detect_object_extended Service zurückgeliefert werden (siehe
Objekterkennung, Abschnitt 6.3.7.6).

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/set_sorting_

→˓strategies

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/set_sorting_strategies

Request

Nur eine Sortierstrategie darf einen Gewichtswert weight größer als 0 haben. Wenn alle
Werte für weight auf 0 gesetzt sind, wird die Standardsortierstrategie verwendet.

Wenn der Wert weight für direction gesetzt ist, muss vector den Richtungsvektor enthal-
ten und pose_frame auf camera oder external gesetzt sein.

Wenn der Wert weight für distance_to_point gesetzt ist, muss point den Sortierpunkt
enthalten und pose_frame auf camera oder external gesetzt sein.

Wenn der Wert weight für preferred_orientation gesetzt ist, kann axis auf x, y oder z
gesetzt werden, um nur Rotationsunterschiede zwischen diesen Achsen zu berücksichtigen.
Wenn axis nicht gesetzt wird, wird die volle Rotationsdifferenz zur Sortierung verwendet.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"direction": {
"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"distance_to_point": {
"farthest_first": "bool",
"point": {

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

228 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"weight": "float64"

},
"gravity": {
"weight": "float64"

},
"match_score": {

"weight": "float64"
},
"preferred_orientation": {
"axis": "string",
"weight": "float64"

}
}

}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "set_sorting_strategies",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_sorting_strategies

gibt die gewählte Sortierstrategie zurück, die zur Sortierung der vom detect_object und
detect_object_extended Service zurückgelieferten Objekte und Greifpunkte verwendet
wird (siehe Objekterkennung, Abschnitt 6.3.7.6).

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/get_sorting_

→˓strategies

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/get_sorting_strategies

Request

Dieser Service hat keine Argumente.

Response

Wenn alle Werte für weight 0 sind, wird die Standardsortierstrategie verwendet.

Die Definition der Response mit jeweiligen Datentypen ist:

Roboception GmbH
Handbuch: rc_reason_stack

229 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

{
"name": "get_sorting_strategies",
"response": {
"direction": {

"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"distance_to_point": {
"farthest_first": "bool",
"point": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"weight": "float64"

},
"gravity": {
"weight": "float64"

},
"match_score": {

"weight": "float64"
},
"preferred_orientation": {
"axis": "string",
"weight": "float64"

},
"return_code": {
"message": "string",
"value": "int16"

}
}

}

warmup_template

Lädt ein Template, damit es bei der Detektion schon bereit ist. Ohne diesen Service dau-
ert die erste Detektion mit einem neuen Template länger als die folgenden, da dann das
Template bei der ersten Detektion erst geladen werden muss.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/warmup_template

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/warmup_template

Request

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

Roboception GmbH
Handbuch: rc_reason_stack

230 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

{
"args": {

"template_id": "string"
}

}

Die template_id ist die ID des Templates, welches in das CADMatch-Modul geladen werden
soll.

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "warmup_template",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

start

versetzt das CADMatch-Modul in den Zustand RUNNING.“

Details

Es kann vorkommen, dass der Zustandsübergang noch nicht vollständig abgeschlossen ist,
wenn die Serviceantwort generiert wird. In diesem Fall liefert diese den entsprechenden,
sich von RUNNING unterscheidenden Zustand zurück.

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/start

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/start

Request

Dieser Service hat keine Argumente.

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "start",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

stop

stoppt das Modul und versetzt es in den Zustand IDLE.

Roboception GmbH
Handbuch: rc_reason_stack

231 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Details

Es kann vorkommen, dass der Zustandsübergang noch nicht vollständig abgeschlossen ist,
wenn die Serviceantwort generiert wird. In diesem Fall liefert diese den entsprechenden,
sich von IDLE unterscheidenden Zustand zurück.

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/stop

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/stop

Request

Dieser Service hat keine Argumente.

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "stop",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

trigger_dump

speichert die Detektion auf dem angeschlossenen USB Speicher, die dem übergebenen
Zeitstempel entspricht, oder die letzte, falls kein Zeitstempel angegeben wurde.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/trigger_dump

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/trigger_dump

Request

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"comment": "string",
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

Roboception GmbH
Handbuch: rc_reason_stack

232 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "trigger_dump",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

reset_defaults

stellt die Werkseinstellungen der Parameter und die bevorzugte TCP-Orientierung sowie die
Sortierstrategie dieses Moduls wieder her und wendet sie an („factory reset“). Dies betrifft
nicht die konfigurierten Templates.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/reset_defaults

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/reset_defaults

Request

Dieser Service hat keine Argumente.

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.3.7.11 Interne Services

Die folgenden Services für die Konfiguration von Greifpunkten und Posenvorgaben können sich in Zu-
kunft ohne weitere Ankündigung ändern. Es wird empfohlen, das Setzen, Abrufen und Löschen von
Greifpunkten und Posenvorgaben über die Web GUI vorzunehmen.

Bemerkung: Das Konfigurieren von Greifpunkten und Posenvorgaben ist global für alle Templates
auf dem rc_reason_stack und hat Einfluss auf alle Kamerapipelines.

Roboception GmbH
Handbuch: rc_reason_stack

233 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

set_grasp

speichert einen Greifpunkt für das angegebene Template auf dem rc_reason_stack.
Alle Greifpunkte sind dauerhaft gespeichert, auch über Firmware-Updates und -
Wiederherstellungen hinweg.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/set_grasp

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/set_grasp

Request

Die Definition des Typs grasp wird in Setzen von Greifpunkten (Abschnitt 6.3.7.2) beschrie-
ben.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"grasp": {
"gripper_id": "string",
"id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"priority": "int8",
"replication": {

"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"stroke_per_finger_approach_mm": "float64",

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

234 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"stroke_per_finger_grasp_mm": "float64",
"template_id": "string"

}
}

}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "set_grasp",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_all_grasps

Ersetzt die gesamte Liste von Greifpunkten auf dem rc_reason_stack für das angegebene
Template.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/set_all_grasps

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/set_all_grasps

Request

Die Definition des Typs grasp wird in Setzen von Greifpunkten (Abschnitt 6.3.7.2) beschrie-
ben.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"grasps": [
{

"gripper_id": "string",
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

235 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

}
},
"priority": "int8",
"replication": {
"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"stroke_per_finger_approach_mm": "float64",
"stroke_per_finger_grasp_mm": "float64",
"template_id": "string"

}
],
"template_id": "string"

}
}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "set_all_grasps",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_grasps

gibt alle definierten Greifpunkte mit den angegebenen IDs (grasp_ids) zurück, die zu den
Templates mit den angegebenen template_ids gehören.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/get_grasps

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/get_grasps

Roboception GmbH
Handbuch: rc_reason_stack

236 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Request

Wenn keine grasp_ids angegeben werden, werden alle Greifpunkte zu den angegebenen
template_ids zurückgeliefert. Wenn keine template_ids angegeben werden, werden alle
Greifpunkte mit den geforderten grasp_ids zurückgeliefert. Wenn gar keine IDs angegeben
werden, werden alle gespeicherten Greifpunkte zurückgeliefert.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"grasp_ids": [
"string"

],
"template_ids": [
"string"

]
}

}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "get_grasps",
"response": {
"grasps": [

{
"gripper_id": "string",
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"priority": "int8",
"replication": {
"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

237 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

"stroke_per_finger_approach_mm": "float64",
"stroke_per_finger_grasp_mm": "float64",
"template_id": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

delete_grasps

löscht alle Greifpunkte mit den angegebenen grasp_ids, die zu den Templates mit den an-
gegebenen template_ids gehören.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/delete_grasps

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/delete_grasps

Request

Wenn keine grasp_ids angegeben werden, werden alle Greifpunkte gelöscht, die zu den
Templates mit den angegebenen template_ids gehören. Die Liste template_ids darf nicht
leer sein.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"grasp_ids": [
"string"

],
"template_ids": [
"string"

]
}

}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "delete_grasps",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

Roboception GmbH
Handbuch: rc_reason_stack

238 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

get_symmetric_grasps

gibt alle Greifpunkte zurück, die symmetrisch zum angegebenen Greifpunkt sind.“

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/get_symmetric_

→˓grasps

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/get_symmetric_grasps

Request

Die Definition des Typs grasp wird in Setzen von Greifpunkten (Abschnitt 6.3.7.2) beschrie-
ben.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"grasp": {
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"replication": {

"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"template_id": "string"

}
}

}

Response

Roboception GmbH
Handbuch: rc_reason_stack

239 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Der erste Greifpunkt in der Rückgabeliste ist derselbe, der dem Service übergeben wurde.
Wenn das Template keine exakte Symmetrie hat, wird nur der übergebene Greifpunkt zu-
rückgeliefert. Wenn das Template eine kontinuierliche Symmetrie hat (z.B. ein zylindrisches
Objekt), werden nur 12 gleichverteilte Greifpunkte zurückgeliefert.

Die Definition des Typs grasp wird in Setzen von Greifpunkten (Abschnitt 6.3.7.2) beschrie-
ben.

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "get_symmetric_grasps",
"response": {

"grasps": [
{

"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"replication": {
"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"template_id": "string"

}
],
"return_code": {

"message": "string",
"value": "int16"

}
}

}

set_pose_prior

speichert eine Posenvorgabe für das angegebene Template auf dem rc_reason_stack.
Alle Posenvorgaben sind dauerhaft gespeichert, auch über Firmware-Updates und -
Wiederherstellungen hinweg.

Roboception GmbH
Handbuch: rc_reason_stack

240 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/set_pose_prior

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/set_pose_prior

Request

Die Definition des Typs pose_prior wird in Setzen von Posenvorgaben (Abschnitt 6.3.7.3)
beschrieben.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"pose_prior": {
"id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"template_id": "string"

}
}

}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "set_pose_prior",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_all_pose_priors

Ersetzt die gesamte Liste von Posenvorgaben auf dem rc_reason_stack für das angegebe-
ne Template.

Details

Dieser Service kann wie folgt aufgerufen werden.

Roboception GmbH
Handbuch: rc_reason_stack

241 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/set_all_pose_

→˓priors

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/set_all_pose_priors

Request

Die Definition des Typs pose_prior wird in Setzen von Posenvorgaben (Abschnitt 6.3.7.3)
beschrieben.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"pose_priors": [
{

"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"template_id": "string"

}
],
"template_id": "string"

}
}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "set_all_pose_priors",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_pose_priors

gibt alle definierten Posenvorgaben mit den angegebenen IDs (pose_prior_ids) zurück, die
zu den Templates mit den angegebenen template_ids gehören.

Details

Roboception GmbH
Handbuch: rc_reason_stack

242 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/get_pose_priors

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/get_pose_priors

Request

Wenn keine pose_prior_ids angegeben werden, werden alle Posenvorgaben zu den an-
gegebenen template_ids zurückgeliefert. Wenn keine template_ids angegeben werden,
werden alle Posenvorgaben mit den geforderten pose_prior_ids zurückgeliefert. Wenn gar
keine IDs angegeben werden, werden alle gespeicherten Posenvorgaben zurückgeliefert.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"pose_prior_ids": [
"string"

],
"template_ids": [
"string"

]
}

}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "get_pose_priors",
"response": {
"pose_priors": [
{

"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"template_id": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

Roboception GmbH
Handbuch: rc_reason_stack

243 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

delete_pose_priors

löscht alle Posenvorgaben mit den angegebenen pose_prior_ids, die zu den Templates mit
den angegebenen template_ids gehören.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/services/delete_pose_

→˓priors

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/delete_pose_priors

Request

Wenn keine pose_prior_ids angegeben werden, werden alle Posenvorgaben gelöscht, die
zu den Templates mit den angegebenen template_ids gehören. Die Liste template_ids
darf nicht leer sein.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"pose_prior_ids": [
"string"

],
"template_ids": [
"string"

]
}

}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "delete_pose_priors",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.3.7.12 Rückgabecodes

Zusätzlich zur eigentlichen Serviceantwort gibt jeder Service einen sogenannten return_code beste-
hend aus einem Integer-Wert und einer optionalen Textnachricht zurück. Erfolgreiche Service-Anfragen
werden mit einem Wert von 0 quittiert. Positive Werte bedeuten, dass die Service-Anfrage zwar erfolg-
reich bearbeitet wurde, aber zusätzliche Informationen zur Verfügung stehen. Negative Werte bedeu-
ten, dass Fehler aufgetreten sind. Für den Fall, dass mehrere Rückgabewerte zutreffend wären, wird
der kleinste zurückgegeben, und die entsprechenden Textnachrichten werden in return_code.message
akkumuliert.

Die folgende Tabelle listet die möglichen Rückgabecodes auf:

Roboception GmbH
Handbuch: rc_reason_stack

244 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

Tab. 6.44: Rückgabecodes der Services des CADMatch-Moduls
Code Beschreibung

0 Erfolgreich
-1 Ungültige(s) Argument(e)
-2 Ein interner Fehler ist aufgetreten.
-3 Ein interner Timeout ist aufgetreten, beispielsweise während der Objekterkennung.
-4 Die maximal erlaubte Zeitspanne für die interne Akquise der Bilddaten wurde

überschritten.
-8 Das Modul befindet sich in einem Zustand, in welchem dieser Service nicht aufgerufen

werden kann. Beispielsweise muss die Stereo-Matching Qualität quality mindestens
Medium sein.

-9 Ungültige Lizenz
-10 Das neue Element konnte nicht hinzugefügt werden, da die maximal speicherbare Anzahl

an Load Carriern oder ROIs überschritten wurde.
-11 Sensor nicht verbunden, nicht unterstützt oder nicht bereit.
-12 Ressource ausgelastet, z.B. wenn trigger_dump zu häufig aufgerufen wird
10 Die maximal speicherbare Anzahl an Load Carriern oder ROIs wurde erreicht.
11 Existierende Daten wurden überschrieben.

100 Die angefragten Load Carrier wurden in der Szene nicht gefunden.
101 Keiner der gefundenen Greifpunkte ist erreichbar.
102 Der erkannte Load Carrier ist leer.
103 Alle berechneten Greifpunkte sind in Kollision.
106 Die Liste der zurückgelieferten Greifpunkte wurde auf die besten 100 Greifpunkte gekürzt.
110 Hinweise für die Einrichtung der Anwendung, z.B. Reduzieren des Abstands von der

Kamera, Setzen einer Region of Interest.
113 Kein Greifer für die Kollisionsprüfung gefunden.
114 Kollisionsprüfung während Entnahme wurde nicht durchgeführt, z.B. weil kein Load Carrier

oder kein Greif-Offset angegeben wurden.
151 Das Objekt-Template hat eine kontinuierliche Symmetrie.
152 Die Objekte liegen außerhalb der angegebenen Region of Interest, außerhalb des Load

Carriers oder außerhalb des Bildes.
153 Es konnten keine Kanten im Kamerabild erkannt werden. Überprüfen Sie die

Kantenempfindlichkeit.
999 Zusätzliche Hinweise für die Anwendungsentwicklung

6.3.7.13 Template API

Für den Upload, Download, das Auflisten und Löschen von Templates werden spezielle REST-API-
Endpunkte zur Verfügung gestellt. Templates können auch über die Web GUI hoch- und runtergeladen
werden. Die Templates beinhalten die Greifpunkte und Posenvorgaben, falls Greifpunkte oder Posen-
vorgaben konfiguriert wurden. Bis zu 50 Templates können gleichzeitig auf dem rc_reason_stack ge-
speichert werden.

GET /templates/rc_cadmatch
listet alle rc_cadmatch-Templates auf.

Musteranfrage

GET /api/v2/templates/rc_cadmatch HTTP/1.1

Musterantwort

HTTP/1.1 200 OK
Content-Type: application/json

[

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

245 Rev: 26.01.4
Status: 30.01.2026

6.3. Detektions- und Messmodule

(Fortsetzung der vorherigen Seite)

{
"id": "string"

}
]

Antwort-Header

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung (Rückgabewert: Array der Templates)

• 404 Not Found – Modul nicht gefunden

Referenzierte Datenmodelle

• Template (Abschnitt 7.2.3)

GET /templates/rc_cadmatch/{id}
ruft ein rc_cadmatch-Template ab. Falls der angefragte Content-Typ application/octet-stream ist,
wird das Template als Datei zurückgegeben.

Musteranfrage

GET /api/v2/templates/rc_cadmatch/<id> HTTP/1.1

Musterantwort

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameter

• id (string) – ID des Templates (obligatorisch)

Antwort-Header

• Content-Type – application/json application/ubjson application/octet-stream

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung (Rückgabewert: Template)

• 404 Not Found – Modul oder Template wurden nicht gefunden.

Referenzierte Datenmodelle

• Template (Abschnitt 7.2.3)

PUT /templates/rc_cadmatch/{id}
erstellt oder aktualisiert ein rc_cadmatch-Template.

Musteranfrage

PUT /api/v2/templates/rc_cadmatch/<id> HTTP/1.1
Accept: multipart/form-data application/json

Musterantwort

Roboception GmbH
Handbuch: rc_reason_stack

246 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.3. Detektions- und Messmodule

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameter

• id (string) – ID des Templates (obligatorisch)

Formularparameter

• file – Template-Datei (obligatorisch)

Anfrage-Header

• Accept – multipart/form-data application/json

Antwort-Header

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung (Rückgabewert: Template)

• 400 Bad Request – Template ist ungültig oder die maximale Zahl an Templates
wurde erreicht.

• 403 Forbidden – Verboten, z.B. weil keine gültige Lizenz für das CADMatch-
Modul vorliegt.

• 404 Not Found – Modul oder Template wurden nicht gefunden.

• 413 Request Entity Too Large – Template ist zu groß.

Referenzierte Datenmodelle

• Template (Abschnitt 7.2.3)

DELETE /templates/rc_cadmatch/{id}
entfernt ein rc_cadmatch-Template.

Musteranfrage

DELETE /api/v2/templates/rc_cadmatch/<id> HTTP/1.1
Accept: application/json application/ubjson

Parameter

• id (string) – ID des Templates (obligatorisch)

Anfrage-Header

• Accept – application/json application/ubjson

Antwort-Header

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung

• 403 Forbidden – Verboten, z.B. weil keine gültige Lizenz für das CADMatch-
Modul vorliegt.

• 404 Not Found – Modul oder Template wurden nicht gefunden.

Roboception GmbH
Handbuch: rc_reason_stack

247 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.4. Konfigurationsmodule

6.4 Konfigurationsmodule

Der rc_reason_stack bietet mehrere verschiedene Konfigurationsmodule, welche es dem Nutzer er-
möglichen, den rc_reason_stack für spezielle Anwendungen zu konfigurieren.

Die Konfigurationsmodule sind:

• Hand-Auge-Kalibrierung (rc_hand_eye_calibration, Abschnitt 6.4.1) ermöglicht dem Benut-
zer, die Kamera entweder über die Web GUI oder die REST-API zu einem Roboter zu kali-
brieren.

• CollisionCheck (rc_collision_check, Abschnitt 6.4.2) bietet eine einfache Möglichkeit zu prü-
fen, ob ein Greifer in Kollision ist.

• Kamerakalibrierung (rc_stereocalib, Abschnitt 6.4.3) ermöglicht die Überprüfung und Durch-
führung der Kamerakalibrierung über die Web GUI (Abschnitt 7.1).

• IOControl und Projektor-Kontrolle (rc_iocontrol, Abschnitt 6.4.4) bietet die Kontrolle über
die Ein- und Ausgänge der Kamera mit speziellen Betriebsarten zur Kontrolle eines exter-
nen Musterprojektors.

Diese Softwaremodule sind pipelinespezifisch, was heißt, dass sie innerhalb jeder Kamerapipeline lau-
fen. Änderungen ihrer Einstellungen oder Parameter gelten nur für die zugehörige Pipeline und haben
keinen Einfluss auf andere Kamerapipelines auf dem rc_reason_stack.

6.4.1 Hand-Auge-Kalibrierung

Für Anwendungen, bei denen die Kamera in eines oder mehrere Robotersysteme integriert wird,
muss sie zum jeweiligen Roboter-Koordinatensystem kalibriert werden. Zu diesem Zweck wird der
rc_reason_stack mit einer internen Kalibrierroutine, dem Modul zur Hand-Auge-Kalibrierung, ausge-
liefert. Dieses Modul ist ein Basismodul, welches auf jedem rc_reason_stack verfügbar ist.

Bemerkung: Dieses Softwaremodul ist pipelinespezifisch. Änderungen seiner Einstellungen oder
Parameter betreffen nur die zugehörige Kamerapipeline und haben keinen Einfluss auf die anderen
Pipelines, die auf dem rc_reason_stack laufen.

Bemerkung: Für die Hand-Auge-Kalibrierung ist es völlig unerheblich, in Bezug auf welches be-
nutzerdefinierte Roboter-Koordinatensystem die Kamera kalibriert wird. Hierbei kann es sich um
einen Endeffektor des Roboters (z.B. Flansch oder Tool Center Point (Werkzeugmittelpunkt)) oder
um einen beliebigen anderen Punkt in der Roboterstruktur handeln. Einzige Voraussetzung für die
Hand-Auge-Kalibrierung ist, dass die Pose (d.h. Positions- und Rotationswerte) dieses Roboter-
Koordinatensystems in Bezug auf ein benutzerdefiniertes externes Koordinatensystem (z.B. Welt
oder Roboter-Montagepunkt) direkt von der Robotersteuerung erfasst und an das Kalibriermodul
übertragen werden kann.

Die Kalibrierroutine (Abschnitt 6.4.1.3) ist ein benutzerfreundliches mehrstufiges Verfahren, für das
mit einem Kalibriermuster gearbeitet wird. Entsprechende Kalibriermuster können von Roboception
bezogen werden.

6.4.1.1 Kalibrierschnittstellen

Für die Durchführung der Hand-Auge-Kalibrierung stehen die folgenden beiden Schnittstellen zur Ver-
fügung:

1. Alle Services und Parameter dieses Moduls, die für eine programmgesteuerte Durchführung der
Hand-Auge-Kalibrierung benötigt werden, sind in der REST-API-Schnittstelle (Abschnitt 7.2) des
rc_reason_stack enthalten. Der REST-API-Name dieses Moduls lautet rc_hand_eye_calibration
und seine Services werden in Services (Abschnitt 6.4.1.5) erläutert.

Roboception GmbH
Handbuch: rc_reason_stack

248 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

Bemerkung: Für den beschriebenen Ansatz wird eine Netzwerkverbindung zwischen dem
rc_reason_stack und der Robotersteuerung benötigt, damit die Steuerung die Roboterposen
an das Kalibriermodul des rc_reason_stack übertragen kann.

2. Für Anwendungsfälle, bei denen sich die Roboterposen nicht programmgesteuert an das Mo-
dul zur Hand-Auge-Kalibrierung des rc_reason_stack übertragen lassen, sieht die Seite Hand-
Auge-Kalibrierung unter dem Menüpunkt Konfiguration in der gewünschten Pipeline der Web GUI
(Abschnitt 7.1) einen geführten Prozess vor, mit dem sich die Kalibrierroutine manuell durchfüh-
ren lässt.

Bemerkung: Während der Kalibrierung muss der Benutzer die Roboterposen, auf die über
das jeweilige Teach-in- oder Handheld-Gerät zugegriffen werden muss, manuell in die Web
GUI eingeben.

6.4.1.2 Kameramontage

Wie in Abb. 6.15 und Abb. 6.17 dargestellt, ist für die Montage der Kamera zwischen zwei unterschied-
lichen Anwendungsfällen zu unterscheiden:

a. Die Kamera wird am Roboter montiert, d.h. sie ist mechanisch mit einem Roboterpunkt (d.h.
Flansch oder flanschmontiertes Werkzeug) verbunden und bewegt sich demnach mit dem Robo-
ter.

b. Die Kamera ist nicht am Roboter montiert, sondern an einem Tisch oder anderen Ort in der
Nähe des Roboters befestigt und verbleibt daher verglichen mit dem Roboter in einer statischen
Position.

Die allgemeine Kalibrierroutine (Abschnitt 6.4.1.3) ist in beiden Anwendungsfällen sehr ähnlich. Sie un-
terscheidet sich jedoch hinsichtlich der semantischen Auslegung der Ausgabedaten, d.h. der erhaltenen
Kalibriertransformation, und hinsichtlich der Befestigung des Kalibriermusters.

Kalibrierung einer robotergeführten Kamera Soll eine robotergeführte Kamera zum Roboter kali-
briert werden, so muss das Kalibriermuster in einer statischen Position zum Roboter, z.B. auf
einem Tisch oder festen Sockel, befestigt werden (siehe Abb. 6.15).

Warnung: Es ist äußerst wichtig, dass sich das Kalibriermuster in Schritt 2 der Kalibrierrou-
tine (Abschnitt 6.4.1.3) nicht bewegt. Daher wird dringend empfohlen, das Muster in seiner
Position sicher zu fixieren, um unbeabsichtigte Bewegungen, wie sie durch Vibrationen, Ka-
belbewegungen oder Ähnliches ausgelöst werden, zu verhindern.

Das Ergebnis der Kalibrierung (Schritt 3 der Kalibrierroutine, Abschnitt 6.4.1.3) ist eine
Pose Trobot

camera, die die (zuvor unbekannte) relative Transformation zwischen dem Kamera-
Koordinatensystem und dem benutzerdefinierten Roboter -Koordinatensystem beschreibt, sodass
Folgendes gilt:

probot = Rrobot
camera · pcamera + trobot

camera , (6.1)

wobei probot = (𝑥, 𝑦, 𝑧)𝑇 ein 3D-Punkt ist, dessen Koordinaten im Roboter -Koordinatensystem
angegeben werden, pcamera denselben Punkt im Kamera-Koordinatensystem darstellt, und Rrobot

camera
sowie trobot

camera die 3×3 Drehmatrix und den 3×1 Translationsvektor für eine Pose Trobot
camera angeben.

In der Praxis wird die Rotation für das Kalibrierergebnis und die Roboterposen als Eulerwinkel
oder Quaternion anstatt einer Rotationsmatrix definiert (siehe Formate für Posendaten, Abschnitt
11.1).

Roboception GmbH
Handbuch: rc_reason_stack

249 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

robot

ext

camera

T robot
ext

Tcamera
robot

calibration grid

Abb. 6.15: Wichtige Koordinatensysteme und Transformationen für die Kalibrierung einer roboter-
geführten Kamera: Sie wird mit einer festen relativen Position zu einem benutzerdefinierten Robo-
ter -Koordinatensystem (z.B. Flansch oder Werkzeugmittelpunkt) montiert. Es ist wichtig, dass die
Pose Text

robot des Roboter -Koordinatensystems in Bezug auf ein benutzerdefiniertes externes Refe-
renzkoordinatensystem (ext) während der Kalibrierroutine gemessen werden kann. Das Ergebnis
des Kalibriervorgangs ist die gewünschte Kalibriertransformation Trobot

camera, d.h. die Pose des Kamera-
Koordinatensystems im benutzerdefinierten Roboter -Koordinatensystem.

Zusätzliche Benutzereingaben werden benötigt, falls die Bewegung des Roboters so beschränkt
ist, dass der Tool Center Point (TCP) nur um eine Achse rotieren kann. Das ist üblicherweise
für Roboter mit vier Freiheitsgraden (4DOF) der Fall, welche häufig zur Palettierung eingesetzt
werden. In diesem Fall muss der Benutzer angeben, welche Achse des Roboterkoordinatensys-
tems der Rotationsachse des TCP entspricht. Außerdem muss der vorzeichenbehaftete Offset
vom TCP zum Kamerakoordinatensystem entlang der TCP-Rotationsachse angegeben werden.
Abb. 6.16 zeigt die Situation.

Für den rc_visard und rc_visard NG befindet sich der Ursprung des Kamerakoordinatensystems
im optischen Zentrum der linken Kamera. Die ungefähre Position wird im Abschnitt Coordinate
frames im rc_visard Handbuch angegeben.

robot

ext

camera

T robot
ext Tcamera

robot

calibration grid

TCP rotation axis

TCP offset

Abb. 6.16: Im Fall eines 4DOF-Roboters müssen die TCP-Rotationsachse und der Offset vom TCP zum
Kamerakoordinatensystem entlang der TCP-Rotationsachse angegeben werden. Im dargestellten Fall
ist der Offset negativ.

Kalibrierung einer statisch montierten Kamera In Anwendungsfällen, bei denen die Kamera sta-
tisch verglichen zum Roboter montiert wird, muss das Kalibriermuster, wie im Beispiel in Abb.

Roboception GmbH
Handbuch: rc_reason_stack

250 Rev: 26.01.4
Status: 30.01.2026

https://doc.rc-visard.com/latest/en/hardware_spec.html#sect-coordinate-frames
https://doc.rc-visard.com/latest/en/hardware_spec.html#sect-coordinate-frames

6.4. Konfigurationsmodule

6.17 und Abb. 6.18 angegeben, angebracht werden.

Bemerkung: Für das Modul zur Hand-Auge-Kalibrierung spielt es keine Rolle, wie das Ka-
libriermuster in Bezug auf das benutzerdefinierte Roboter -Koordinatensystem genau ange-
bracht und positioniert wird. Das bedeutet, dass die relative Positionierung des Kalibriermus-
ters zu diesem Koordinatensystem weder bekannt sein muss, noch für die Kalibrierroutine
relevant ist (siehe in Abb. 6.18).

Warnung: Es ist äußerst wichtig, das Kalibriermuster sicher am Roboter anzubringen, damit
sich seine relative Position in Bezug auf das in Schritt 2 der Kalibrierroutine (Abschnitt 6.4.1.3)
vom Benutzer definierte Roboter -Koordinatensystem nicht verändert.

In diesem Anwendungsfall ist das Ergebnis der Kalibrierung (Schritt 3 der Kalibrierroutine, Ab-
schnitt 6.4.1.3) die Pose Text

camera, die die (zuvor unbekannte) relative Transformation zwischen
dem Kamera-Koordinatensystem und dem benutzerdefinierten Roboter -Koordinatensystem be-
schreibt, sodass Folgendes gilt:

pext = Rext
camera · pcamera + text

camera , (6.2)

wobei pext = (𝑥, 𝑦, 𝑧)𝑇 ein 3D-Punkt im externen Referenzkoordinatensystem ext, pcamera derselbe
Punkt im Kamerakoordinatensystem camera und Rext

camera sowie text
camera die 3 × 3 Rotationsmatrix

und 3×1 Translationsvektor der Pose Text
camera sind. In der Praxis wird die Rotation für das Kalibrie-

rergebnis und die Roboterposen als Eulerwinkel oder Quaternion anstatt einer Rotationsmatrix
definiert (siehe Formate für Posendaten, Abschnitt 11.1).

robot

ext

camera

T robot
ext Tcamera

ext

calibration

grid

Abb. 6.17: Wichtige Koordinatensysteme und Transformationen für die Kalibrierung einer statisch mon-
tierten Kamera: Sie wird mit einer festen Position relativ zu einem benutzerdefinierten externen Re-
ferenzkoordinatensystem ext (z.B. Weltkoordinatensystem oder Roboter-Montagepunkt) montiert. Es
ist wichtig, dass die Pose Text

robot des benutzerdefinierten Roboter -Koordinatensystems in Bezug auf
dieses Koordinatensystem während der Kalibrierroutine gemessen werden kann. Das Ergebnis des
Kalibrierprozesses ist die gewünschte Kalibriertransformation Text

camera, d.h. die Pose des Kamera-
Koordinatensystems im benutzerdefinierten externen Koordinatensystem ext.

Roboception GmbH
Handbuch: rc_reason_stack

251 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

robot

camera

robot

camera

Abb. 6.18: Alternative Montageoptionen für die Befestigung des Kalibriermusters am Roboter

Zusätzliche Benutzereingaben werden benötigt, falls die Bewegung des Roboters so beschränkt
ist, dass der Tool Center Point (TCP) nur um eine Achse rotieren kann. Das ist üblicherweise
für Roboter mit vier Freiheitsgraden (4DOF) der Fall, welche häufig zur Palettierung eingesetzt
werden. In diesem Fall muss der Benutzer angeben, welche Achse des Roboterkoordinatensys-
tems der Rotationsachse des TCP entspricht. Außerdem muss der vorzeichenbehaftete Offset
vom TCP zur sichtbaren Oberfläche des Kalibriermusters entlang der TCP-Rotationsachse ange-
geben werden. Das Kalibriermuster muss so angebracht werden, dass die TCP-Rotationsachse
orthogonal zum Kalibriermuster verläuft. Abb. 6.19 zeigt die Situation.

ext

camera

T robot
ext

Tcamera
ext

calibration
grid

robot

TCP rotation axis

TCP offset

Abb. 6.19: Im Fall eines 4DOF-Roboters müssen die TCP-Rotationsachse und der Offset vom TCP zur
sichtbaren Oberfläche des Kalibriermusters entlang der TCP-Rotationsachse angegeben werden. Im
dargestellten Fall ist der Offset negativ.

6.4.1.3 Kalibrierroutine

Die Hand-Auge-Kalibrierung kann manuell über die Web GUI (Abschnitt 7.1) oder programmgesteuert
über die REST-API-Schnittstelle (Abschnitt 7.2) durchgeführt werden. Die allgemeine Vorgehensweise
wird beschrieben anhand der Schritte in der Web GUI in der gewünschten Pipeline unter Konfiguration
→ Hand-Auge-Kalibrierung. Verweise auf die zugehörigen REST-API Aufrufe werden an den entspre-
chenden Stellen bereitgestellt.

Roboception GmbH
Handbuch: rc_reason_stack

252 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

Schritt 1: Hand-Auge-Kalibrierstatus

Die Startseite des Assistenten für die Hand-Auge-Kalibrierung zeigt den aktuellen Status der Hand-
Auge-Kalibrierung. Wenn eine Hand-Auge-Kalibrierung auf dem rc_reason_stack gespeichert ist, wird
die Kalibriertransformation hier angezeigt (siehe Abb. 6.20).

Abb. 6.20: Aktueller Status der Hand-Auge-Kalibrierung falls eine Hand-Auge-Kalibrierung gespeichert
ist

Um den Status der Hand-Auge-Kalibrierung programmgesteuert abzufragen bietet die REST-API
den Service get_calibration (siehe Services, Abschnitt 6.4.1.5). Eine vorhandene Hand-Auge-
Kalibrierung kann über Kalibrierung entfernen oder den REST-API Service remove_calibration (siehe
Services, Abschnitt 6.4.1.5) gelöscht werden.

Durch Klick auf Kalibrierung durchführen wird eine neue Hand-Auge-Kalibrierung gestartet.

Schritt 2: Testen der Mustererkennung

Um gute Kalibrierergebnisse zu erzielen müssen die Bilder gut belichtet sein, damit das Kalibriermuster
genau und verlässlich erkannt werden kann. In diesem Schritt kann die Erkennung des Kalibriermus-
ters getestet werden und die Kameraeinstellungen können angepasst werden, falls nötig. Falls Teile des
Kalibriermusters überbelichtet sind, werden die zugehörigen Quadrate rot hervorgehoben. Die erfolg-
reiche Erkennung des Kalibriermusters wird durch grüne Häkchen auf jedem Quadrat und einen dicken
grünen Rahmen um das Kalibriermuster visualisiert, wie in Abb. 6.21 dargestellt ist.

Roboception GmbH
Handbuch: rc_reason_stack

253 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

Abb. 6.21: Testen der Mustererkennung

Schritt 3: Posen aufnehmen

In diesem Schritt werden Bilder des Kalibriermusters an verschiedenen Roboterposen aufgenommen.
Dabei ist sicherzustellen, dass das Kalibriermuster bei allen Posen im linken Kamerabild vollständig
sichtbar ist. Zudem müssen die Roboterpositionen sorgsam ausgewählt werden, damit das Kalibrier-
muster aus unterschiedlichen Perspektiven aufgenommen wird. Abb. 6.22 zeigt eine schematische Dar-
stellung der empfohlenen acht Ansichten.

Roboception GmbH
Handbuch: rc_reason_stack

254 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

Abb. 6.22: Empfohlene Ansichten des Kalibriermusters während des Kalibriervorgangs. Im Fall von
4DOF-Robotern müssen andere Ansichten gewählt werden, welche so unterschiedlich wie möglich
sein sollten.

Warnung: Die Kalibrierqualität, d.h. die Genauigkeit des berechneten Kalibrierergebnisses, hängt
von den Ansichten des Kalibriermusters ab. Je vielfältiger die Perspektiven sind, desto besser gelingt
die Kalibrierung. Werden sehr ähnliche Ansichten ausgewählt, d.h. wird die Pose des Roboters vor
der Aufnahme einer neuen Kalibrierpose nur leicht variiert, kann dies zu einer ungenauen Schätzung
der gewünschten Kalibriertransformation führen.

Nachdem der Roboter die jeweilige Kalibrierposition erreicht hat, muss die entsprechende Pose Text
robot

des benutzerdefinierten Roboter -Koordinatensystems im benutzerdefinierten externen Referenzkoordi-
natensystem ext an das Modul zur Hand-Auge-Kalibrierung übertragen werden. Hierfür bietet das Soft-
waremodul verschiedene Slots, in denen die gemeldeten Posen mit den zugehörigen Bildern der linken
Kamera hinterlegt werden können. Alle gefüllten Slots werden dann verwendet, um die gewünschte
Kalibriertransformation zwischen dem Kamera-Koordinatensystem und dem benutzerdefinierten Robo-
ter -Koordinatensystem (bei robotergeführten Kameras) bzw. dem benutzerdefinierten externen Refe-
renzkoordinatensystem ext (bei statisch montierten Kameras) zu berechnen.

In der Web GUI kann der Nutzer zwischen vielen verschiedenen Formaten für die Kalibrierposen wählen
(siehe Formate für Posendaten, Abschnitt 11.1). Wird die Kalibrierung über die REST-API vorgenom-
men, dann werden die Kalibrierdaten immer im Format XYZ+Quaternion angegeben. Die Web GUI
bietet acht Slots (Nahaufnahme 1, Nahaufnahme 2, usw.), in die der Benutzer die Posen manuell ein-
tragen kann. Neben jedem Slot wird eine Empfehlung für die Ansicht des Kalibriermusters angezeigt.
Der Roboter sollte für jeden Slot so bewegt werden, dass die empfohlene Ansicht erreicht wird.

Roboception GmbH
Handbuch: rc_reason_stack

255 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

Abb. 6.23: Setzen der ersten Kalibrierpose für die Hand-Auge-Kalibrierung bei einer statisch montierten
Kamera

Nach Klick auf Pose setzen kann die Pose des benutzerdefinierten Roboter -Koordinatensystems ma-
nuell in die entsprechenden Textfelder eingegeben werden. Durch Bild aufnehmen werden die Pose
und das aktuelle Kamerabild im jeweiligen Slot gespeichert.

Um diese Posen programmgesteuert zu übertragen, bietet die REST-API den Service set_pose (siehe
Services, Abschnitt 6.4.1.5).

Bemerkung: Der Zugriff auf die Posendaten des Roboters hängt vom Modell des Roboters und
seinem Hersteller ab. Möglicherweise lassen sie sich über ein im Lieferumfang des Roboters enthal-
tenes Teach-in- oder Handheld-Gerät ablesen.

Warnung: Es ist wichtig darauf zu achten, dass genaue und korrekte Werte eingegeben werden.
Selbst kleinste Ungenauigkeiten oder Tippfehler können dazu führen, dass die Kalibrierung fehl-

Roboception GmbH
Handbuch: rc_reason_stack

256 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

schlägt.

Die Web GUI zeigt die aktuell gespeicherten Kalibrierposen (nur mit den Slot-Nummern 0-7) und
die zugehörigen Kamerabilder an und ermöglicht auch das Löschen von einzelnen Posen über Po-
se löschen, oder das Löschen aller gesetzten Posen über Alle Posen löschen. In der REST-API kön-
nen die aktuell gespeicherten Kalibrierposen über get_poses abgefragt und über delete_poses oder
reset_calibration einzeln bzw. komplett gelöscht werden (siehe Services, Abschnitt 6.4.1.5).

Wenn mindestens vier Posen gesetzt wurden, gelangt man über die Schaltfläche Weiter zur Berech-
nung des Kalibrierergebnisses.

Bemerkung: Um die Transformation für die Hand-Auge-Kalibrierung erfolgreich zu berechnen, müs-
sen mindestens vier verschiedene Roboter-Kalibrierposen übertragen und in Slots hinterlegt werden.
Um Kalibrierfehler zu verhindern, die durch ungenaue Messungen entstehen können, sind mindes-
tens acht Kalibrierposen empfohlen.

Schritt 4: Kalibrierung berechnen

Bevor das Kalibrierergebnis berechnet werden kann, muss der Nutzer die korrekten Kalibrierparameter
angeben. Diese beinhalten die exakten Abmessungen des Kalibriermusters und die Art der Sensormon-
tage. Weiterhin kann die Kalibrierung von 4DOF-Robotern eingestellt werden. In diesem Fall müssen
die Rotationsachse, sowie der Offset vom TCP zum Kamerakoordinatensystem (für Kameras am Ro-
boter) oder zur Oberfläche des Kalibriermusters (für statische Kameras) angegeben werden. Für die
REST-API sind die entsprechenden Parameter (Abschnitt 6.4.1.4) aufgelistet.

Roboception GmbH
Handbuch: rc_reason_stack

257 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

Abb. 6.24: Setzen der Parameter und Berechnen der Hand-Auge-Kalibrierung in der Web GUI des
rc_reason_stack

Wenn die Parameter korrekt sind, kann durch Kalibrierung berechnen die gewünschte Kalibriertrans-
formation aus den aufgenommenen Kalibrierposen und den zugehörigen Kamerabildern berechnet
werden. Die REST-API bietet diese Funktion über den Service calibrate (siehe Services, Abschnitt
6.4.1.5).

Je nachdem, wie die Kamera montiert ist, wird dabei die Transformation (d.h. die Pose) zwischen
dem Kamera-Koordinatensystem und entweder dem benutzerdefinierten Roboter -Koordinatensystem
(bei robotergeführten Kameras) oder dem benutzerdefinierten externen Referenzkoordinatensystem
ext (bei statisch montierten Kameras) berechnet und ausgegeben (siehe Kameramontage, Abschnitt
6.4.1.2).

Damit der Benutzer die Qualität der resultierenden Kalibriertransformation beurteilen kann, werden die
translatorischen und rotatorischen Kalibrierfehler ausgegeben. Diese Werte werden aus der Varianz
des Kalibrierergebnisses berechnet.

Wenn der Kalibrierfehler nicht akzeptabel ist, können die Kalibrierparameter geändert und das Ergeb-
nis neu berechnet werden. Außerdem ist es möglich, zu Schritt 3 zurückzukehren, um mehr Posen
aufzunehmen oder die vorhandenen Posen zu aktualisieren.

Durch Klicken auf Kalibrierung speichern oder über den REST-API Service save_calibration (siehe
Services, Abschnitt 6.4.1.5) wird das Kalibrierergebnis gespeichert.

Roboception GmbH
Handbuch: rc_reason_stack

258 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

6.4.1.4 Parameter

Das Modul zur Hand-Auge-Kalibrierung wird in der REST-API als rc_hand_eye_calibration bezeichnet
und in der Web GUI (Abschnitt 7.1) in der gewünschten Pipeline unter Konfiguration → Hand-Auge
Kalibrierung dargestellt. Der Benutzer kann die Kalibrierparameter entweder dort oder über die REST-
API-Schnittstelle (Abschnitt 7.2) ändern.

Übersicht über die Parameter

Dieses Softwaremodul bietet folgende Laufzeitparameter:

Tab. 6.45: Laufzeitparameter des rc_hand_eye_calibration-
Moduls

Name Typ Min. Max. Default Beschreibung
grid_height float64 0.0 10.0 0.0 Höhe des Kalibriermusters in Me-

tern
grid_width float64 0.0 10.0 0.0 Breite des Kalibriermusters in Me-

tern
robot_mounted bool false true true Angabe, ob der rc_visard auf einem

Roboter montiert ist
tag_ids string - - - Optional, kommaseparierte Liste

der AprilTag IDs, die mit kalibriert
werden

tcp_offset float64 -10.0 10.0 0.0 Offset vom TCP entlang
tcp_rotation_axis

tcp_rotation_axis int32 -1 2 -1 -1 für aus, 0 für x, 1 für y, 2 für z

Beschreibung der Laufzeitparameter

Für die Beschreibungen der Parameter sind die in der Web GUI gewählten Namen der Parameter in
Klammern angegeben.

grid_width (Breite)

Breite des Kalibriermusters in Metern. Die Breite sollte mit sehr hoher Genauigkeit, vorzugs-
weise im Submillimeterbereich, angegeben werden.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/parameters?
→˓grid_width=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/parameters?grid_width=<value>

grid_height (Höhe)

Höhe des Kalibriermusters in Metern. Die Höhe sollte mit sehr hoher Genauigkeit, vorzugs-
weise im Submillimeterbereich, angegeben werden.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API version 2

Roboception GmbH
Handbuch: rc_reason_stack

259 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/parameters?
→˓grid_height=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/parameters?grid_height=<value>

robot_mounted (Sensormontage)

Ist dieser Parameter auf true gesetzt, dann ist die Kamera an einem Roboter montiert. Ist
er auf false gesetzt, ist sie statisch montiert und das Kalibriermuster ist am Roboter ange-
bracht.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/parameters?
→˓robot_mounted=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/parameters?robot_mounted=<value>

tcp_offset (TCP-Offset)

Der vorzeichenbehaftete Offset vom TCP zum Kamerakoordinatensystem (für Kameras auf
dem Roboter) oder der sichtbaren Oberfläche des Kalibriermusters (für statische Kameras)
entlang der TCP-Rotationsachse in Metern. Dies wird benötigt, falls die Roboterbewegung
eingeschränkt ist, sodass der TCP nur um eine Achse gedreht werden kann (z.B. bei 4DOF-
Robotern).

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/parameters?
→˓tcp_offset=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/parameters?tcp_offset=<value>

tcp_rotation_axis (TCP-Rotationsachse)

Die Achse des Roboterkoordinatensystems, um die der Roboter seinen TCP drehen kann.
0 für X-, 1 für Y- und 2 für Z-Achse. Dies wird benötigt falls, die Roboterbewegung ein-
geschränkt ist, sodass der TCP nur um eine Achse gedreht werden kann (z.B. bei 4DOF-
Robotern). -1 bedeutet, dass der Roboter seinen TCP um zwei unabhängige Achsen drehen
kann. tcp_offset wird in diesem Fall ignoriert.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/parameters?
→˓tcp_rotation_axis=<value>

Roboception GmbH
Handbuch: rc_reason_stack

260 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/parameters?tcp_rotation_axis=
→˓<value>

6.4.1.5 Services

Auf die Services, die die REST-API für die programmgesteuerte Durchführung der Hand-Auge-
Kalibrierung und für die Wiederherstellung der Modulparameter bietet, wird im Folgenden näher ein-
gegangen.

get_calibration

Hiermit wird die derzeit auf dem rc_reason_stack gespeicherte Hand-Auge-Kalibrierung ab-
gerufen.

Details

Dieser Service kann wie folgt aufgerufen werden.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/services/
→˓get_calibration

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/get_calibration

Request

Dieser Service hat keine Argumente.

Response

Das Feld error gibt den Kalibrierfehler in Pixeln an, der aus dem translatorischen Fehler
translation_error_meter und dem rotatorischen Fehler rotation_error_degree berech-
net wird. Dieser Wert wird nur aus Kompatibilitätsgründen mit älteren Versionen angegeben.
Die translatorischen und rotatorischen Fehler sollten bevorzugt werden.

Tab. 6.46: Rückgabewerte des get_calibration-Services
status success Beschreibung

0 true eine gültige Kalibrierung wurde zurückgegeben
2 false die Kalibrierung ist nicht verfügbar

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "get_calibration",
"response": {
"error": "float64",
"message": "string",
"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

261 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

(Fortsetzung der vorherigen Seite)

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"robot_mounted": "bool",
"rotation_error_degree": "float64",
"status": "int32",
"success": "bool",
"tags": [

{
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"size": "float64"

}
],
"translation_error_meter": "float64"

}
}

remove_calibration

Dieser Service löscht die persistente Hand-Auge-Kalibrierung auf dem rc_reason_stack.
Nach diesem Aufruf gibt der get_calibration Service zurück, dass keine Hand-Auge-
Kalibrierung vorliegt. Dieser Service löscht ebenfalls alle gespeicherten Kalibrierposen und
die zugehörigen Kamerabilder.

Details

Dieser Service kann wie folgt aufgerufen werden.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/services/
→˓remove_calibration

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/remove_calibration

Request

Dieser Service hat keine Argumente.

Response

Roboception GmbH
Handbuch: rc_reason_stack

262 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

Tab. 6.47: Rückgabewerte des get_calibration-Services
status success Beschreibung

0 true persistente Kalibrierung gelöscht, Gerät nicht mehr kalibriert
1 true keine persistente Kalibrierung gefunden, Gerät nicht kalibriert
2 false die Kalibrierung konnte nicht gelöscht werden

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "remove_calibration",
"response": {
"message": "string",
"status": "int32",
"success": "bool"

}
}

set_pose

Dieser Service setzt die Roboterpose als Kalibrierpose für die Hand-Auge-Kalibrierroutine
und nimmt das aktuelle Bild des Kalibriermusters auf.

Details

Dieser Service kann wie folgt aufgerufen werden.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/services/
→˓set_pose

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/set_pose

Request

Das slot-Argument wird verwendet, um den verschiedenen Kalibrierpositionen eindeutige
Ziffern im Wertebereich von 0-15 zuzuordnen. Wann immer der Service set_pose aufgeru-
fen wird, wird ein Kamerabild aufgezeichnet. Dieser Service schlägt fehl, wenn das Kalibrier-
muster im aktuellen Bild nicht erkannt werden kann.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"slot": "uint32"

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

263 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

(Fortsetzung der vorherigen Seite)

}
}

Response

Tab. 6.48: Rückgabewerte des set_pose-Services
status success Beschreibung

1 true Pose erfolgreich gespeichert
3 true Pose erfolgreich gespeichert. Es wurden genügend Posen für die

Kalibrierung gespeichert, d.h. die Kalibrierung kann durchgeführt
werden

4 false das Kalibriermuster wurde nicht erkannt, z.B. weil es im Kamerabild
nicht vollständig sichtbar ist

8 false keine Bilddaten verfügbar
12 false die angegebenen Orientierungswerte sind ungültig
13 false ungültige Slot-Nummer

Das Feld overexposed gibt an, ob Teile des Kalibriermusters bei diesem Bild überbelichtet
sind.

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "set_pose",
"response": {
"message": "string",
"overexposed": "bool",
"status": "int32",
"success": "bool"

}
}

get_poses

Dieser Service gibt die aktuell gespeicherten Kalibrierposen für die Hand-Auge-Kalibrierung
zurück.

Details

Dieser Service kann wie folgt aufgerufen werden.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/services/
→˓get_poses

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/get_poses

Request

Dieser Service hat keine Argumente.

Response

Roboception GmbH
Handbuch: rc_reason_stack

264 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

Tab. 6.49: Rückgabewerte des get_poses-Services
status success Beschreibung

0 true gespeicherte Posen werden zurückgeliefert
1 true keine Kalibrierposen verfügbar

Das Feld overexposed gibt an, ob Teile des Kalibriermusters bei diesem Bild überbelichtet
sind.

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "get_poses",
"response": {
"message": "string",
"poses": [

{
"overexposed": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"slot": "uint32",
"tag_ids": [
"string"

]
}

],
"status": "int32",
"success": "bool"

}
}

delete_poses

Dieser Service löscht die Kalibrierposen und die zugehörigen Bilder mit den angegebenen
Nummern in slots.

Details

Dieser Service kann wie folgt aufgerufen werden.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/services/
→˓delete_poses

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/delete_poses

Request

Roboception GmbH
Handbuch: rc_reason_stack

265 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

Das Argument slots gibt die Ziffern der Kalibrierposen an, die gelöscht werden sollen. Wenn
slots leer ist, werden keine Kalibrierposen gelöscht.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"slots": [
"uint32"

]
}

}

Response

Tab. 6.50: Rückgabewerte des delete_poses-Services
status success Beschreibung

0 true Posen erfolgreich gelöscht
1 true Keine Slots angegeben

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "delete_poses",
"response": {
"message": "string",
"status": "int32",
"success": "bool"

}
}

reset_calibration

Hiermit werden alle zuvor aufgenommenen Posen mitsamt der zugehörigen Bilder gelöscht.
Das letzte hinterlegte Kalibrierergebnis wird neu geladen. Dieser Service kann verwendet
werden, um die Hand-Auge-Kalibrierung (neu) zu starten.

Details

Dieser Service kann wie folgt aufgerufen werden.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/services/
→˓reset_calibration

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/reset_calibration

Request

Dieser Service hat keine Argumente.

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "reset_calibration",
"response": {

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

266 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

(Fortsetzung der vorherigen Seite)

"message": "string",
"status": "int32",
"success": "bool"

}
}

calibrate

Dieser Service dient dazu, das Ergebnis der Hand-Auge-Kalibrierung auf Grundlage der
über den Service set_pose konfigurierten Roboterposen zu berechnen und auszugeben.

Details

Damit die Kalibrierung für andere Module mit get_calibration verfügbar ist und persistent
gespeichert wird, muss save_calibration aufgerufen werden.

Bemerkung: Zur Berechnung der Transformation der Hand-Auge-Kalibrierung werden
mindestens vier Roboterposen benötigt (siehe set_pose). Empfohlen wird jedoch die Ver-
wendung von acht Kalibrierposen.

Dieser Service kann wie folgt aufgerufen werden.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/services/
→˓calibrate

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/calibrate

Request

Dieser Service hat keine Argumente.

Response

Das Feld error gibt den Kalibrierfehler in Pixeln an, der aus dem translatorischen Fehler
translation_error_meter und dem rotatorischen Fehler rotation_error_degree berech-
net wird. Dieser Wert wird nur aus Kompatibilitätsgründen mit älteren Versionen angegeben.
Die translatorischen und rotatorischen Fehler sollten bevorzugt werden.

Tab. 6.51: Rückgabewerte des calibrate-Services
status success Beschreibung

0 true Kalibrierung erfolgreich, das Kalibrierergebnis wurde
zurückgegeben.

1 false Nicht genügend Posen gespeichert, um die Kalibrierung
durchzuführen

2 false Das berechnete Ergebnis ist ungültig, bitte prüfen Sie die
Eingabewerte.

3 false Die angegebenen Abmessungen des Kalibriermusters sind
ungültig.

4 false Ungenügende Rotation, tcp_offset and tcp_rotation_axis
müssen angegeben werden

5 false Genügend Rotation verfügbar, tcp_rotation_axis muss auf -1
gesetzt werden

6 false Die Posen sind nicht unterschiedlich genug.

Roboception GmbH
Handbuch: rc_reason_stack

267 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "calibrate",
"response": {

"error": "float64",
"message": "string",
"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"robot_mounted": "bool",
"rotation_error_degree": "float64",
"status": "int32",
"success": "bool",
"tags": [

{
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"size": "float64"

}
],
"translation_error_meter": "float64"

}
}

save_calibration

Hiermit wird das Ergebnis der Hand-Auge-Kalibrierung persistent auf dem rc_reason_stack
gespeichert und das vorherige Ergebnis überschrieben. Das gespeicherte Ergebnis lässt
sich jederzeit über den Service get_calibration abrufen. Dieser Service löscht ebenfalls
alle gespeicherten Kalibrierposen und die zugehörigen Kamerabilder.

Details

Dieser Service kann wie folgt aufgerufen werden.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/services/
→˓save_calibration

Roboception GmbH
Handbuch: rc_reason_stack

268 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/save_calibration

Request

Dieser Service hat keine Argumente.

Response

Tab. 6.52: Rückgabewerte des save_calibration-Services
status success Beschreibung

0 true die Kalibrierung wurde erfolgreich gespeichert
1 false die Kalibrierung konnte nicht im Dateisystem gespeichert werden
2 false die Kalibrierung ist nicht verfügbar

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "save_calibration",
"response": {

"message": "string",
"status": "int32",
"success": "bool"

}
}

set_calibration

Hiermit wird die übergebene Transformation als Hand-Auge-Kalibrierung gesetzt.

Details

Die Kalibrierung wird im gleichen Format erwartet, in dem sie beim calibrate und
get_calibration Aufruf zurückgegeben wird. Die gegebene Kalibrierung wird auch per-
sistent gespeichert, indem intern save_calibration aufgerufen wird.

Dieser Service kann wie folgt aufgerufen werden.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/services/
→˓set_calibration

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/set_calibration

Request

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

269 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

(Fortsetzung der vorherigen Seite)

"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"robot_mounted": "bool",
"tags": [

{
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"size": "float64"

}
]

}
}

Response

Tab. 6.53: Rückgabewerte des set_calibration-Services
status success Beschreibung

0 true Setzen der Kalibrierung war erfolgreich
12 false die angegebenen Orientierungswerte sind ungültig

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "set_calibration",
"response": {
"message": "string",
"status": "int32",
"success": "bool"

}
}

reset_defaults

Hiermit werden die Werkseinstellungen der Parameter dieses Moduls wieder hergestellt und
angewandt („factory reset“). Dies hat keine Auswirkungen auf das Kalibrierergebnis oder auf
die während der Kalibrierung gefüllten Slots. Es werden lediglich Parameter, wie die Maße
des Kalibriermusters oder die Montageart des Sensors, zurückgesetzt.

Details

Dieser Service kann wie folgt aufgerufen werden.

API version 2

Roboception GmbH
Handbuch: rc_reason_stack

270 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_hand_eye_calibration/services/
→˓reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/reset_defaults

Request

Dieser Service hat keine Argumente.

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.4.2 CollisionCheck

6.4.2.1 Einleitung

Das CollisionCheck Modul ist ein optionales Modul, welches intern auf dem rc_reason_stack läuft, und
ist freigeschaltet, sobald eine gültige Lizenz für eines der Module ItemPick und ItemPickAI (Abschnitt
6.3.4) und BoxPick (Abschnitt 6.3.5) oder CADMatch (Abschnitt 6.3.7) und SilhouetteMatch und Sil-
houetteMatchAI (Abschnitt 6.3.6) vorhanden ist. Andernfalls benötigt dieses Modul eine separate Li-
zenz (Abschnitt 8.2).

Das Modul ermöglicht die Kollisionsprüfung zwischen dem Greifer und dem Load Carrier, der
Punktwolke (nur in Kombination mit CADMatch (Abschnitt 6.3.7) und SilhouetteMatch und Silhou-
etteMatchAI (Abschnitt 6.3.6)),‘ oder anderen detektierten Objekten (nur in Kombination mit CAD-
Match (Abschnitt 6.3.7) und SilhouetteMatch und SilhouetteMatchAI (Abschnitt 6.3.6)). Es ist in die Mo-
dule ItemPick und ItemPickAI (Abschnitt 6.3.4) und BoxPick (Abschnitt 6.3.5) und CADMatch (Abschnitt
6.3.7) und SilhouetteMatch und SilhouetteMatchAI (Abschnitt 6.3.6) integriert, kann aber auch als ei-
genständiges Modul genutzt werden. Die Greifermodelle für die Kollisionsprüfung müssen über das
GripperDB (Abschnitt 6.5.3) Modul definiert werden.

Warnung: Es werden nur Kollisionen zwischen dem Load Carrier und dem Greifer ge-
prüft, aber nicht Kollisionen mit dem Roboter, dem Flansch oder anderen Objekten. Nur
wenn check_collisions_with_point_cloud im entsprechenden Modul aktiviert ist, werden auch
Kollisionen zwischen dem Greifer und einer wasserdichten Version der Punktwolke geprüft.
Nur in Kombination mit CADMatch (Abschnitt 6.3.7) und SilhouetteMatch und SilhouetteMat-
chAI (Abschnitt 6.3.6), und nur wenn das gewählte Template eine Kollisionsgeometrie enthält und
check_collisions_with_matches im entsprechenden Modul aktiviert ist, werden auch Kollisionen
zwischen dem Greifer und den anderen detektierten Objekten geprüft. Kollisionen mit Objekten, die
nicht detektiert werden können, werden nicht geprüft.

Bemerkung: Dieses Softwaremodul ist pipelinespezifisch. Änderungen seiner Einstellungen oder
Parameter betreffen nur die zugehörige Kamerapipeline und haben keinen Einfluss auf die anderen
Pipelines, die auf dem rc_reason_stack laufen.

Roboception GmbH
Handbuch: rc_reason_stack

271 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

Tab. 6.54: Spezifikationen des CollisionCheck-Moduls
Kollisionsprüfung mit detektierter Load Carrier, detektierte Objekte (nur

CADMatch (Abschnitt 6.3.7) und SilhouetteMatch und
SilhouetteMatchAI (Abschnitt 6.3.6)), Basisebene (nur
SilhouetteMatch und SilhouetteMatchAI, Abschnitt 6.3.6),
Punktwolke (nur CADMatch (Abschnitt 6.3.7) und SilhouetteMatch
und SilhouetteMatchAI (Abschnitt 6.3.6))

Kollisionsprüfung verfügbar in ItemPick und ItemPickAI (Abschnitt 6.3.4) und BoxPick (Abschnitt
6.3.5), CADMatch (Abschnitt 6.3.7) und SilhouetteMatch und
SilhouetteMatchAI (Abschnitt 6.3.6)

6.4.2.2 Kollisionsprüfung

Stand-Alone Kollisionsprüfung

Der Service check_collisions triggert die Kollisionsprüfung zwischen dem angegebenen Greifer und
dem angegebenen Load Carrier für jeden der übergebenen Greifpunkte. Eine Kollisionsprüfung mit an-
deren Objekten oder der Punktwolke ist nicht möglich. Das CollisionCheck-Modul überprüft, ob sich der
Greifer in Kollision mit mindestens einem Load Carrier befindet, wenn sich der TCP an der Greifposition
befindet. Es können mehrere Load Carrier gleichzeitig getestet werden. Der Griff wird als Kollision mar-
kiert, wenn es mit mindestens einem der definierten Load Carriern zu einer Kollision kommen würde.

Das Argument pre_grasp_offset (Greif-Offset) kann für eine erweiterte Kollisionsprüfung genutzt wer-
den. Der Greif-Offset 𝑃𝑜𝑓𝑓 ist der Offset vom Greifpunkt 𝑃𝑔𝑟𝑎𝑠𝑝 zur Vorgreifposition 𝑃𝑝𝑟𝑒 im Koordinaten-
system des Greifpunkts (siehe Abb. 6.25). Wenn der Greif-Offset angegeben wird, werden Greifpunkte
auch dann als Kollisionen erkannt, wenn der Greifer an einem beliebigen Punkt während der linearen
Bewegung zwischen Vorgreifposition und Greifposition in Kollision geraten würde.

y

z

x

Ppre

Pgrasp
y

z
x

Poff=Pgrasp-Ppre

Abb. 6.25: Darstellung des Greif-Offsets für die Kollisionsprüfung. Im dargestellten Fall sind sowohl die
Vorgreifposition als auch die Greifposition kollisionsfrei, aber die Trajektorie zwischen diesen Punkten
hätte eine Kollision mit dem Load Carrier. Deswegen wird dieser Greifpunkt als Kollision erkannt.

Integrierte Kollisionsprüfung in anderen Modulen

Die Kollisionsprüfung ist in die Services der folgenden Softwaremodule integriert:

• ItemPick und ItemPickAI (Abschnitt 6.3.4): compute_grasps (siehe compute_grasps, Abschnitt
6.3.4.7

• BoxPick (Abschnitt 6.3.5): compute_grasps (siehe compute_grasps, Abschnitt 6.3.5.8

• SilhouetteMatch und SilhouetteMatchAI (Abschnitt 6.3.6): detect_object (siehe detect_object ,
Abschnitt 6.3.6.11)

Roboception GmbH
Handbuch: rc_reason_stack

272 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

• CADMatch (Abschnitt 6.3.7): detect_object (siehe detect_object , Abschnitt 6.3.7.10)

Jedem dieser Services kann ein collision_detection-Argument übergeben werden, das aus der ID
des Standardgreifers (gripper_id) und aus dem Greif-Offset (pre_grasp_offset, siehe Stand-Alone
Kollisionsprüfung, Abschnitt 6.4.2.2) besteht. Der Standardgreifer, der durch das gripper_id Argument
übergeben wird, wird nur für Greifpunkte verwendet, denen keine individuelle Greifer-ID zugewiesen
wurde. Wenn das collision_detection Argument übergeben wird, liefern diese Services nur die Greif-
punkte zurück, an denen der Greifer nicht in Kollision mit dem erkannten Load Carrier ist, oder für die
keine Kollisionsprüfung durchgeführt werden konnte. Wenn eine Load Carrier ID angegeben wurde,
wird die Kollisionsprüfung immer mit dem Load Carrier durchgeführt. Zusätzliche Funktionen für die
Kollisionsprüfung können abhängig vom Modul aktiviert werden.

Nur in CADMatch (Abschnitt 6.3.7) und SilhouetteMatch und SilhouetteMatchAI (Abschnitt
6.3.6), und nur wenn das gewählte Template eine Kollisionsgeometrie enthält und
check_collisions_with_matches im entsprechenden Modul aktiviert ist, werden auch Greifpunk-
te, bei denen der Greifer in Kollision mit anderen detektierten Objekten wäre, herausgefiltert. Dabei ist
das Objekt, auf dem sich der jeweilige Greifpunkt befindet, von der Prüfung ausgenommen.

Wenn ein Greifer für einen Greifpunkt in einem Template von CADMatch (Abschnitt 6.3.7) und Sil-
houetteMatch und SilhouetteMatchAI (Abschnitt 6.3.6) definiert ist, wird dieser Greifer und nicht der
im collision_detection Argument des detect_object Services angegebene Greifer zur Kollisions-
prüfung dieses Greifpunkts verwendet (siehe Setzen von Greifpunkten, Abschnitt 6.3.6.4). Die vom
detect_object Service zurückgelieferten Greifpunkte enthalten ein Flag collision_checked, das an-
gibt ob der jeweilige Greifpunkt auf Kollisionen geprüft wurde, und das Feld gripper_id. Wenn
collision_checked true ist, enthält das Feld gripper_id die ID des Greifers, der für die Kollisionsprü-
fung dieses Greifpunkts verwendet wurde. Dies ist die ID des Greifers, der für den jeweiligen Greifpunkt
definiert wurde, oder, falls kein Greifer definiert wurde, die ID des Greifers die im collision_detection
Argument des Serviceaufrufs angegeben wurde. Wenn collision_checked false ist, enthält gripper_id
die ID des Greifers, die für den Greifpunkt definiert wurde.

In SilhouetteMatch und SilhouetteMatchAI, Abschnitt 6.3.6 werden Kollisionen zwischen dem Greifer
und der Basisebene geprüft, wenn der Parameter check_collisions_with_base_plane in Silhouette-
Match aktiviert ist.

Kollisionen zwischen dem Greifer und einer wasserdichten Version der Punktwolke können geprüft wer-
den, wenn der Parameter check_collisions_with_point_cloud im jeweiligen Modul aktiviert ist.

Warnung: Es werden nur Kollisionen zwischen dem Load Carrier und dem Greifer ge-
prüft, aber nicht Kollisionen mit dem Roboter, dem Flansch oder anderen Objekten. Nur
wenn check_collisions_with_point_cloud im entsprechenden Modul aktiviert ist, werden auch
Kollisionen zwischen dem Greifer und einer wasserdichten Version der Punktwolke geprüft.
Nur in Kombination mit CADMatch (Abschnitt 6.3.7) und SilhouetteMatch und SilhouetteMat-
chAI (Abschnitt 6.3.6), und nur wenn das gewählte Template eine Kollisionsgeometrie enthält und
check_collisions_with_matches im entsprechenden Modul aktiviert ist, werden auch Kollisionen
zwischen dem Greifer und den anderen detektierten Objekten geprüft. Kollisionen mit Objekten, die
nicht detektiert werden können, werden nicht geprüft.

Nur in Kombination mit CADMatch, Abschnitt 6.3.7 und nur wenn
check_collisions_during_retraction in CADMatch aktiviert ist, ein Load Carrier und ein
Greif-Offset angegeben werden, werden Kollisionen zwischen dem Objekt im Greifer und den
Wänden des Load Carriers auf der linearen Trajektorie zwischen Greifpunkt und Vorgreifposition
geprüft.

Die Kollisionsprüfung wird von Laufzeitparametern beeinflusst, die weiter unten aufgeführt und be-
schrieben werden.

Roboception GmbH
Handbuch: rc_reason_stack

273 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

6.4.2.3 Parameter

Das CollisionCheck-Modul wird in der REST-API als rc_collision_check bezeichnet und in der Web
GUI (Abschnitt 7.1) in der gewünschten Pipeline unter Konfiguration → CollisionCheck dargestellt. Der
Benutzer kann die Parameter entweder dort oder über die REST-API-Schnittstelle (Abschnitt 7.2) än-
dern.

Übersicht der Parameter

Dieses Softwaremodul bietet folgende Laufzeitparameter:

Tab. 6.55: Applikationsspezifische Laufzeitparameter des
rc_collision_check Moduls

Name Typ Min Max Default Beschreibung
check_bottom bool false true true Aktiviert die Kollisionsprüfung mit

dem Boden des Load Carriers.
check_flange bool false false true Bestimmt, ob ein Greifpunkt als

Kollision erkannt wird, sobald der
Flansch innerhalb des Load Carri-
ers ist.

collision_dist float64 0.0 0.1 0.01 Minimaler Abstand in Metern zwi-
schen einem Greiferelement und
dem Load Carrier und/oder der Ba-
sisebene (nur SilhouetteMatch) für
einen kollisionsfreien Griff.

pointcloud_watertight bool false true true Ob ein wasserdichtes Disparitäts-
bild für die Kollisionsprüfung mit der
Punktwolke verwendet werden soll

Beschreibung der Laufzeitparameter

Jeder Laufzeitparameter ist durch eine eigene Zeile in der Web GUI im Abschnitt Einstellungen in der
gewünschten Pipeline unter Konfiguration → CollisionCheck repräsentiert. Der Web GUI-Name des
Parameters ist in Klammern hinter dem Namen des Parameters angegeben:

collision_dist (Sicherheitsabstand)

Minimaler Abstand in Metern zwischen einem Greiferelement und dem Load Carrier
und/oder der Basisebene (nur SilhouetteMatch) für einen kollisionsfreien Griff.

Bemerkung: Der Sicherheitsabstand wird nicht für die Kollisionsprüfung zwischen dem
Greifer und der Punktwolke, oder dem Greifer und anderen detektierten Objekten ange-
wendet. Er wird auch nicht verwendet um zu prüfen, ob sich der Flansch innerhalb des
Load Carriers befindet (check_flange).

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_collision_check/parameters?
→˓collision_dist=<value>

API Version 1 (veraltet)

Roboception GmbH
Handbuch: rc_reason_stack

274 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

PUT http://<host>/api/v1/nodes/rc_collision_check/parameters?collision_dist=<value>

check_flange (Flansch-Check)

Ermöglicht einen Sicherheitscheck mit dem Flansch, wie in Flanschradius (Abschnitt 6.5.3.2)
beschrieben. Wenn dieser Parameter gesetzt ist, gelten alle Griffe, bei denen der Flansch
innerhalb des Load Carriers wäre, als Kollisionen.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_collision_check/parameters?check_

→˓flange=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_collision_check/parameters?check_flange=<value>

check_bottom (Boden-Check)

Wenn dieser Check aktiviert ist, werden Kollisionen nicht nur mit den Load Carrier Wänden,
sondern auch mit dem Boden geprüft. Falls der TCP innerhalb der Kollisionsgeometrie (z.B.
innerhalb des Sauggreifers) liegt, ist es möglicherweise nötig, diesen Check zu deaktivieren.

Der Load Carrier Boden wird immer ausgenommen von der Kollisionsprüfung zwischen
dem Objekt im Greifer und dem Load Carrier während der Entnahme in Kombinati-
on mit ItemPick und ItemPickAI (Abschnitt 6.3.4) und BoxPick (Abschnitt 6.3.5), wenn
check_collisions_during_retraction aktiv ist.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_collision_check/parameters?check_

→˓bottom=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_collision_check/parameters?check_bottom=<value>

pointcloud_watertight (Wasserdichte Punktwolke)

Wenn diese Option aktiv ist, wird die Punktwolke für die Kollisionsprüfung wasserdicht ge-
macht. In einer wasserdichten Punktwolke werden Lücken im Disparitätsbild durch gültige
Messungen benachbarter Pixel interpoliert, sodass die resultierende Punktwolke keine Lö-
cher mehr aufweist. Dies führt zu konservativen Ergebnissen bei der Kollisionsprüfung.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_collision_check/parameters?
→˓pointcloud_watertight=<value>

API Version 1 (veraltet)

Roboception GmbH
Handbuch: rc_reason_stack

275 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

PUT http://<host>/api/v1/nodes/rc_collision_check/parameters?pointcloud_watertight=
→˓<value>

6.4.2.4 Statuswerte

Statuswerte des rc_collision_check-Moduls:

Tab. 6.56: Statuswerte des rc_collision_check-Moduls
Name Beschreibung
last_evaluated_grasps Anzahl der ausgewerteten Griffe
last_collision_free_grasps Anzahl der kollisionsfreien Griffe
collision_check_time Laufzeit der Kollisionsprüfung

6.4.2.5 Services

Die angebotenen Services von rc_collision_check können mithilfe der REST-API-
Schnittstelle (Abschnitt 7.2) oder der rc_reason_stack Web GUI (Abschnitt 7.1) ausprobiert und
getestet werden.

Das CollisionCheck-Modul stellt folgende Services zur Verfügung.

reset_defaults

stellt die Werkseinstellungen der Parameter dieses Moduls wieder her und wendet sie an
(„factory reset“).

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_collision_check/services/reset_

→˓defaults

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_collision_check/services/reset_defaults

Request

Dieser Service hat keine Argumente.

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

Roboception GmbH
Handbuch: rc_reason_stack

276 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

check_collisions (veraltet)

löst eine Kollisionsprüfung zwischen dem Greifer und einem Load Carrier aus.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_collision_check/services/check_

→˓collisions

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_collision_check/services/check_collisions

Request

Obligatorische Serviceargumente:

grasps: Liste von Griffen, die überprüft werden sollen.

load_carriers: Liste von Load Carriern, die auf Kollisionen überprüft werden sol-
len. Die Felder der Load Carrier Definition sind in Erkennung von Load Carri-
ern (Abschnitt 6.3.2.2) beschrieben. Die Griffe und die Load Carrier Positionen
müssen im selben Koordinatensystem angegeben werden.

gripper_id: Die ID des Greifers, der in der Kollisionsprüfung verwendet werden
soll. Der Greifer muss zuvor konfiguriert worden sein.

Optionale Serviceargumente:

pre_grasp_offset: Der Greif-Offset in Metern vom Greifpunkt zur Vorgreifposition.
Wird ein Greif-Offset angegeben, dann wird die Kollisionsprüfung auf der gesam-
ten linearen Trajektorie von der Vorgreifposition bis zur Greifposition durchgeführt.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"grasps": [
{

"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"uuid": "string"

}
],
"gripper_id": "string",
"load_carriers": [

{
"id": "string",
"inner_dimensions": {

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

277 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

(Fortsetzung der vorherigen Seite)

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_thickness": {

"x": "float64",
"y": "float64"

}
}

],
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}

Response

colliding_grasps: Liste von Griffen, die in Kollision mit einem oder mehreren Load Carriern
sind.

collision_free_grasps: Liste von kollisionsfreien Griffen.

return_code: enthält mögliche Warnungen oder Fehlercodes und Nachrichten.

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "check_collisions",
"response": {

"colliding_grasps": [
{

"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

278 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

(Fortsetzung der vorherigen Seite)

"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"uuid": "string"

}
],
"collision_free_grasps": [

{
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"uuid": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_gripper (veraltet)

konfiguriert und speichert einen Greifer auf dem rc_reason_stack.

API Version 2

Dieser Service ist in API Version 2 nicht verfügbar. Nutzen Sie stattdessen
set_gripper (Abschnitt 6.5.3.3) in rc_gripper_db.

API Version 1 (veraltet)

Dieser Service kann wie folgt aufgerufen werden.

PUT http://<host>/api/v1/nodes/rc_collision_check/services/set_gripper

Die Definitionen von Request und Response sind dieselben wie in set_gripper (Abschnitt
6.5.3.3) in rc_gripper_db beschrieben.

get_grippers (veraltet)

gibt die mit gripper_ids spezifizierten und gespeicherten Greifer zurück.

API Version 2

Dieser Service ist in API Version 2 nicht verfügbar. Nutzen Sie stattdessen
get_grippers (Abschnitt 6.5.3.3) in rc_gripper_db.

Roboception GmbH
Handbuch: rc_reason_stack

279 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

API Version 1 (veraltet)

Dieser Service kann wie folgt aufgerufen werden.

PUT http://<host>/api/v1/nodes/rc_collision_check/services/get_grippers

Die Definitionen von Request und Response sind dieselben wie in get_grippers (Abschnitt
6.5.3.3) in rc_gripper_db beschrieben.

delete_grippers (veraltet)

löscht die mit gripper_ids spezifizierten, gespeicherten Greifer.

API Version 2

Dieser Service ist in API Version 2 nicht verfügbar. Nutzen Sie stattdessen dele-
te_grippers (Abschnitt 6.5.3.3) in rc_gripper_db.

API Version 1 (veraltet)

Dieser Service kann wie folgt aufgerufen werden.

PUT http://<host>/api/v1/nodes/rc_collision_check/services/delete_grippers

Die Definitionen von Request und Response sind dieselben wie in dele-
te_grippers (Abschnitt 6.5.3.3) in rc_gripper_db beschrieben.

6.4.2.6 Rückgabecodes

Zusätzlich zur eigentlichen Serviceantwort gibt jeder Service einen sogenannten return_code beste-
hend aus einem Integer-Wert und einer optionalen Textnachricht zurück. Erfolgreiche Service-Anfragen
werden mit einem Wert von 0 quittiert. Positive Werte bedeuten, dass die Service-Anfrage zwar erfolg-
reich bearbeitet wurde, aber zusätzliche Informationen zur Verfügung stehen. Negative Werte bedeu-
ten, dass Fehler aufgetreten sind. Für den Fall, dass mehrere Rückgabewerte zutreffend wären, wird
der kleinste zurückgegeben, und die entsprechenden Textnachrichten werden in return_code.message
akkumuliert.

Die folgende Tabelle listet die möglichen Rückgabecodes auf:

Tab. 6.57: Fehlercodes des CollisionCheck-Services
Code Beschreibung

0 Erfolgreich
-1 Ein ungültiges Argument wurde übergeben.
-7 Daten konnten nicht in den persistenten Speicher geschrieben oder vom persistenten

Speicher gelesen werden.
-9 Lizenz für CollisionCheck ist nicht verfügbar.

-10 Das neue Element konnte nicht hinzugefügt werden, da die maximal speicherbare Anzahl
an Greifern überschritten wurde.

10 Die maximal speicherbare Anzahl an Greifern wurde erreicht.
11 Bestehender Greifer wurde überschrieben.

6.4.3 Kamerakalibrierung

Das Kamerakalibrierungsmodul ist ein Basismodul, welches auf jedem rc_reason_stack verfügbar ist.

Bemerkung: Dieses Softwaremodul ist pipelinespezifisch. Änderungen seiner Einstellungen oder
Parameter betreffen nur die zugehörige Kamerapipeline und haben keinen Einfluss auf die anderen
Pipelines, die auf dem rc_reason_stack laufen.

Roboception GmbH
Handbuch: rc_reason_stack

280 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

Um die Kamera als Messinstrument zu verwenden, müssen die Kameraparameter, wie die Brennweite,
die Objektivverzeichnung und die Lage der Kameras zueinander, genau bekannt sein. Diese Parameter
werden durch Kalibrierung bestimmt und für die Rektifizierung der Bilder, die Grundlage für alle anderen
Bildverarbeitungsmodule ist, verwendet (siehe Rektifizierung, Abschnitt 6.1.1).

Mit dem Kamerakalibrierungsmodul lassen sich die Kalibrierungsüberprüfung und Kalibrierung vorneh-
men.

6.4.3.1 Kalibriervorgang

Die Kamerakalibrierung kann über die Web GUI (Abschnitt 7.1) in der gewünschten Pipeline unter Kon-
figuration → Kamera Kalibrierung vorgenommen werden. Diese Seite bietet einen Assistenten, der den
Benutzer durch den Kalibriervorgang führt.

Während der Kalibrierung muss das Kalibriermuster in verschiedenen Posen erkannt werden. Dabei
müssen alle schwarzen Quadrate des Musters müssen komplett in beiden Kameras sichtbar sein und
dürfen nicht verdeckt werden. Jedes korrekt erkannte Quadrat wird mit einem grünen Haken belegt. Das
Muster kann nur dann korrekt erkannt werden, wenn alle schwarzen Quadrate erkannt werden. Werden
einige der Quadrate nicht oder nur für kurze Zeit erkannt, so kann dies an schlechten Lichtverhältnis-
sen oder einem beschädigten Kalibriermuster liegen. Quadrate, die in überbelichteten Bereichen des
Kalibriermusters liegen, werden rot hervorgehoben. In diesem Fall müssen die Beleuchtung oder die
Belichtungseinstellungen angepasst werden. Ein dicker grüner Rahmen um das Kalibriermuster zeigt
an, dass das Muster korrekt in beiden Kamerabildern erkannt wurde.

Kalibriereinstellungen

Die Qualität der Kamerakalibrierung hängt stark von der Qualität des Kalibriermusters ab. Kalibriermus-
ter können von Roboception bezogen werden.

Abb. 6.26: Kalibriereinstellungen

Roboception GmbH
Handbuch: rc_reason_stack

281 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

Im ersten Schritt muss das verwendete Kalibriermuster angegeben werden. Mit Klick auf Weiter gelangt
der Benutzer zum nächsten Schritt.

Fokus einstellen

Bemerkung: Dieser Schritt entfällt bei rc_visard Pipelines.

In diesem Schritt kann der Fokus der Kameras eingestellt werden. Dazu muss das Kalibriermuster so
gehalten werden, dass es gleichzeitig in beiden Kameras sichtbar ist. Nachdem das Kalibriermuster
erkannt wurde, erscheint an den rechten Bildrändern jeweils ein grüner Balken, der die Unschärfe des
Bildes angibt. Der Fokus jeder Kamera sollte so eingestellt werden, dass dieser Balken für jedes Bild
minimal wird.

Bemerkung: Während der Kalibrierung eines rc_viscore werden die Belichtungseinstellungen der
Kamera temporär so verändert, dass die Kalibrierung einfacher möglich ist. Diese Belichtungswerte
können weiterhin geändert werden, und sie werden zurückgesetzt, sobald die Kalibrierung abge-
schlossen oder abgebrochen wird.

Abb. 6.27: Fokuseinstellung jeder Kamera

Roboception GmbH
Handbuch: rc_reason_stack

282 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

Kalibrierung prüfen

In diesem Schritt kann die aktuelle Kalibrierung überprüft werden. Um diese Prüfung vorzunehmen,
muss das Muster so gehalten werden, dass es sich gleichzeitig im Sichtfeld beider Kameras befindet.
Nachdem das Muster vollständig erkannt wurde, wird der Kalibrierfehler automatisch berechnet und das
Ergebnis auf dem Bildschirm angegeben.

Abb. 6.28: Überprüfung der Kalibrierung

Bemerkung: Um einen aussagekräftigen Kalibrierfehler berechnen zu können, muss das Muster
so nah wie möglich an die Kameras gehalten werden. Bedeckt das Muster lediglich einen kleinen
Bereich der Kamerabilder, ist der Kalibrierfehler grundsätzlich geringer als wenn das Muster das
gesamte Bild ausfüllt. Aus diesem Grund werden zusätzlich zum Kalibrierfehler an der aktuellen
Position des Kalibriermusters auch der minimale und maximale Fehler während der Überprüfung der
Kalibrierung angezeigt.

Der typische Kalibrierfehler beläuft sich auf unter 0,2 Pixel. Liegt der Fehler in diesem Bereich, kann
der Kalibriervorgang übersprungen werden. Ist der errechnete Kalibrierfehler jedoch größer, sollte eine
Neukalibrierung vorgenommen werden, um sicherzustellen, dass der Sensor volle Leistung erbringt.
Mit Klick auf Weiter gelangt der Benutzer zum nächsten Schritt.

Roboception GmbH
Handbuch: rc_reason_stack

283 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

Warnung: Große Kalibrierfehler können durch falsch kalibrierte Kameras, ein unpräzises Kalibrier-
muster oder eine falsch eingetragene Musterbreite oder Musterhöhe verursacht werden. Bei der Ver-
wendung eines benutzerdefinierten Kalibriermusters muss sichergestellt werden, dass das Muster
präzise und die angegebenen Breiten- und Höhendaten korrekt sind. Anderenfalls kann die manuelle
Kalibrierung sogar dazu führen, dass die Kameras dekalibriert werden!

Kalibrieren

Bevor die Kalibrierung vorgenommen wird, sollte die Belichtungszeit der Kamera richtig eingestellt wer-
den. Um ein gutes Kalibrierergebnis zu erzielen, sollten die Bilder gut belichtet und Bewegungsun-
schärfe vermieden werden. Die maximale Belichtungszeit im automatischen Modus sollte so klein wie
möglich sein, aber dennoch eine gute Belichtung ermöglichen. Die aktuelle Belichtungszeit wird, wie in
Abb. 6.30 gezeigt, unter den Kamerabildern angegeben.

Für eine vollständige Kalibrierung müssen zunächst beide Kameras einzeln intrinsisch kalibriert werden
(Monokalibrierung). Anschließend wird durch die Stereokalibrierung die Ausrichtung der beiden Kame-
ras zueinander bestimmt. In den meisten Fällen wird die intrinsische Kalibrierung der beiden Kameras
nicht beeinträchtigt. Daher wird die Monokalibrierung standardmäßig bei einer Neukalibrierung über-
sprungen, kann aber durch Klick auf Monokalibrierung durchführen durchgeführt werden. Dies sollte
nur geschehen, wenn das Ergebnis der Stereokalibrierung nicht zufriedenstellend ist.

Stereokalibrierung

Bei der Stereokalibrierung wird die relative Rotation und Translation der Kameras zueinander ermittelt.

Die Kamerabilder können auch gespiegelt angezeigt werden, um die korrekte Ausrichtung des Kalibrier-
musters zu vereinfachen.

Als erstes muss das Kalibriermuster möglichst ruhig und so nah wie möglich an die Kamera gehalten
werden. Es muss vollständig in beiden Bildern sichtbar sein und die Kameras sollten senkrecht auf das
Kalibriermuster gerichtet sein. Wenn das Kalibriermuster nicht senkrecht zur Sichtachse der Kameras
ausgerichtet ist, erscheinen kleine grüne Pfeile auf dem Kamerabild, die auf die erwarteten Positionen
der Ecken des Kalibriermusters zeigen (siehe Abb. 6.29).

Abb. 6.29: Pfeile weisen darauf hin, wenn das Muster während der Stereokalibrierung nicht senkrecht
zur Blickrichtung der Kamera gehalten wird.

Das Muster muss für die Erkennung sehr ruhig gehalten werden. Wenn Bewegungsunschärfe auftritt,
wird das Muster nicht erkannt. Alle Zellen, die im Kamerabild dargestellt sind, müssen vom Kalibrier-
muster abgedeckt werden. Dies wird durch eine grüne Füllung der erfassten Zellen dargestellt (siehe
Abb. 6.30).

In Abhängigkeit von der Kamera muss das Kalibriermuster möglicherweise an verschiedene Position
gehalten werden, bis alle Zellen erfasst und grün hinterlegt sind.

Roboception GmbH
Handbuch: rc_reason_stack

284 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

Abb. 6.30: Stereokalibrierung: Das Muster sollte so nah wie möglich gehalten werden, um alle darge-
stellten Zellen zu füllen.

Bemerkung: Falls alle Häkchen auf dem Kalibriermuster verschwinden, liegt dies daran, dass die
Kamerablickrichtung nicht senkrecht zum Muster steht, oder das Muster zu weit von der Kamera
entfernt ist.

Sobald alle Zellen erfasst und gefüllt sind, verschwinden sie und eine einzelne entfernte Zelle wird an-
gezeigt. Nun muss das Kalibriermuster so weit entfernt wie möglich gehalten werden, damit die kleine
Zelle erfasst wird. Pfeile zeigen an, falls das Muster noch zu nah an der Kamera ist. Wenn das Kali-
briermuster erfolgreich detektiert wurde, wird die Zelle grün und das Kalibrierergebnis kann berechnet
werden (siehe Abb. 6.31).

Roboception GmbH
Handbuch: rc_reason_stack

285 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

Abb. 6.31: Positionierung des Musters so entfernt wie möglich während der Stereokalibrierung

Führt die Stereokalibrierung nicht zu einem akzeptablen Kalibrierfehler, sollte die Kalibrierung erneut
vorgenommen werden, jedoch mit Monokalibrierung (siehe nächster Abschnitt Monokalibrierung).

Monokalibrierung

Monokalibrierung ist die intrinsische Kalibrierung jeder einzelnen Kamera. Da die intrinsische Kalibrie-
rung in der Regel nicht beeinträchtigt wird, sollte die Monokalibrierung nur durchgeführt werden, wenn
das Ergebnis der Stereokalibrierung nicht zufriedenstellend ist.

Durch Klicken auf Monokalibrierung durchführen im Reiter Kalibrieren kann die Monokalibrierung gest-
artet werden.

Zur Kalibrierung muss das Kalibriermuster in verschiedenen Ausrichtungen vor die Kamera gehalten
werden. Die Pfeile, die von den Ecken des Musters bis zu den grünen Bildschirmbereichen führen, ge-
ben an, dass alle Musterecken innerhalb der grünen Rechtecke platziert werden müssen. Diese grünen
Rechtecke sind sensible Bereiche. Mit dem Schieberegler Größe der sensiblen Bereiche lässt sich die
Größe der Rechtecke einstellen, um die Kalibrierung zu vereinfachen. Es ist jedoch zu bedenken, dass
die Größe nicht zu stark erhöht werden darf, da dies auf Kosten der Kalibriergenauigkeit gehen kann.

Häufig wird der Fehler begangen, das Muster bei der Kalibrierung falsch herum zu halten. Dieser Fehler
lässt sich leicht erkennen, da sich die von den Musterecken zu den grünen Rechtecken verlaufenden
Linien in diesem Fall kreuzen (siehe Abb. 6.32).

Abb. 6.32: Wird das Kalibriermuster falsch herum gehalten, kreuzen sich die grünen Linien.

Roboception GmbH
Handbuch: rc_reason_stack

286 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

Bemerkung: Die Kalibrierung mag umständlich erscheinen, da das Muster hierfür in bestimmten
vordefinierten Stellungen gehalten werden muss. Dieses Vorgehen ist jedoch notwendig um ein qua-
litativ hochwertiges Kalibrierergebnis zu erreichen.

Für den Prozess der Monokalibrierung ist das Kalibriermuster für beide Kameras in den in Abb. 6.33
angegebenen Stellungen zu halten.

Abb. 6.33: Musterposen für die Monokalibrierung

Nachdem die Ecken oder Seiten des Kalibriermusters auf die sensiblen Bereiche ausgerichtet wurden,
zeigt der Kalibriervorgang automatisch die nächste Stellung an. Sobald der Prozess für die linke Kamera
abgeschlossen ist, ist er ebenso für die rechte Kamera zu wiederholen.

Anschließend folgen sind die Schritte im vorherigen Abschnitt Stereokalibrierung zu befolgen.

Kalibrierergebnis speichern

Mit Klick auf die Schaltfläche Kalibrierung berechnen wird der Kalibriervorgang beendet und das End-
ergebnis angezeigt. Der eingeblendete Wert ist der mittlere Reprojektionsfehler aller Kalibrierpunkte. Er
ist in Pixeln angegeben und beläuft sich typischerweise auf einen Wert von unter 0,2.

Mit Klick auf Kalibrierung speichern wird das Kalibrierergebnis übernommen und auf dem Gerät ge-
speichert.

Bemerkung: Das eingeblendete Ergebnis ist der nach der Kalibrierung bestehende Mindestfehler.
Der reale Fehler liegt auf keinen Fall darunter, könnte theoretisch jedoch höher sein. Dies gilt für
jeden Algorithmus zur Kamerakalibrierung und ist der Grund dafür, warum das Kalibriermuster in
verschiedenen Positionen vor den Sensor zu halten ist. So ist sichergestellt, dass der reale Kalibrier-
fehler den errechneten Fehler nicht signifikant überschreitet.

Warnung: War vor der Durchführung der Kamerakalibrierung eine Hand-Auge-Kalibrierung auf
dem rc_reason_stack gespeichert, so sind die Werte der Hand-Auge-Kalibrierung möglicherweise
ungültig geworden. Daher ist das Hand-Auge-Kalibrierverfahren zu wiederholen.

6.4.3.2 Parameter

Dieses Modul wird in der REST-API als rc_stereocalib bezeichnet.

Bemerkung: Die verfügbaren Parameter und die Statuswerte des Moduls zur Kamerakalibrierung
sind nur für den internen Gebrauch bestimmt und können ohne vorherige Ankündigung Änderungen
unterzogen werden. Die Kalibrierung sollte gemäß den vorstehenden Anweisungen und ausschließ-
lich in der Web GUI vorgenommen werden.

Roboception GmbH
Handbuch: rc_reason_stack

287 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

6.4.3.3 Services

Bemerkung: Die verfügbaren Services des Moduls zur Kamerakalibrierung sind lediglich für den in-
ternen Gebrauch bestimmt und können ohne vorherige Ankündigung Änderungen unterzogen wer-
den. Die Kalibrierung sollte gemäß den vorstehenden Anweisungen und ausschließlich in der Web
GUI vorgenommen werden.

6.4.4 IOControl und Projektor-Kontrolle

Das IOControl Modul ist ein Basismodul, welches auf jedem rc_reason_stack läuft.

Das IOControl-Modul ermöglicht das Lesen der digitalen Eingänge und die Kontrolle der digitalen Aus-
gänge (GPIOs) der Kamera. Die Ausgänge können auf aus (LOW) oder an (HIGH) gesetzt werden. Sie
können auch so konfiguriert werden, dass sie genau für die Belichtungszeit jedes Bildes, oder auch nur
jedes zweiten Bildes, an sind.

Bemerkung: Dieses Softwaremodul ist pipelinespezifisch. Änderungen seiner Einstellungen oder
Parameter betreffen nur die zugehörige Kamerapipeline und haben keinen Einfluss auf die anderen
Pipelines, die auf dem rc_reason_stack laufen.

Das IOControl-Modul dient der Ansteuerung einer externen Lichtquelle oder eines Projektors, der an
einen der GPIO-Ausgänge der Kamera angeschlossen wird, und der mit der Bildaufnahme synchroni-
siert ist. Für den Fall, dass ein Musterprojektor für die Verbesserung des Stereo-Matchings verwendet
wird, ist das projizierte Muster auch in den Intensitätsbildern sichtbar. Das kann für Bildverarbeitungs-
Anwendungen, die auf dem Intensitätsbild basieren (z.B. Kantendetektion), von Nachteil sein. Aus die-
sem Grund erlaubt das IOControl-Modul auch das Setzen der Ausgänge für nur jedes zweite Kamera-
bild. Somit sind auch Intensitätsbilder ohne projiziertes Muster verfügbar.

6.4.4.1 Parameter

Das IOControl-Modul wird in der REST-API als rc_iocontrol bezeichnet und in der Web GUI (Abschnitt
7.1) in der gewünschten Pipeline unter Konfiguration → IOControl dargestellt.

Der Benutzer kann die Parameter über die Web GUI oder die REST-API (REST-API-Schnittstelle, Ab-
schnitt 7.2) ändern.

Übersicht über die Parameter

Dieses Softwaremodul bietet folgende Laufzeitparameter:

Roboception GmbH
Handbuch: rc_reason_stack

288 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

Tab. 6.58: Laufzeitparameter des rc_iocontrol-Moduls
Name Typ Min. Max. Default Beschreibung
out1_inverted bool false true false Out1 invertieren
out1_mode string - - Low Out1 mode: [Low, High, Exposure-

Active, ExposureAlternateActive]
out1_ratio float64 0.0 1.0 1.0 Anteil der Belichtungszeit für die

Ausgang 1 (Out1) HIGH ist im Mo-
dus ExposureActive und Exposure-
AlternateActive.

out2_inverted bool false true false Out2 invertieren
out2_mode string - - Low Out2 mode: [Low, High, Exposure-

Active, ExposureAlternateActive]
out2_ratio float64 0.0 1.0 1.0 Anteil der Belichtungszeit für die

Ausgang 2 (Out2) HIGH ist im Mo-
dus ExposureActive und Exposure-
AlternateActive.

Beschreibung der Laufzeitparameter

out1_mode und out2_mode (Ausgang 1 (Out1) / Projektor und Ausgang 2 (Out2))

Die Betriebsarten für GPIO-Ausgang 1 und GPIO-Ausgang 2 können individuell
gesetzt werden:

Low schaltet den GPIO-Ausgang permanent aus (LOW). Das ist die Standardein-
stellung.

High schaltet den GPIO-Ausgang permanent an (HIGH).

ExposureActive schaltet den GPIO-Ausgang für die Belichtungszeit jedes Bildes
an (HIGH).

ExposureAlternateActive schaltet den GPIO-Ausgang für die Belichtungszeit je-
des zweiten Bildes an (HIGH).

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_iocontrol/parameters?<out1_

→˓mode|out2_mode>=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_iocontrol/parameters?<out1_mode|out2_mode>=<value>

Abb. 6.34 zeigt, welche Bilder für das Stereo-Matching und die GigE Vision-Übertragung in der Be-
triebsart ExposureActive mit einer benutzerdefinierten Bildwiederholrate von 8 Hz benutzt werden.

Roboception GmbH
Handbuch: rc_reason_stack

289 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

Internal acquisition

Camera image

GPIO Out 1
Disparity image

Abb. 6.34: Beispiel für die Nutzung der Betriebsart ExposureActive für GPIO-Ausgang 1 mit einer be-
nutzerdefinierten Bildwiederholrate von 8 Hz. Die interne Bildaufnahme geschieht immer mit 25 Hz.
GPIO-Ausgang 1 ist für die Dauer der Belichtungszeit jedes Bildes an (HIGH). Disparitätsbilder wer-
den für Kamerabilder berechnet, die auch per GigE Vision in der benutzerdefinierten Bildwiederholrate
versendet werden.

Die Betriebsart ExposureAlternateActive ist gedacht, um einen externen Musterprojektor anzusteu-
ern, der am GPIO-Ausgang 1 der Kamera angeschlossen ist. In diesem Fall nutzt das Stereo-Matching-
Modul (Abschnitt 6.2.2) nur Bilder, bei denen GPIO-Ausgang 1 an (HIGH) ist, d.h. der Projektor ist
an. Die maximale Bildwiederholrate, welche für das Stereo-Matching genutzt wird, ist hierbei die halbe
vom Benutzer konfigurierte Bildwiederholrate. Alle Module, die Intensitätsbilder benutzen, wie z.B. Tag-
Detect (Abschnitt 6.3.3) und ItemPick (Abschnitt 6.3.4), benutzen die Intensitätsbilder, bei denen der
GPIO-Ausgang 1 aus (LOW) ist, d.h. der Projektor ist aus. Abb. 6.35 zeigt ein Beispiel.

Internal acquisition

Camera image

GPIO Out 1
Disparity image

Abb. 6.35: Beispiel für die Nutzung der Betriebsart ExposureAlternateActive für GPIO-Ausgang 1 mit
einer benutzerdefinierten Bildwiederholrate von 8 Hz. Die interne Bildaufnahme geschieht immer mit
25 Hz. GPIO-Ausgang 1 ist für die Dauer der Belichtungszeit jedes zweiten Bildes an (HIGH). Dis-
paritätsbilder werden für Kamerabilder berechnet, bei denen GPIO-Ausgang 1 an (HIGH) ist, und die
auch per GigE Vision in der benutzerdefinierten Bildwiederholrate versendet werden. In der Betriebs-
art ExposureAlternateActive werden Intensitätsbilder immer paarweise versendet: ein Bild mit GPIO-
Ausgang 1 an (HIGH), für das ein Disparitätsbild verfügbar sein kann, und ein Bild mit GPIO-Ausgang
1 aus (LOW).

Bemerkung: In der Betriebsart ExposureAlternateActive gibt es zu einem Intensitätsbild mit an-
geschaltetem GPIO-Ausgang 1 (HIGH), d.h. mit projiziertem Muster, immer in 40 ms Abstand ein
Intensitätsbild mit ausgeschaltetem GPIO-Ausgang 1 (LOW), d.h. ohne projiziertes Muster. Dies ist
unabhängig von der benutzerdefinierten Bildwiederholrate und sollte in dieser speziellen Betriebsart
für die Synchronisierung von Disparitäts- und projektionsfreien Kamerabildern berücksichtigt wer-
den.

out1_ratio und out2_ratio (High-Anteil Ausgang 1 und *High-Anteil Ausgang 2)

Die High-Anteile für die GPIOs Out 1 und Out 2 bestimmen, wie viel der Bildbelichtungszeit
der entsprechende Ausgabe-GPIO HIGH sein soll, wenn ExposureActive oder ExposureAl-
ternateActive verwendet werden. Wenn der Anteil auf 1 eingestellt ist, ist der Ausgang für
die gesamte Belichtungszeit HIGH. Falls ein Projektor an den GPIO out1 angeschlossen ist,
führt ein niedrigerer High-Anteil an Ausgang 1 (out1_ratio) zu dunkleren Projektionen.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_iocontrol/parameters?<out1_

→˓ratio|out2_ratio>=<value>

Roboception GmbH
Handbuch: rc_reason_stack

290 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_iocontrol/parameters?<out1_ratio|out2_ratio>=<value>

out1_inverted und out2_inverted (Ausgang 1 invertieren und *Ausgang 2 invertieren)

Die Parameter Ausgang 1 invertieren (out1_inverted) und Ausgang 2 invertieren
(out2_inverted) legen fest, ob der zugehörige Ausgang invertiert werden soll.

Über die REST-API kann dieser Parameter wie folgt gesetzt werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_iocontrol/parameters?<out1_

→˓inverted|out2_inverted>=<value>

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_iocontrol/parameters?<out1_inverted|out2_inverted>=
→˓<value>

6.4.4.2 Services

Zusätzlich zur eigentlichen Serviceantwort gibt jeder Service einen sogenannten return_code beste-
hend aus einem Integer-Wert und einer optionalen Textnachricht zurück. Erfolgreiche Service-Anfragen
werden mit einem Wert von 0 quittiert. Positive Werte bedeuten, dass die Service-Anfrage zwar erfolg-
reich bearbeitet wurde, aber zusätzliche Informationen zur Verfügung stehen. Negative Werte bedeuten,
dass Fehler aufgetreten sind.

Dieses Softwaremodul bietet folgende Services.

get_io_values

Mit diesem Aufruf kann der aktuelle Zustand der Ein- und Ausgänge (GPIOs) der Kamera
abgefragt werden.

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_iocontrol/services/get_io_values

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_iocontrol/services/get_io_values

Request

Dieser Service hat keine Argumente.

Response

Das Feld timestamp ist der Zeitpunkt der Messung.

input_mask und output_mask sind Bitmasken, die definieren, welche Bits für die Werte der
Eingänge bzw. Ausgänge verwendet werden.

values beinhaltet die Werte der Bits, die zu den in den Bitmasken input_mask‘ und
output_mask definierten Eingängen und Ausgängen gehören.

Roboception GmbH
Handbuch: rc_reason_stack

291 Rev: 26.01.4
Status: 30.01.2026

6.4. Konfigurationsmodule

Das Feld return_code enthält mögliche Warnungen oder Fehlercodes und Nachrichten.
Mögliche Werte für return_code sind in der Tabelle unten angegeben.

Code Beschreibung
0 Erfolgreich
-2 Interner Fehler
-9 Lizenz für IOControl ist nicht verfügbar

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "get_io_values",
"response": {
"input_mask": "uint32",
"inverter_mask": "uint32",
"output_mask": "uint32",
"ratio_mask": "uint32",
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"values": "uint32"

}
}

reset_defaults

stellt die Werkseinstellungen der Parameter dieses Moduls wieder her und wendet sie an
(„factory reset“).

Details

Dieser Service kann wie folgt aufgerufen werden.

API Version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_iocontrol/services/reset_defaults

API Version 1 (veraltet)

PUT http://<host>/api/v1/nodes/rc_iocontrol/services/reset_defaults

Request

Dieser Service hat keine Argumente.

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

292 Rev: 26.01.4
Status: 30.01.2026

6.5. Datenbankmodule

(Fortsetzung der vorherigen Seite)

}
}

6.5 Datenbankmodule

Der rc_reason_stack stellt mehrere Datenbankmodule zur Verfügung, die das Konfigurieren von glo-
balen Daten ermöglichen, die in vielen Detektionsmodulen benötigt werden, zum Beispiel Load Carrier
und Regions of Interest. Über die REST-API-Schnittstelle (Abschnitt 7.2) sind die Datenbankmodule nur
in API Version 2 verfügbar.

Die Datenbankmodule sind:

• LoadCarrierDB (rc_load_carrier_db, Abschnitt 6.5.1) ermöglicht das Erstellen, Abfragen und
Löschen von Load Carriern.

• RoiDB (rc_roi_db , Abschnitt 6.5.2) ermöglicht das Erstellen, Abfragen und Löschen von 2D
und 3d Regions of Interest.

• GripperDB (rc_gripper_db, Abschnitt 6.5.3) ermöglicht das Erstellen, Abfragen und Löschen
von Greifern für die Kollisionsprüfung.

Diese Softwaremodule sind global auf dem rc_reason_stack, was bedeutet, dass sie außerhalb der
Kamerapipelines laufen. Änderungen ihrer Einstellungen oder Parameter betreffen alle Pipelines auf
dem rc_reason_stack.

6.5.1 LoadCarrierDB

6.5.1.1 Einleitung

Das LoadCarrierDB Modul (Load Carrier Datenbank Modul) ermöglicht die globale Definition von Load
Carriern (Behältern), die dann in vielen Detektionsmodulen genutzt werden können. Die definierten
Load Carrier Modelle sind in allen Modulen auf dem rc_reason_stack verfügbar, die Load Carrier un-
terstützen.

Bemerkung: Dieses Softwaremodul läuft global auf dem rc_reason_stack. Änderungen seiner Ein-
stellungen oder Parameter betreffen alle Kamerapipelines, die auf dem rc_reason_stack laufen.

Das LoadCarrierDB Modul ist ein Basismodul, welches auf jedem rc_reason_stack verfügbar ist.

Tab. 6.59: Spezifikationen des LoadCarrierDB Moduls
Unterstützte Load Carrier Typen 4-seitig oder 3-seitig
Mögliche Rand-Arten durchgängig, abgestuft oder vorspringend
Min. Load Carrier Abmessungen 0.1 m x 0.1 m x 0.05 m
Max. Load Carrier Abmessungen 5 m x 5 m x 5 m
Max. Anzahl von Load Carriern 50
Load Carrier verfügbar in ItemPick und ItemPickAI (Abschnitt 6.3.4) und

BoxPick (Abschnitt 6.3.5) und CADMatch (Abschnitt
6.3.7) und SilhouetteMatch und
SilhouetteMatchAI (Abschnitt 6.3.6)

Mögliche Posen-Arten keine Pose, Orientierungsprior, exakte Pose
Mögliche Referenzkoordinatensysteme camera, external

Roboception GmbH
Handbuch: rc_reason_stack

293 Rev: 26.01.4
Status: 30.01.2026

6.5. Datenbankmodule

6.5.1.2 Load Carrier Definition

Ein sogenannter Load Carrier ist ein Behälter mit vier Wänden, einem Boden und einem rechteckigen
Rand, der Objekte enthalten kann. Er kann genutzt werden, um das Volumen, in dem nach Objekten
oder Greifpunkten gesucht wird, zu begrenzen.

Seine Geometrie ist durch die inneren und äußeren Abmessungen (inner_dimensions und
outer_dimensions) definiert. Die maximalen outer_dimensions betragen 5.0 m in allen Dimensionen.

Der Ursprung des Load Carrier Koordinatensystems liegt im Zentrum des durch die Außenmaße de-
finierten Quaders. Dabei ist die z-Achse senkrecht zum Boden des Load Carriers und zeigt aus dem
Load Carrier heraus (siehe Abb. 6.36).

x
yz

outer_dimensions.x
inner_dimensions.x

inn
er
_d
im
en
sio
ns
.y

ou
ter
_d
im
en
sio
ns
.y

inner_dim
ensions.z

outer_dim
ensions.z

Abb. 6.36: Load Carrier mit Koordinatensystem und inneren und äußeren Abmessungen

Bemerkung: Die Innen- und Außenmaße eines Load Carriers sind typischerweise in den Angaben
des jeweiligen Herstellers spezifiziert, und können im Produktblatt oder auf der Produktseite nach-
geschlagen werden.

Das Innenvolumen eines Load Carriers ist durch seine Innenmaße definiert, aber enthält zusätzlich
einen Bereich von 10 cm oberhalb des Load Carriers, damit Objekte, die aus dem Load Carrier heraus-
ragen, auch für die Detektion oder Greifpunktberechnung berücksichtigt werden. Weiterhin wird vom
Innenvolumen in jeder Richtung ein zusätzlicher Sicherheitsabstand crop_distance abgezogen, wel-
cher als Laufzeitparameter im LoadCarrier Modul konfiguriert werden kann (siehe Parameter , Abschnitt
6.3.2.5). Abb. 6.37 zeigt das Innenvolumen eines Load Carriers. Nur Punkte, die sich innerhalb dieses
Volumens befinden, werden für Detektionen berücksichtigt.

Roboception GmbH
Handbuch: rc_reason_stack

294 Rev: 26.01.4
Status: 30.01.2026

6.5. Datenbankmodule

0.1 m

crop_distance

Abb. 6.37: Darstellung des Innenvolumens eines Load Carriers. Nur Punkte, die sich innerhalb dieses
Volumens befinden, werden für Detektionen berücksichtigt.

Da die Erkennung von Load Carriern auf der Erkennung des Load Carrier Rands basiert, muss die
Geometrie des Randes angegeben werden, wenn sie nicht aus der Differenz zwischen Außen- und
Innenmaßen bestimmt werden kann. Dazu kann die Randstärke rim_thickness explizit gesetzt wer-
den. Die Randstärke gibt die Breite des äußeren Rands in x- und y-Richtung an. Wenn eine Randstärke
gesetzt ist, kann optional auch die Randstufenhöhe rim_step_height angegeben werden. Die Randstu-
fenhöhe gibt die Höhe der Stufe zwischen dem äußeren und dem inneren Teil des Load Carrier Rands
an. Wenn die Stufenhöhe angegeben wird, wird sie auch bei der Kollisionsprüfung berücksichtigt (sie-
he CollisionCheck , Abschnitt 6.4.2). Beispiele abgestufter Load Carrier sind in Abb. 6.38 A, B gezeigt.
Zusätzlich zur Randstärke und Randstufenhöhe kann der Randvorsprung rim_ledge angegeben wer-
den, um Load Carrier zu definieren, deren innerer Rand in den Load Carrier Innenraum hineinragt, wie
zum Beispiel bei Gitterboxen. Der Randvorsprung rim_ledge gibt die Randstärke des inneren Teils des
Randes in die x- und y-Richtung an. Ein Beispiel eines Load Carriers mit vorspringendem Rand ist in
Abb. 6.38 C gezeigt.

ou
te

r_
di

m
en

sio
n

z

rim_thickness (x, y)

inner_dimension (x, y)

outer_dimension (x, y)

in
ne

r_
di

m
en

sio
n

z

rim
_s

te
p_

he
ig

ht

ou
te

r_
di

m
en

sio
n

z

rim_thickness (x, y)

inner_dimension (x, y)

outer_dimension (x, y)

in
ne

r_
di

m
en

sio
n

z

rim
_s

te
p_

he
ig

ht

rim_thickness (x, y)

rim_ledge (x, y)

ou
te

r_
di

m
en

sio
n

z

in
ne

r_
di

m
en

sio
n

z

rim
_s

te
p_

he
ig

ht

inner_dimension (x, y)

outer_dimension (x, y)

A B C

Abb. 6.38: Beispiele von Load Carriern mit abgestuftem (A, B) und vorspringendem Rand (C)

Die unterschiedlichen Randtypen können für gewöhnliche 4-seitige und 3-seitige Load Carrier ange-
wendet werden. Für einen 3-seitigen Load Carrier muss das Feld type auf THREE_SIDED gesetzt werden.
Wenn der Typ STANDARD oder leer ist, wird ein 4-seitiger Load Carrier angenommen. Ein 3-seitiger Load

Roboception GmbH
Handbuch: rc_reason_stack

295 Rev: 26.01.4
Status: 30.01.2026

6.5. Datenbankmodule

Carrier hat eine Seite, die niedriger ist als die anderen drei Seiten. Die Höhe dieser niedrigeren offe-
nen Seite height_open_side wird vom äußeren Boden des Load Carriers gemessen. Die offene Seite
liegt an der negativen y-Achse des Load Carrier Koordinatensystems. Beispiele der zwei unterschiedli-
chen Load Carrier Typen sind in Abb. 6.39 zu sehen. Die Höhe der offenen Seite wird nur während der
Kollisionsprüfung berücksichtigt und ist nicht notwendig für die Erkennung des Load Carriers.

x
yz

ou
ter

_d
im

en
sio

n y outer_dimension x

di
m

en
sio

n
z

ou
te

r_

inner_dimension x

in
ne

r_
di

m
en

sio
n

z

inn
er_

iim
en

sio
n y

x
yz

ou
ter

_d
im

en
sio

n y outer_dimension x

di
m

en
sio

n
z

ou
te

r_

inner_dimension x

in
ne

r_
di

m
en

sio
n

z

inn
er_

dim
en

sio
n y

he
ig

ht
_o

pe
n_

sid
e

A B

Abb. 6.39: Beispiele eines 4-seitigen (A) und 3-seitigen Load Carriers (B)

Für einen Load Carrier kann eine Pose bestehend aus position und orientation als Quaternion in
einem Referenzkoordinatensystem angegeben werden. Basierend auf dem Posentyp pose_type wird
diese Pose entweder als Vorgabe für die Load Carrier Orientierung (pose_type ist ORIENTATION_PRIOR
oder leer) oder als exakte Pose (pose_type ist EXACT_POSE) verwendet.

Falls die angegebene Pose als Vorgabe (Prior) für die Orientierung dient, wird garantiert, dass die zu-
rückgelieferte Pose des erkannten Load Carriers die minimale Rotation bezogen auf den gesetzten
Prior hat. Dieser Posentyp ist nützlich für die Erkennung von geneigten Load Carriern, oder um Mehr-
deutigkeiten in der x- und y-Richtung aufzulösen, die durch die Symmetrie des Load Carriers verursacht
werden.

Falls der Posentyp auf EXACT_POSE gesetzt ist, wird keine Load Carrier Erkennung auf den Szenendaten
durchgeführt, sondern die angegebene Pose wird so verwendet, als wäre der Load Carrier in dieser
Pose in der Szene erkannt worden. Dieser Posentyp ist nützlich, wenn Load Carrier ihre Position nicht
verändern und/oder schwer zu erkennen sind (z.B. weil ihr Rand zu schmal ist oder das Material zu
stark reflektiert).

Der rc_reason_stack erlaubt das Speichern von bis zu 50 verschiedenen Load Carriern, von denen
jeder mit einer id versehen ist. Die für eine spezifische Anwendung relevanten Load Carrier können
mithilfe der rc_reason_stack Web GUI oder der REST-API-Schnittstelle (Abschnitt 7.2) konfiguriert wer-
den.

Bemerkung: Die konfigurierten Load Carrier sind persistent auf dem rc_reason_stack gespeichert
und auch nach Firmware-Updates und -Wiederherstellungen verfügbar.

6.5.1.3 Load Carrier Abteile

Bei einigen Detektionsmodulen kann ein Load Carrier Abteil (load_carrier_compartment) angegeben
werden, um das Volumen für die Erkennung zu begrenzen, zum Beispiel in ItemPick’s compute_grasps
Service (siehe 6.3.4.7). Ein Load Carrier Abteil ist eine Box, deren Pose pose als Transformation vom
Load Carrier Koordinatensystem in das Abteilkoordinatensystem, welches im Zentrum der durch das
Abteil definierten Box liegt, angegeben wird (siehe Abb. 6.40). Das Load Carrier Abteil ist nicht Teil
der Load Carrier Definition im LoadCarrierDB Modul, sondern muss für jeden Detektionsaufruf separat
definiert werden.

Roboception GmbH
Handbuch: rc_reason_stack

296 Rev: 26.01.4
Status: 30.01.2026

6.5. Datenbankmodule

x
yz

co
mp

art
me

nt
.bo

x.y

compartment.box.x

com
partm

ent.box.z

Abb. 6.40: Beispiel für ein Abteil innerhalb eines Load Carriers. Das gezeigte Koordinatensystem das
Koordinatensystem des Load Carrier Abteils.

Als Volumen für die Detektion wird der Durchschnitt des Abteil-Volumens und des Load Carrier In-
nenraums verwendet. Wenn dieser Durchschnitt ebenfalls den Bereich von 10 cm oberhalb des Load
Carriers enthalten soll, muss die Höhe der Box, die das Abteil definiert, entsprechend vergrößert wer-
den.

6.5.1.4 Wechselwirkung mit anderen Modulen

Die folgenden, intern auf dem rc_reason_stack laufenden Module liefern Daten für das LoadCarrierDB
Modul oder haben Einfluss auf die Datenverarbeitung.

Hand-Auge-Kalibrierung

Falls die Kamera zu einem Roboter kalibriert wurde, kann die exakte Pose oder der Orientierungspri-
or im Roboterkoordinatensystem angegeben werden, indem das Argument pose_frame auf external
gesetzt wird.

Zwei verschiedene Werte für pose_frame können gewählt werden:

1. Kamera-Koordinatensystem (camera): Die Load Carrier Pose oder der Orientierungsprior sind
im Kamera-Koordinatensystem angegeben und es ist kein zusätzliches Wissen über die Lage der
Kamera in seiner Umgebung notwendig. Das bedeutet insbesondere, dass sich ROIs oder Load
Carrier, welche in diesem Koordinatensystem angegeben sind, mit der Kamera bewegen. Es liegt
daher in der Verantwortung des Anwenders, in solchen Fällen die entsprechenden Posen der
Situation entsprechend zu aktualisieren (beispielsweise für den Anwendungsfall einer roboterge-
führten Kamera).

2. Benutzerdefiniertes externes Koordinatensystem (external): Die Load Carrier Pose oder der
Orientierungsprior sind im sogenannten externen Koordinatensystem angegeben, welches vom
Nutzer während der Hand-Auge-Kalibrierung gewählt wurde. In diesem Fall bezieht das Mo-
dul alle notwendigen Informationen über die Kameramontage und die kalibrierte Hand-Auge-
Transformation automatisch vom Modul Hand-Auge-Kalibrierung (Abschnitt 6.4.1).

Roboception GmbH
Handbuch: rc_reason_stack

297 Rev: 26.01.4
Status: 30.01.2026

6.5. Datenbankmodule

Bemerkung: Wenn keine Hand-Auge-Kalibrierung durchgeführt wurde bzw. zur Verfügung steht,
muss als Referenzkoordinatensystem pose_frame immer camera angegeben werden.

Zulässige Werte zur Angabe des Referenzkoordinatensystems sind camera und external. Andere Wer-
te werden als ungültig zurückgewiesen.

6.5.1.5 Services

Das LoadCarrierDB Modul wird in der REST-API als rc_load_carrier_db bezeichnet und in der Web
GUI (Abschnitt 7.1) unter Datenbank → Load Carrier dargestellt. Die angebotenen Services des Load-
CarrierDB Moduls können mithilfe der REST-API-Schnittstelle (Abschnitt 7.2) oder der Web GUI aus-
probiert und getestet werden.

Das LoadCarrierDB Modul stellt folgende Services zur Verfügung.

set_load_carrier

speichert einen Load Carrier auf dem rc_reason_stack. Alle Load Carrier sind dauerhaft
gespeichert, auch über Firmware-Updates und -Wiederherstellungen hinweg.

Details

Dieser Service kann wie folgt aufgerufen werden.

PUT http://<host>/api/v2/nodes/rc_load_carrier_db/services/set_load_carrier

Request

Die Definition des Typs load_carrier wird in Load Carrier Definition (Abschnitt 6.5.1.2) be-
schrieben.

Das Feld type ist optional und akzeptiert STANDARD und THREE_SIDED.

Das Feld pose_type ist optional und akzeptiert NO_POSE, EXACT_POSE und
ORIENTATION_PRIOR.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"load_carrier": {
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

298 Rev: 26.01.4
Status: 30.01.2026

6.5. Datenbankmodule

(Fortsetzung der vorherigen Seite)

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"pose_type": "string",
"rim_ledge": {

"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
}

}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "set_load_carrier",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_load_carriers

gibt die mit load_carrier_ids spezifizierten, gespeicherten Load Carrier zurück. Wenn kei-
ne load_carrier_ids angegeben werden, werden alle gespeicherten Load Carrier zurück-
geliefert.

Details

Dieser Service kann wie folgt aufgerufen werden.

PUT http://<host>/api/v2/nodes/rc_load_carrier_db/services/get_load_carriers

Request

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"load_carrier_ids": [
"string"

]
}

}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

Roboception GmbH
Handbuch: rc_reason_stack

299 Rev: 26.01.4
Status: 30.01.2026

6.5. Datenbankmodule

{
"name": "get_load_carriers",
"response": {
"load_carriers": [
{

"height_open_side": "float64",
"id": "string",
"inner_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"pose_type": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

delete_load_carriers

löscht die mit load_carrier_ids spezifizierten, gespeicherten Load Carrier. Alle zu löschen-
den Load Carrier müssen explizit in load_carrier_ids angegeben werden.

Details

Dieser Service kann wie folgt aufgerufen werden.

Roboception GmbH
Handbuch: rc_reason_stack

300 Rev: 26.01.4
Status: 30.01.2026

6.5. Datenbankmodule

PUT http://<host>/api/v2/nodes/rc_load_carrier_db/services/delete_load_carriers

Request

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"load_carrier_ids": [
"string"

]
}

}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "delete_load_carriers",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.5.1.6 Rückgabecodes

Zusätzlich zur eigentlichen Serviceantwort gibt jeder Service einen sogenannten return_code beste-
hend aus einem Integer-Wert und einer optionalen Textnachricht zurück. Erfolgreiche Service-Anfragen
werden mit einem Wert von 0 quittiert. Positive Werte bedeuten, dass die Service-Anfrage zwar erfolg-
reich bearbeitet wurde, aber zusätzliche Informationen zur Verfügung stehen. Negative Werte bedeu-
ten, dass Fehler aufgetreten sind. Für den Fall, dass mehrere Rückgabewerte zutreffend wären, wird
der kleinste zurückgegeben, und die entsprechenden Textnachrichten werden in return_code.message
akkumuliert.

Die folgende Tabelle listet die möglichen Rückgabecodes auf:

Tab. 6.60: Rückgabecodes der Services des LoadCarrierDB Mo-
duls

Code Beschreibung
0 Erfolgreich
-1 Ungültige(s) Argument(e)
-10 Das neue Element konnte nicht hinzugefügt werden, da die maximal speicherbare Anzahl

an Load Carriern überschritten wurde.
10 Die maximal speicherbare Anzahl an Load Carriern wurde erreicht.
11 Mit dem Aufruf von set_load_carrier wurde ein bereits existierendes Objekt mit derselben

id überschrieben.

6.5.2 RoiDB

6.5.2.1 Einleitung

Das RoiDB Modul (Region of Interest Datenbankmodul) ermöglicht die globale Definition von 2D und
3D Regions of Interest (ROIs), die dann in vielen Detektionsmodulen verwendet werden können. Die

Roboception GmbH
Handbuch: rc_reason_stack

301 Rev: 26.01.4
Status: 30.01.2026

6.5. Datenbankmodule

definierten ROIs sind in allen Modulen auf dem rc_reason_stack verfügbar, die 2D oder 3D ROIs unter-
stützen.

Bemerkung: Dieses Softwaremodul läuft global auf dem rc_reason_stack. Änderungen seiner Ein-
stellungen oder Parameter betreffen alle Kamerapipelines, die auf dem rc_reason_stack laufen.

Das RoiDB Modul ist ein Basismodul, welches auf jedem rc_reason_stack verfügbar ist.

3D ROIs können in den CADMatch (Abschnitt 6.3.7), ItemPick und ItemPickAI (Abschnitt 6.3.4) und
BoxPick (Abschnitt 6.3.5) Modulen verwendet werden. 2D ROIs werden vom SilhouetteMatch und Sil-
houetteMatchAI (Abschnitt 6.3.6) Modul und dem LoadCarrier (Abschnitt 6.3.2) Modul unterstützt.

Tab. 6.61: Spezifikationen des ROIDB Moduls
Unterstützte ROI Typen 2D, 3D
Unterstützte ROI Geometrien 2D ROI: Rechteck, 3D ROI: Box, Kugel
Max. Anzahl von ROIs 2D: 100, 3D: 100
ROIs verfügbar in 2D: SilhouetteMatch und SilhouetteMatchAI (Abschnitt

6.3.6), LoadCarrier (Abschnitt 6.3.2), 3D:
CADMatch (Abschnitt 6.3.7), ItemPick und
ItemPickAI (Abschnitt 6.3.4) und BoxPick (Abschnitt
6.3.5)

Unterstützte Referenzkoordinatensysteme camera, external

6.5.2.2 Region of Interest

Eine sogenannte Region of Interest (ROI) definiert ein abgegrenztes Raumvolumen (3D
ROI, region_of_interest) oder eine rechteckige Region im linken Kamerabild (2D ROI,
region_of_interest_2d), welche für eine spezifische Anwendung relevant sind.

Eine ROI kann das Volumen, in dem ein Load Carrier gesucht wird, einschränken, oder einen Bereich
definieren, der nur die zu erkennenden oder zu greifenden Objekte enthält. Die Verarbeitungszeit kann
sich deutlich verringern, wenn eine ROI genutzt wird.

Folgende Arten von 3D ROIs (type) werden unterstützt:

• BOX, für quaderförmige ROIs mit den Abmessungen box.x, box.y, box.z.

• SPHERE, für kugelförmige ROIs mit dem Radius sphere.radius.

Die Pose pose einer 3D ROI kann entweder relativ zum Kamera-Koordinatensystem camera oder mithilfe
der Hand-Auge-Kalibrierung im externen Koordinatensystem external angegeben werden. Das exter-
ne Koordinatensystem steht nur zur Verfügung, wenn eine Hand-Auge-Kalibrierung (Abschnitt 6.4.1)
durchgeführt wurde. Wenn der Sensor am Roboter montiert ist, und die ROI im externen Koordinaten-
system definiert ist, dann muss jedem Detektions-Service, der diese ROI benutzt, die aktuelle Roboter-
pose übergeben werden.

Eine 2D ROI ist als rechteckiger Teil des linken Kamerabilds definiert und kann sowohl über die REST-
API-Schnittstelle (Abschnitt 7.2) als auch über die rc_reason_stack Web GUI (Abschnitt 7.1) auf der
Seite Regions of Interest unter dem Menüpunkt Datenbank gesetzt werden. Die Web GUI bietet hierfür
ein einfach zu benutzendes Werkzeug an. Jeder ROI muss ein eindeutiger Name zugewiesen werden,
um diese später adressieren zu können.

In der REST-API ist eine 2D-ROI über folgende Werte spezifiziert:

• id: Eindeutiger Name der ROI

• offset_x, offset_y: Abstand in Pixeln von der oberen rechten Bildecke entlang der x- bzw. y-
Achse

• width, height: Breite und Höhe in Pixeln

Roboception GmbH
Handbuch: rc_reason_stack

302 Rev: 26.01.4
Status: 30.01.2026

6.5. Datenbankmodule

Der rc_reason_stack erlaubt das Speichern von bis zu 100 verschiedenen 3D ROIs und der gleichen
Anzahl von 2D ROIs. Die Konfiguration von ROIs erfolgt in der Regel offline während der Einrichtung
der gewünschten Anwendung. Die Konfiguration kann mithilfe der REST-API-Schnittstelle (Abschnitt
7.2) des RoiDB Moduls vorgenommen werden, oder über die rc_reason_stack Web GUI (Abschnitt
7.1) auf der Seite Regions of Interest unter dem Menüpunkt Datenbank.

Bemerkung: Die erstellten ROIs sind persistent auf dem rc_reason_stack gespeichert und auch
nach Firmware-Updates und -Wiederherstellungen verfügbar.

6.5.2.3 Wechselwirkung mit anderen Modulen

Die folgenden, intern auf dem rc_reason_stack laufenden Module liefern Daten für das RoiDB Modul
oder haben Einfluss auf die Datenverarbeitung.

Hand-Auge Kalibrierung

Falls die Kamera zu einem Roboter kalibriert wurde, kann die Pose einer 3D ROI im Roboterkoordina-
tensystem angegeben werden, indem das Argument pose_frame auf external gesetzt wird.

Zwei verschiedene Werte für pose_frame können gewählt werden:

1. Kamera-Koordinatensystem (camera): Die Pose der 3D Region of Interest ist Kamera-
Koordinatensystem angegeben und es ist kein zusätzliches Wissen über die Lage der Kamera
in seiner Umgebung notwendig. Das bedeutet insbesondere, dass sich ROIs oder Load Carrier,
welche in diesem Koordinatensystem angegeben sind, mit der Kamera bewegen. Es liegt daher
in der Verantwortung des Anwenders, in solchen Fällen die entsprechenden Posen der Situati-
on entsprechend zu aktualisieren (beispielsweise für den Anwendungsfall einer robotergeführten
Kamera).

2. Benutzerdefiniertes externes Koordinatensystem (external): Die Pose der 3D Region of Inte-
rest ist im sogenannten externen Koordinatensystem angegeben, welches vom Nutzer während
der Hand-Auge-Kalibrierung gewählt wurde. In diesem Fall bezieht das Modul alle notwendigen In-
formationen über die Kameramontage und die kalibrierte Hand-Auge-Transformation automatisch
vom Modul Hand-Auge-Kalibrierung (Abschnitt 6.4.1).

Bemerkung: Wenn keine Hand-Auge-Kalibrierung durchgeführt wurde bzw. zur Verfügung steht,
muss als Referenzkoordinatensystem pose_frame immer camera angegeben werden.

Zulässige Werte zur Angabe des Referenzkoordinatensystems sind camera und external. Andere Wer-
te werden als ungültig zurückgewiesen.

6.5.2.4 Services

Das RoiDB Modul wird in der REST-API als rc_roi_db bezeichnet und in der Web GUI (Abschnitt 7.1)
unter Datenbank → Regions of Interest dargestellt. Die angebotenen Services des RoiDB Moduls kön-
nen mithilfe der REST-API-Schnittstelle (Abschnitt 7.2) oder der Web GUI ausprobiert und getestet wer-
den.

Das RoiDB Modul stellt folgende Services zur Verfügung.

set_region_of_interest

speichert eine 3D ROI auf dem rc_reason_stack. Alle ROIs sind dauerhaft gespeichert, auch
über Firmware-Updates und -Wiederherstellungen hinweg.

Details

Roboception GmbH
Handbuch: rc_reason_stack

303 Rev: 26.01.4
Status: 30.01.2026

6.5. Datenbankmodule

Dieser Service kann wie folgt aufgerufen werden.

PUT http://<host>/api/v2/nodes/rc_roi_db/services/set_region_of_interest

Request

Die Definition des Typs region_of_interest wird in Region of Interest (Abschnitt 6.5.2.2)
beschrieben.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"region_of_interest": {
"box": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"sphere": {

"radius": "float64"
},
"type": "string"

}
}

}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "set_region_of_interest",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_region_of_interest_2d

speichert eine 2D ROI auf dem rc_reason_stack. Alle ROIs sind dauerhaft gespeichert, auch
über Firmware-Updates und -Wiederherstellungen hinweg.

Details

Roboception GmbH
Handbuch: rc_reason_stack

304 Rev: 26.01.4
Status: 30.01.2026

6.5. Datenbankmodule

Dieser Service kann wie folgt aufgerufen werden.

PUT http://<host>/api/v2/nodes/rc_roi_db/services/set_region_of_interest_2d

Request

Die Definition des Typs region_of_interest_2d wird in Region of Interest (Abschnitt 6.5.2.2)
beschrieben.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"region_of_interest_2d": {
"height": "uint32",
"id": "string",
"offset_x": "uint32",
"offset_y": "uint32",
"width": "uint32"

}
}

}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "set_region_of_interest_2d",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_regions_of_interest

gibt die mit region_of_interest_ids spezifizierten, gespeicherten 3D ROIs zurück.

Details

Dieser Service kann wie folgt aufgerufen werden.

PUT http://<host>/api/v2/nodes/rc_roi_db/services/get_regions_of_interest

Request

Werden keine region_of_interest_ids angegeben, enthält die Serviceantwort alle gespei-
cherten ROIs.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"region_of_interest_ids": [
"string"

]
}

}

Response

Roboception GmbH
Handbuch: rc_reason_stack

305 Rev: 26.01.4
Status: 30.01.2026

6.5. Datenbankmodule

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "get_regions_of_interest",
"response": {

"regions_of_interest": [
{

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"sphere": {
"radius": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_regions_of_interest_2d

gibt die mit region_of_interest_2d_ids spezifizierten, gespeicherten 2D ROIs zurück.

Details

Dieser Service kann wie folgt aufgerufen werden.

PUT http://<host>/api/v2/nodes/rc_roi_db/services/get_regions_of_interest_2d

Request

Werden keine region_of_interest_2d_ids angegeben, enthält die Serviceantwort alle ge-
speicherten ROIs.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"region_of_interest_2d_ids": [
"string"

]

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

306 Rev: 26.01.4
Status: 30.01.2026

6.5. Datenbankmodule

(Fortsetzung der vorherigen Seite)

}
}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "get_regions_of_interest_2d",
"response": {
"regions_of_interest": [
{

"height": "uint32",
"id": "string",
"offset_x": "uint32",
"offset_y": "uint32",
"width": "uint32"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

delete_regions_of_interest

löscht die mit region_of_interest_ids spezifizierten, gespeicherten 3D ROIs.

Details

Dieser Service kann wie folgt aufgerufen werden.

PUT http://<host>/api/v2/nodes/rc_roi_db/services/delete_regions_of_interest

Request

Alle zu löschenden ROIs müssen explizit angegeben werden.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"region_of_interest_ids": [
"string"

]
}

}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "delete_regions_of_interest",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

307 Rev: 26.01.4
Status: 30.01.2026

6.5. Datenbankmodule

(Fortsetzung der vorherigen Seite)

}
}

delete_regions_of_interest_2d

löscht die mit region_of_interest_2d_ids spezifizierten, gespeicherten 2D ROIs.

Details

Dieser Service kann wie folgt aufgerufen werden.

PUT http://<host>/api/v2/nodes/rc_roi_db/services/delete_regions_of_interest_2d

Request

Alle zu löschenden ROIs müssen explizit angegeben werden.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"region_of_interest_2d_ids": [
"string"

]
}

}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "delete_regions_of_interest_2d",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.5.2.5 Rückgabecodes

Zusätzlich zur eigentlichen Serviceantwort gibt jeder Service einen sogenannten return_code beste-
hend aus einem Integer-Wert und einer optionalen Textnachricht zurück. Erfolgreiche Service-Anfragen
werden mit einem Wert von 0 quittiert. Positive Werte bedeuten, dass die Service-Anfrage zwar erfolg-
reich bearbeitet wurde, aber zusätzliche Informationen zur Verfügung stehen. Negative Werte bedeu-
ten, dass Fehler aufgetreten sind. Für den Fall, dass mehrere Rückgabewerte zutreffend wären, wird
der kleinste zurückgegeben, und die entsprechenden Textnachrichten werden in return_code.message
akkumuliert.

Die folgende Tabelle listet die möglichen Rückgabe-Codes auf:

Roboception GmbH
Handbuch: rc_reason_stack

308 Rev: 26.01.4
Status: 30.01.2026

6.5. Datenbankmodule

Tab. 6.62: Rückgabe-Codes der Services des RoiDB Moduls
Code Beschreibung

0 Erfolgreich
-1 Ungültige(s) Argument(e)

-10 Das neue Element konnte nicht hinzugefügt werden, da die maximal speicherbare Anzahl
an ROIs überschritten wurde.

10 Die maximal speicherbare Anzahl an ROIs wurde erreicht.
11 Mit dem Aufruf von set_region_of_interest oder set_region_of_interest_2d wurde ein

bereits existierendes Objekt mit derselben id überschrieben.

6.5.3 GripperDB

6.5.3.1 Einleitung

Das GripperDB Modul ist ein optionales Modul, welches intern auf dem rc_reason_stack läuft, und
ist freigeschaltet, sobald eine gültige Lizenz für eines der Module ItemPick und ItemPickAI (Abschnitt
6.3.4) und BoxPick (Abschnitt 6.3.5) oder CADMatch (Abschnitt 6.3.7) und SilhouetteMatch und Sil-
houetteMatchAI (Abschnitt 6.3.6) vorhanden ist. Andernfalls benötigt dieses Modul eine separate Li-
zenz (Abschnitt 8.2).

Das Modul bietet Services zum Anlegen, Abfragen und Löschen von Greifern, die dann für die Kolli-
sionsprüfung mit einem Load Carrier oder anderen erkannten Objekten (nur in Kombination mit CAD-
Match (Abschnitt 6.3.7) und SilhouetteMatch und SilhouetteMatchAI (Abschnitt 6.3.6)) genutzt werden
können. Die angelegten Greifer sind in allen Modulen auf dem rc_reason_stack verfügbar, die eine
Kollisionsprüfung anbieten.

Bemerkung: Dieses Softwaremodul läuft global auf dem rc_reason_stack. Änderungen seiner Ein-
stellungen oder Parameter betreffen alle Kamerapipelines, die auf dem rc_reason_stack laufen.

Tab. 6.63: Spezifikationen des GripperDB Moduls
Max. Anzahl Greifer 50
Mögliche Greiferelement-Geometrien Box, Zylinder, CAD-Element
Max. Anzahl Elemente pro Greifer 15
Kollisionsprüfung verfügbar in ItemPick und ItemPickAI (Abschnitt 6.3.4) und

BoxPick (Abschnitt 6.3.5), CADMatch (Abschnitt 6.3.7) und
SilhouetteMatch und SilhouetteMatchAI (Abschnitt 6.3.6)

6.5.3.2 Erstellen eines Greifers

Der Greifer ist eine Kollisionsgeometrie, die zur Prüfung auf Kollisionen zwischen dem geplanten Griff
und dem Load Carrier verwendet wird. Der Greifer kann aus bis zu 15 miteinander verbundenen Ele-
menten bestehen.

Es sind folgende Arten von Elementen möglich:

• Quader (BOX), mit den Abmessungen box.x, box.y, box.z.

• Zylinder (CYLINDER), mit dem Radius cylinder.radius und der Höhe cylinder.height.

• CAD-Element (CAD), mit der ID cad.id des gewählten CAD-Elements.

Jedem Greiferelement kann einer der folgenden Werte für function_type zugewiesen werden:

• NONE: Standardwert, entspricht einem leeren Eintrag. Dieses Element hat keine spezielle Funktion
und wird bei der Kollisionsprüfung wie modelliert berücksichtigt.

Roboception GmbH
Handbuch: rc_reason_stack

309 Rev: 26.01.4
Status: 30.01.2026

6.5. Datenbankmodule

• FINGER: Dieses Element ist ein beweglicher Finger oder eine Greiferbacke und besitzt neben sei-
ner Standardpose pose eine Nullposition (zero_pose). Es kann sich linear von der Nullposition
so weit in Richtung der Standardposition bewegen, wie der für jeden Griff definierte Hub (stroke)
vorgibt.

• SUCTION_CUP: Dieses Element ist ein verformbarer Saugnapf und wird daher bei der Kollisionsprü-
fung ignoriert. Es dient lediglich der Visualisierung.

Weiterhin müssen für jeden Greifer der Flanschradius und der Tool Center Point (TCP) definiert werden.

Die Konfiguration des Greifers wird in der Regel während des Setups der Zielanwendung durchgeführt.
Das kann über die REST-API-Schnittstelle (Abschnitt 7.2) oder die rc_reason_stack Web GUI (Abschnitt
7.1) geschehen.

Flanschradius

Es werden standardmäßig nur Kollisionen mit dem Greifer, nicht aber mit der Robotergeometrie geprüft.
Um Kollisionen zwischen dem Load Carrier und dem Roboter zu vermeiden, kann über den Laufzeitpa-
rameter check_flange im CollisionCheck Modul (siehe Übersicht der Parameter , Abschnitt 6.4.2.3) ein
zusätzlicher optionaler Test aktiviert werden. Dieser Test erkennt alle Griffe als Kollisionen, bei denen
sich ein Teil des Roboterflanschs innerhalb des Load Carriers befinden würde (siehe Abb. 6.41). Der
Test basiert auf der Greifergeometrie und dem Flanschradius.

A B

Abb. 6.41: Fall A: Der Griff wird nur als Kollision erkannt, wenn check_flange auf true gesetzt ist, denn
der Flansch (rot) befindet sich im Load Carrier. Fall B: Der Griff ist in jedem Fall kollisionsfrei.

Hochladen von CAD-Greiferelementen

Ein Greifer kann aus Boxen, Zylindern und CAD-Elementen bestehen. Während Boxen und Zylinder
während der Erstellung eines Greifers parametrisiert werden können, müssen CAD-Elemente im Vor-
feld hochgeladen werden, um für die Greifererstellung verfügbar zu sein. Ein CAD-Element kann über
die REST-API-Schnittstelle (Abschnitt 7.2) wie in Abschnitt CAD-Greiferelement API (Abschnitt 6.5.3.5)
beschrieben, oder über die rc_reason_stack Web GUI (Abschnitt 7.1) hochgeladen werden. Unterstütz-
te Dateiformate sind STEP (*.stp, *.step), STL (*.stl), OBJ (*.obj) und PLY (*.ply). Die maximal hochzula-
dende Dateigröße ist auf 30 MB begrenzt. Die Dateien werden intern in PLY konvertiert und, falls nötig,
vereinfacht. Die CAD-Elemente können dann während der Greifererstellung über ihre ID referenziert
werden.

Erstellen eines Greifers über die REST-API oder die Web GUI

Bei der Greifererstellung über die REST-API-Schnittstelle (Abschnitt 7.2) oder die Web GUI (Abschnitt
7.1) hat jedes Greifer-Element ein Parent-Element, das die Verbindung zwischen den Elementen defi-
niert. Der Greifer wird immer vom Roboterflansch ausgehend in Richtung TCP aufgebaut, und mindes-
tens ein Element muss den Parent ‚flange‘ (Flansch) haben. Die IDs der Elemente müssen eindeutig
sein und dürfen nicht ‚tcp‘ oder ‚flange‘ sein. Die Pose des Elements muss im Koordinatensystem des
Parent-Elements angegeben werden. Das Koordinatensystem eines Elements vom Typ CYLINDER oder
BOX befindet sich genau in seinem geometrischen Mittelpunkt. Damit ein Element also genau unterhalb
seines Parent-Elements platziert wird, muss seine Position aus der Höhe des Parent-Elements und
seiner eigenen Höhe berechnet werden (siehe Abb. 6.42).

Roboception GmbH
Handbuch: rc_reason_stack

310 Rev: 26.01.4
Status: 30.01.2026

6.5. Datenbankmodule

Pcyl

Pbox

hbox

hcyl

Pdiff = (0, 0, (hcyl+hbox)/2)

Pdiff

Abb. 6.42: Bezugskoordinatensysteme für das Erstellen von Greifern über die REST-API und die Web
GUI

Im Falle eines CAD-Greiferelements wird der Ursprung durch die CAD-Daten bestimmt und befindet
sich nicht notwendigerweise im Mittelpunkt der Bounding Box des Elements.

Es wird empfohlen Greifer über die Web GUI zu erstellen, da diese eine 3D Visualisierung der Greifer-
geometrie bietet und das automatische Anheften von Kind-Element an ihre Parent-Elemente ermöglicht,
indem die entsprechende Option für dieses Element aktiviert wird. In diesem Fall bleiben Elemente an
ihren Parent angeheftet, auch wenn sich ihre Größen ändern. Bei CAD-Greiferelementen wird die Boun-
ding Box des Elements als Referenz verwendet. Das automatische Anheften ist nur möglich, wenn das
Kind-Element in Bezug auf seinen Parent nicht um die x- oder y-Achse rotiert ist.

Das Bezugskoordinatensystem für das erste Element liegt immer im Mittelpunkt des Roboterflanschs,
wobei die z-Achse nach unten gerichtet ist. Es können Greifer mit einer Baumstruktur erstellt werden,
bei denen mehrere Elemente dasselbe Parent-Element haben, solange alle Elemente miteinander ver-
bunden sind.

Berechnete TCP-Position

Nach dem Erstellen des Greifers mit dem Service set_gripper wird die TCP-Position im Flanschkoordi-
natensystem berechnet und als tcp_pose_flange zurückgegeben. Dieser Wert muss mit den tatsächli-
chen TCP-Koordinaten des Roboters übereinstimmen. Wenn ein Greifer über die Web GUI erstellt wird,
wird die aktuelle TCP-Position zu jeder Zeit in der 3D-Visualisierung angezeigt.

Nicht-rotationssymmetrische Greifer erstellen

Bei Greifern, die nicht rotationssymmetrisch um die z-Achse sind, muss sichergestellt werden, dass der
Greifer so montiert wird, dass seine Ausrichtung mit der im GripperDB-Modul gespeicherten Darstellung
übereinstimmt.

6.5.3.3 Services

Das GripperDB Modul wird in der REST-API als rc_gripper_db bezeichnet und in der Web
GUI (Abschnitt 7.1) unter Datenbank → Greifer dargestellt. Die angebotenen Services des GripperDB
Moduls können mithilfe der REST-API-Schnittstelle (Abschnitt 7.2) oder der Web GUI ausprobiert und
getestet werden.

Das GripperDB Modul stellt folgende Services zur Verfügung.

Roboception GmbH
Handbuch: rc_reason_stack

311 Rev: 26.01.4
Status: 30.01.2026

6.5. Datenbankmodule

set_gripper

konfiguriert und speichert einen Greifer auf dem rc_reason_stack. Alle Greifer sind dauerhaft
gespeichert, auch über Firmware-Updates und -Wiederherstellungen hinweg.

Details

Dieser Service kann wie folgt aufgerufen werden.

PUT http://<host>/api/v2/nodes/rc_gripper_db/services/set_gripper

Request

Obligatorische Serviceargumente:

elements: Liste von geometrischen Elementen, aus denen der Greifer besteht.
Jedes Element muss den type ‚CYLINDER‘ oder ‚BOX‘ mit den zugehörigen Di-
mensionen im Feld cylinder bzw. box, oder den Typ ‚CAD‘ haben, wobei die ent-
sprechende ID unter id im Feld cad angegeben werden muss. Die Pose jedes Ele-
ments muss im Parent-Koordinatensystem angegeben werden (siehe Erstellen ei-
nes Greifers, Abschnitt 6.5.3.2). Die id des Elements muss eindeutig sein und darf
nicht ‚tcp‘ oder ‚flange‘ sein. Die parent_id ist die ID des Parent-Elements, welche
entweder ‚flange‘ ist oder der ID eines anderen Elements entsprechen muss. Je-
des Element kann einen function_type haben, der entweder NONE, FINGER oder
SUCTION_CUP ist. Elemente vom Typ FINGER benötigen zusätzlich eine zero_pose,
deren Orientierung mit der in der pose des Elements übereinstimmen muss. Ele-
mente vom Typ SUCTION_CUP können keine Kind-Elemente haben.

flange_radius: Flanschradius der benutzt wird, falls der Parameter check_flange
aktiviert ist.

id: Eindeutiger Name des Greifers.

tcp_parent_id: ID des Elements, auf dem der TCP definiert ist.

tcp_pose_parent: Die Pose des TCP im Koordinatensystem des Elements, das in
tcp_parent_id angegeben ist.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"elements": [
{

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"cad": {
"id": "string"

},
"cylinder": {
"height": "float64",
"radius": "float64"

},
"id": "string",
"parent_id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

312 Rev: 26.01.4
Status: 30.01.2026

6.5. Datenbankmodule

(Fortsetzung der vorherigen Seite)

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"type": "string"

}
],
"flange_radius": "float64",
"id": "string",
"tcp_parent_id": "string",
"tcp_pose_parent": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

gripper: Gibt den Greifer mit dem zusätzlichen Feld tcp_pose_flange zurück. Dieses Feld
gibt die TCP-Koordinaten im Flanschkoordinatensystem an, um diese mit den Roboter-TCP-
Koordinaten vergleichen zu können.

return_code: enthält mögliche Warnungen oder Fehlercodes und Nachrichten.

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "set_gripper",
"response": {
"gripper": {
"elements": [

{
"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"cad": {
"id": "string"

},
"cylinder": {
"height": "float64",
"radius": "float64"

},
"id": "string",
"parent_id": "string",
"pose": {
"orientation": {
"w": "float64",

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

313 Rev: 26.01.4
Status: 30.01.2026

6.5. Datenbankmodule

(Fortsetzung der vorherigen Seite)

"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"type": "string"

}
],
"flange_radius": "float64",
"id": "string",
"tcp_parent_id": "string",
"tcp_pose_flange": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"tcp_pose_parent": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"type": "string"

},
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_grippers

gibt die mit gripper_ids spezifizierten und gespeicherten Greifer zurück.

Details

Dieser Service kann wie folgt aufgerufen werden.

PUT http://<host>/api/v2/nodes/rc_gripper_db/services/get_grippers

Roboception GmbH
Handbuch: rc_reason_stack

314 Rev: 26.01.4
Status: 30.01.2026

6.5. Datenbankmodule

Request

Wenn keine gripper_ids angegeben werden, enthält die Serviceantwort alle gespeicherten
Greifer.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"gripper_ids": [
"string"

]
}

}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "get_grippers",
"response": {
"grippers": [
{

"elements": [
{
"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"cad": {
"id": "string"

},
"cylinder": {
"height": "float64",
"radius": "float64"

},
"id": "string",
"parent_id": "string",
"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"type": "string"

}
],
"flange_radius": "float64",
"id": "string",
"tcp_parent_id": "string",
"tcp_pose_flange": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

315 Rev: 26.01.4
Status: 30.01.2026

6.5. Datenbankmodule

(Fortsetzung der vorherigen Seite)

"z": "float64"
},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"tcp_pose_parent": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

delete_grippers

löscht die mit gripper_ids spezifizierten, gespeicherten Greifer.

Details

Dieser Service kann wie folgt aufgerufen werden.

PUT http://<host>/api/v2/nodes/rc_gripper_db/services/delete_grippers

Request

Alle zu löschenden Greifer müssen explizit angegeben werden.

Die Definition der Request-Argumente mit jeweiligen Datentypen ist:

{
"args": {

"gripper_ids": [
"string"

]
}

}

Response

Die Definition der Response mit jeweiligen Datentypen ist:

{
"name": "delete_grippers",

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

316 Rev: 26.01.4
Status: 30.01.2026

6.5. Datenbankmodule

(Fortsetzung der vorherigen Seite)

"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.5.3.4 Rückgabecodes

Zusätzlich zur eigentlichen Serviceantwort gibt jeder Service einen sogenannten return_code beste-
hend aus einem Integer-Wert und einer optionalen Textnachricht zurück. Erfolgreiche Service-Anfragen
werden mit einem Wert von 0 quittiert. Positive Werte bedeuten, dass die Service-Anfrage zwar erfolg-
reich bearbeitet wurde, aber zusätzliche Informationen zur Verfügung stehen. Negative Werte bedeu-
ten, dass Fehler aufgetreten sind. Für den Fall, dass mehrere Rückgabewerte zutreffend wären, wird
der kleinste zurückgegeben, und die entsprechenden Textnachrichten werden in return_code.message
akkumuliert.

Die folgende Tabelle listet die möglichen Rückgabecodes auf:

Tab. 6.64: Rückgabecodes der GripperDB Services
Code Beschreibung

0 Erfolgreich
-1 Ein ungültiges Argument wurde übergeben.
-7 Daten konnten nicht in den persistenten Speicher geschrieben oder vom persistenten

Speicher gelesen werden.
-9 Lizenz für CollisionCheck ist nicht verfügbar.

-10 Das neue Element konnte nicht hinzugefügt werden, da die maximal speicherbare Anzahl
an Greifern überschritten wurde.

10 Die maximal speicherbare Anzahl an Greifern wurde erreicht.
11 Bestehender Greifer wurde überschrieben.

6.5.3.5 CAD-Greiferelement API

Für den Upload, Download, das Auflisten und Löschen von CAD-Greiferelementen werden spezi-
elle REST-API-Endpunkte zur Verfügung gestellt. CAD-Greiferelemente können auch über die Web
GUI hoch- und runtergeladen werden. Bis zu 50 CAD-Greiferelemente können gleichzeitig auf dem
rc_reason_stack gespeichert werden.

Die maximal hochzuladende Dateigröße ist auf 30 MB begrenzt.

GET /cad/gripper_elements
listet alle CAD-Greiferelemente auf.

Musteranfrage

GET /api/v2/cad/gripper_elements HTTP/1.1

Musterantwort

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": "string"

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

317 Rev: 26.01.4
Status: 30.01.2026

6.5. Datenbankmodule

(Fortsetzung der vorherigen Seite)

}
]

Antwort-Header

• Content-Type – application/json application/ubjson

Statuswerte

• 200 OK – Erfolgreiche Verarbeitung (Rückgabewert: Array von GripperElement)

• 404 Not Found – Element nicht gefunden

Referenzierte Datenmodelle

• GripperElement (Abschnitt 7.2.3)

GET /cad/gripper_elements/{id}
ruft ein CAD-Greiferelement ab. Falls der angefragte Content-Typ application/octet-stream ist, wird
das Element als Datei zurückgegeben.

Musteranfrage

GET /api/v2/cad/gripper_elements/<id> HTTP/1.1

Musterantwort

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameter

• id (string) – ID des Elements (obligatorisch)

Antwort-Header

• Content-Type – application/json application/ubjson application/octet-stream

Statuswerte

• 200 OK – Erfolgreiche Verarbeitung (Rückgabewert: GripperElement)

• 404 Not Found – Element nicht gefunden

Referenzierte Datenmodelle

• GripperElement (Abschnitt 7.2.3)

PUT /cad/gripper_elements/{id}
erstellt oder aktualisiert ein CAD-Greiferelement.

Musteranfrage

PUT /api/v2/cad/gripper_elements/<id> HTTP/1.1
Accept: multipart/form-data application/json

Musterantwort

Roboception GmbH
Handbuch: rc_reason_stack

318 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.5. Datenbankmodule

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameter

• id (string) – ID des Elements (obligatorisch)

Formularparameter

• file – CAD-Datei (obligatorisch)

Anfrage-Header

• Accept – multipart/form-data application/json

Antwort-Header

• Content-Type – application/json application/ubjson

Statuswerte

• 200 OK – Erfolgreiche Verarbeitung (Rückgabewert: GripperElement)

• 400 Bad Request – CAD ist ungültig oder die maximale Zahl an Elementen
wurde erreicht.

• 404 Not Found – Element nicht gefunden

• 413 Request Entity Too Large – Datei zu groß

Referenzierte Datenmodelle

• GripperElement (Abschnitt 7.2.3)

DELETE /cad/gripper_elements/{id}
entfernt ein CAD-Greiferelement.

Musteranfrage

DELETE /api/v2/cad/gripper_elements/<id> HTTP/1.1
Accept: application/json application/ubjson

Parameter

• id (string) – ID des Elements (obligatorisch)

Anfrage-Header

• Accept – application/json application/ubjson

Antwort-Header

• Content-Type – application/json application/ubjson

Statuswerte

• 200 OK – Erfolgreiche Verarbeitung

• 404 Not Found – Element nicht gefunden

Roboception GmbH
Handbuch: rc_reason_stack

319 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7 Schnittstellen

Es stehen die folgenden Schnittstellen zur Konfiguration und Datenübertragung des rc_reason_stack
zur Verfügung:

• Web GUI (Abschnitt 7.1)

Leicht zu bedienendes grafisches Interface zum Konfigurieren und Kalibrieren des
rc_reason_stack, zum Anzeigen von Livebildern, Aufrufen von Services, Visualisieren
von Ergebnissen, usw.

• REST-API-Schnittstelle (Abschnitt 7.2)

Programmierschnittstelle zur Konfiguration des rc_reason_stack, zur Abfrage von Sta-
tusinformationen, zum Anfordern von Datenströmen, usw.

• Generic Robot Interface (Abschnitt 7.3)

TCP-Socketkommunikationsschnittstelle zur Konfiguration des rc_reason_stack und für
Serviceaufrufe.

• OPC UA Interface (Abschnitt 7.4)

OPC UA Schnittstelle zur Konfiguration des rc_reason_stack und Ausführen von
Service-Anfragen.

• KUKA Ethernet KRL Schnittstelle (Abschnitt 7.5)

API zum Konfigurieren des rc_reason_stack und Ausführen von Service-Anfrage von
KUKA KSS Robotern aus.

• gRPC Bilddatenschnittstelle (Abschnitt 7.6)

Synchronisierte Bilddaten per gRPC.

7.1 Web GUI

Die Web GUI des rc_reason_stack dient dazu, das Gerät zu testen, zu kalibrieren und zu konfigurieren.

7.1.1 Zugriff auf die Web GUI

Auf die Web GUI des rc_reason_stack kann von jedem Webbrowser aus zugegriffen werden, z.B. Fire-
fox, Google Chrome oder Microsoft Edge, indem man die IP-Adresse des Host-PCs mit dem Port 8080
aufruft:

http://<host-ip>:8080/

Roboception GmbH
Handbuch: rc_reason_stack

320 Rev: 26.01.4
Status: 30.01.2026

7.1. Web GUI

7.1.2 Kennenlernen der Web GUI

Die Dashboard-Seite der Web GUI enthält die wichtigsten Informationen über das Gerät und die laufen-
den Kamerapipelines.

Abb. 7.1: Dashboard-Seite der Web GUI des rc_reason_stack

Über das Menü kann auf die einzelnen Seiten der Web GUI des rc_reason_stack zugegriffen werden:

Pipeline ermöglicht den Zugriff auf die zugehörige Kamerapipeline und ihre Kamera-, Detektions- und
Konfigurationsmodule. Jede Pipeline hat eine Übersichtsseite mit den wichtigsten Informationen
über die Kameraverbindung und die Softwaremodule, die in der Pipeline laufen.

Abb. 7.2: Pipeline-Überblicksseite der Web GUI des rc_reason_stack

Jede Pipeline bietet ein Untermenü mit den einzelnen Seiten für die Module, die in der Pipeline laufen:

Roboception GmbH
Handbuch: rc_reason_stack

321 Rev: 26.01.4
Status: 30.01.2026

7.1. Web GUI

Kamera bietet einen Live-Stream der rektifizierten Bilder und ermöglicht das Einstellen der Kamerapa-
rameter. Für nähere Informationen siehe Kamera Modul (Abschnitt 6.1).

Tiefenbild bietet einen Live-Stream der rektifizierten Bilder der linken Kamera sowie Disparitäts- und
Konfidenzbilder. Auf der Seite lassen sich verschiedene Einstellungen zur Berechnung und Filte-
rung von Tiefenbildern vornehmen. Für nähere Informationen siehe 3D-Module (Abschnitt 6.2).

Module ermöglicht den Zugriff auf die Detektionsmodule des rc_reason_stack (siehe Detektions- und
Messmodule, Abschnitt 6.3).

Konfiguration ermöglicht den Zugriff auf die Konfigurationsmodule des rc_reason_stack (siehe Konfi-
gurationsmodule, Abschnitt 6.4).

Die folgenden Module laufen außerhalb der Kamerapipelines und können über das Menü erreicht wer-
den:

Datenbank ermöglicht den Zugriff auf die Datenbankmodule des rc_reason_stack (siehe Datenbank-
module, Abschnitt 6.5).

Generic Robot Interface zeigt die Jobs und Hand-Auge-Kalibrierkonfigurationen, die für das Generic
Robot Interface definiert wurden.

System ermöglicht dem Nutzer den Zugriff auf allgemeine Systemeinstellungen, Informationen zur
Software, den Log-Dateien, und Lizenzinformationen.

Bemerkung: Weitere Informationen zu den einzelnen Parametern der Web GUI lassen sich über die
jeweils daneben angezeigte Schaltfläche Info aufrufen.

7.1.3 Web GUI Zugriffskontrolle

Die Web GUI bietet einen simplen Mechanismus das User Interface zu sperren um beiläufige und
unbeabsichtigte Änderungen zu vermeiden.

Beim aktivieren der Web GUI Zugriffskontrolle über die System Seite muss ein Passwort gesetzt wer-
den. Jetzt ist die Web GUI in einem gesperrten Zustand wie das Schloss Symbol in der Kopfleiste
anzeigt. Alle Seiten, Kamerabilder, Parameter und Detektionen können wie gewohnt eingesehen wer-
den, Änderungen sind aber nicht möglich.

Um die Web GUI temporär zu entsperren und Änderungen vorzunehmen, klicken Sie das Schloss
Symbol und geben Sie das Passwort ein. Während das aktivieren und deaktivieren der Web GUI Zu-
griffskontrolle jeden betrifft der diesen rc_reason_stack nutzt, ist das Entsperren nur pro Browser gültig
und wird durch das Symbol mit dem offenen Schloss angezeigt. Nach 10 Minutuen Inaktivität wird es
automatisch wieder gesperrt.

Die Web GUI Zugriffskontrolle kann auf der System Seite wieder deaktiviert werden nachdem das
aktuelle Passwort angegeben wurde.

Warnung: Dies ist keine Sicherheitsfunktion! Es sperrt nur die Web GUI und nicht die REST-API. Es
ist dazu gedacht um unbeabsichtigte und beiläufige Änderungen, z.B. über einen angeschlossenen
Bildschirm, zu verhindern.

Bemerkung: Im Fall eines vergessenen Passworts kann die Zugriffskontrolle über die REST-API mit
delete ui_lock (Abschnitt 7.2.2.4) zurückgesetzt und deaktiviert werden.

7.1.4 Herunterladen von Kamerabildern

Die Web GUI bietet eine einfache Möglichkeit, einen Schnappschuss der aktuellen Szene als .tar.gz-
Datei zu speichern. Dazu dient das Kamerasymbol unterhalb der Live-Streams auf der Seite Kamera.

Roboception GmbH
Handbuch: rc_reason_stack

322 Rev: 26.01.4
Status: 30.01.2026

7.2. REST-API-Schnittstelle

Dieser Schnappschuss beinhaltet:

• die rektifizierten Kamerabilder in voller Auflösung als .png-Dateien,

• eine Kameraparameter-Datei mit Kameramatrix, Bildabmessungen, Belichtungszeit, Verstär-
kungsfaktor und Basisabstand der Kameras.

• die aktuellen IMU-Messungen als imu.csv-Datei, falls verfügbar,

• eine pipeline_status.json-Datei mit Informationen aller Module, die innerhalb der Kamerapipelines
auf dem rc_reason_stack laufen,

• eine backup.json-Datei mit den Einstellungen des rc_reason_stack einschließlich konfigurierter
Greifer, Load Carrier und Regions of Interest,

• eine system_info.json-Datei mit Systeminformationen des rc_reason_stack.

Die Dateinamen enthalten die Zeitstempel.

7.1.5 Herunterladen von Tiefenbildern und Punktwolken

Die Web GUI bietet eine einfache Möglichkeit, die Tiefendaten der aktuellen Szene als .tar.gz-Datei zu
speichern. Dazu dient das Kamerasymbol unterhalb der Live-Streams auf der Seite Tiefenbild. Dieser
Schnappschuss beinhaltet:

• die rektifizierten linken und rechten Kamerabilder in voller Auflösung als .png-Dateien,

• eine Parameterdatei für das linke Kamerabild mit Kameramatrix, Bildabmessungen, Belichtungs-
zeit, Verstärkungsfaktor und Basisabstand der Kameras,

• die Disparitäts-, Fehler- und Konfidenzbilder in der Auflösung, die der aktuell eingestellten Qualität
entspricht, als .png-Dateien,

• eine Parameterdatei zum Disparitätsbild mit Kameramatrix, Bildabmessungen, Belichtungszeit,
Verstärkungsfaktor und Basisabstand der Kameras, sowie Informationen über die Disparitätswerte
(ungültige Werte, Skalierung, Offset),

• die aktuellen IMU-Messungen als imu.csv-Datei, falls verfügbar,

• eine pipeline_status.json-Datei mit Informationen aller Module, die innerhalb der Kamerapipelines
auf dem rc_reason_stack laufen,

• eine backup.json-Datei mit den Einstellungen des rc_reason_stack einschließlich konfigurierter
Greifer, Load Carrier und Regions of Interest,

• eine system_info.json-Datei mit Systeminformationen des rc_reason_stack.

Die Dateinamen enthalten die Zeitstempel.

Durch Klick auf das Mesh-Symbol unterhalb der Live-Streams auf der Seite Tiefenbild kann man einen
Schnappschuss herunterladen, der zusätzlich ein Mesh der Punktwolke in der aktuell eingestellten Auf-
lösung (Qualität) als *.ply Datei enthält.

Bemerkung: Das Herunterladen der Tiefenbilder löst eine Bildaufnahme aus, in der gleichen Weise
wie ein Klick auf den „Aufnehmen“-Button auf der Tiefenbild-Seite der Web GUI. Dies kann einen
Einfluss auf laufende Anwendungen haben.

7.2 REST-API-Schnittstelle

Der rc_reason_stack bietet eine umfassende RESTful-Web-Schnittstelle (REST-API), auf die jeder
HTTP-Client und jede HTTP-Bibliothek zugreifen kann. Während die meisten Parameter, Services und
Funktionen auch über die benutzerfreundliche Web GUI (Abschnitt 7.1) zugänglich sind, dient die REST-
API eher als Maschine-Maschine-Schnittstelle für folgende programmgesteuerte Aufgaben:

Roboception GmbH
Handbuch: rc_reason_stack

323 Rev: 26.01.4
Status: 30.01.2026

7.2. REST-API-Schnittstelle

• Setzen und Abrufen der Laufzeitparameter der Softwaremodule, z.B. der Stereokamera oder von
Bildverarbeitungsmodulen,

• Aufrufen von Services, z.B. zum Starten und Stoppen einzelner Softwaremodule, oder zum Nut-
zen spezieller Funktionen, wie der Hand-Auge-Kalibrierung,

• Abruf des aktuellen Systemstatus und des Status einzelner Softwaremodule, sowie

• Aktualisierung der Firmware des rc_reason_stack oder seiner Lizenz.

Bemerkung: In der REST-API des rc_reason_stack bezeichnet der Begriff Node ein Softwaremodul,
das gewisse algorithmische Funktionen bündelt und eine ganzheitliche Benutzeroberfläche (Parame-
ter, Services, aktueller Status) besitzt. Beispiele für solche Module sind das Stereo-Matching-Modul
oder das Modul zur Hand-Auge-Kalibrierung.

7.2.1 Allgemeine Struktur der Programmierschnittstelle (API)

Der allgemeine Einstiegspunkt zur Programmierschnittstelle (API) des rc_reason_stack ist http://
<host>/api/ wobei <host> die IP-Adresse des Host-PC ist, auf dem der rc_reason_stack läuft, kombi-
niert mit dem Port 8080, d.h. <host-ip>::8080. Greift der Benutzer über einen Webbrowser auf diese
Adresse zu, kann er die Programmierschnittstelle während der Laufzeit mithilfe der Swagger UI (Ab-
schnitt 7.2.4) erkunden und testen.

Für die eigentlichen HTTP-Anfragen wird dem Einstiegspunkt der Programmierschnittstelle die aktuelle
Version der Schnittstelle als Postfix angehangen, d.h. http://<host>/api/v2.

Alle Daten, die an die REST-API gesandt und von ihr empfangen werden, entsprechen dem JSON-
Datenformat (JavaScript Object Notation). Die Programmierschnittstelle ist so gestaltet, dass der Be-
nutzer die in Verfügbare Ressourcen und Anfragen (Abschnitt 7.2.2) aufgelisteten sogenannten Res-
sourcen über die folgenden HTTP-Anforderungen anlegen, abrufen, ändern und löschen kann.

Anfragetyp Beschreibung
GET Zugriff auf eine oder mehrere

Ressourcen und Rückgabe des
Ergebnisses im JSON-Format

PUT Änderung einer Ressource und
Rückgabe der modifizierten
Ressource im JSON-Format

DELETE Löschen einer Ressource
POST Upload einer Datei (z.B. einer

Lizenz oder eines Firmware-
Images)

Je nach der Art der Anfrage und Datentyp können die Argumente für HTTP-Anfragen als Teil des Pfads
(URI) zur Ressource, als Abfrage-Zeichenfolge, als Formulardaten oder im Body der Anfrage übertra-
gen werden. Die folgenden Beispiele nutzen das Kommandozeilenprogramm curl, das für verschiedene
Betriebssysteme verfügbar ist (siehe https://curl.haxx).se.

• Abruf des aktuellen Status eines Moduls, wobei sein Name im Pfad (URI) verschlüsselt ist

curl -X GET 'http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching'

• Abruf einiger Parameterwerte eines Moduls über eine Abfragezeichenfolge

curl -X GET 'http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching/parameters?
→˓name=minconf&name=maxdepth'

• Setzen eines Modulparameters als JSON-formatierter Text im Body der Anfrage

Roboception GmbH
Handbuch: rc_reason_stack

324 Rev: 26.01.4
Status: 30.01.2026

https://doc.rc-visard.com/latest/en/glossary.html#term-uri
https://curl.haxx).se

7.2. REST-API-Schnittstelle

curl -X PUT --header 'Content-Type: application/json' -d '[{"name": "mindepth", "value": 0.
→˓1}]' 'http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching/parameters'

Zur Beantwortung solcher Anfragen greift die Programmierschnittstelle des rc_reason_stack auf übliche
Rückgabecodes zurück:

Statuscode Beschreibung
200 OK Die Anfrage war erfolgreich.

Die Ressource wird im JSON-
Format zurückgegeben.

400 Bad Request Ein für die API-Anfrage benötig-
tes Attribut oder Argument fehlt
oder ist ungültig.

404 Not Found Auf eine Ressource konnte nicht
zugegriffen werden. Möglicher-
weise kann die ID einer Res-
source nicht gefunden werden.

403 Forbidden Der Zugriff ist (vorübergehend)
verboten. Möglicherweise sind
einige Parameter gesperrt,
während eine GigE Vision-
Anwendung verbunden ist.

429 Too many requests Die Übertragungsrate ist auf-
grund einer zu hohen Anfrage-
frequenz begrenzt.

Der folgende Eintrag zeigt eine Musterantwort auf eine erfolgreiche Anfrage, mit der Informationen zum
minconf-Parameter des rc_stereomatching-Moduls angefordert werden:

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 157

{
"name": "minconf",
"min": 0,
"default": 0,
"max": 1,
"value": 0,
"type": "float64",
"description": "Minimum confidence"

}

Bemerkung: Das tatsächliche Verhalten, die zulässigen Anfragen und die speziellen Rückgabeco-
des hängen in hohem Maße von der gewählten Ressource, vom Kontext und von der Aktion ab.
Siehe die verfügbaren Ressourcen (Abschnitt 7.2.2) des rc_reason_stack und einzelnen Parameter
und Services jedes Softwaremoduls (Abschnitt 6).

7.2.2 Verfügbare Ressourcen und Anfragen

Die für die REST-API verfügbaren Ressourcen lassen sich in folgende Teilbereiche gliedern:

• /nodes Zugriff auf die globalen Datenbankmodule (Abschnitt 6.5) des rc_reason_stack mit ihren
Laufzeitzuständen, Parametern und angebotenen Services, um Daten zu speichern, die in
allen Kamerapipelines und mehreren Modulen genutzt werden, z.B. Load Carrier, Greifer und
Regions of Interest.

Roboception GmbH
Handbuch: rc_reason_stack

325 Rev: 26.01.4
Status: 30.01.2026

7.2. REST-API-Schnittstelle

• /pipelines/<number>/nodes Zugriff auf die 3D-Kamera-, Detektions- und Konfigurations-
Softwaremodule (Abschnitt 6) der Kamerapipeline des rc_reason_stack mit der angegebe-
nen Nummer number, mit ihren jeweiligen Laufzeitzuständen, Parametern und verfügbaren
Services.

• /pipelines Zugriff auf den Status und die Konfiguration der Kamerapipelines.

• /templates Zugriff auf die im rc_reason_stack hinterlegten Objekttemplates.

• /cad Zugriff auf die CAD-Elemente, z.B. für Greifer, im rc_reason_stack.

• /presets Zugriff auf die benutzerdefinierten 2D und 3D Voreinstellungen für zivid Kameras.

• /system Zugriff auf Systemzustand, Netzwerkkonfiguration, Konfiguration der Kamerapipelines,
und Verwaltung der Lizenzen sowie der Firmware-Updates.

• /logs Zugriff auf die im rc_reason_stack hinterlegten Logdateien.

• /generic_robot_interface Zugriff auf die Jobs und Hand-Auge-Kalibrierkonfigurationen für das
Generic Robot Interface auf dem rc_reason_stack.

7.2.2.1 Module, Parameter und Services

Die Softwaremodule (Abschnitt 6) des rc_reason_stack heißen in der REST-API Nodes und vereinen
jeweils bestimmte algorithmische Funktionen. Über folgenden Befehl lassen sich alle globalen Daten-
bankmodule der REST-API mit ihren jeweiligen Services und Parametern auflisten:

curl -X GET http://<host>/api/v2/nodes

Informationen zu einem bestimmten Modul (z.B. rc_load_carrier_db) lassen sich mit folgendem Befehl
abrufen:

curl -X GET http://<host>/api/v2/nodes/rc_load_carrier_db

Alle verfügbaren 3D-Kamera-, Detektions- und Konfigurationsmodule der REST-API lassen sich mit
ihren Services und Parametern wie folgt auflisten:

curl -X GET http://<host>/api/v2/pipelines/<pipeline number>/nodes

Informationen zu einem bestimmten Modul (z.B. rc_camera in Kamerapipeline 1) lassen sich mit folgen-
dem Befehl abrufen:

curl -X GET http://<host>/api/v2/pipelines/1/nodes/rc_camera

Status: Während der Laufzeit stellt jedes Modul Informationen zu seinem aktuellen Status bereit. Dies
umfasst nicht nur den aktuellen Verarbeitungsstatus des Moduls (z.B. running oder stale),
sondern die meisten Module melden auch Laufzeitstatistiken oder schreibgeschützte Parameter,
sogenannte Statuswerte. Die Statuswerte des rc_camera-Moduls lassen sich beispielsweise wie
folgt abrufen:

curl -X GET http://<host>/api/v2/pipelines/<pipeline number>/nodes/rc_camera/status

Bemerkung: Die zurückgegebenen Statuswerte sind modulspezifisch und werden im jeweili-
gen Softwaremodul (Abschnitt 6) dokumentiert.

Bemerkung: Statuswerte werden nur gemeldet, wenn sich das jeweilige Modul im Zustand
running befindet.

Parameter: Die meisten Module stellen Parameter über die REST-API des rc_reason_stack zur Verfü-
gung, damit ihr Laufzeitverhalten an den Anwendungskontext oder die Anforderungen angepasst
werden kann. Die REST-API ermöglicht es, den Wert eines Parameters zu setzen und abzufragen.

Roboception GmbH
Handbuch: rc_reason_stack

326 Rev: 26.01.4
Status: 30.01.2026

7.2. REST-API-Schnittstelle

Darüber hinaus stellt sie weitere Angaben, wie z.B. den jeweiligen Standardwert und zulässige
Minimal- bzw. Maximalwerte von Parametern, zur Verfügung.

Die rc_stereomatching-Parameter lassen sich beispielsweise wie folgt abrufen:

curl -X GET http://<host>/api/v2/pipelines/<pipeline number>/nodes/rc_stereomatching/
→˓parameters

Der quality-Parameter dieses Moduls könnte wie folgt auf den Wert Full gesetzt werden:

curl -X PUT http://<host>/api/v2/pipelines/<pipeline number>/nodes/rc_stereomatching/
→˓parameters?quality=Full

oder äquivalent

curl -X PUT --header 'Content-Type: application/json' -d '{ "value": "Full" }' http://<host>
→˓/api/v2/pipelines/<pipeline number>/nodes/rc_stereomatching/parameters/quality

Bemerkung: Laufzeitparameter sind modulspezifisch und werden in dem jeweiligen Software-
modul (Abschnitt 6) dokumentiert.

Bemerkung: Die meisten Parameter, die die Module über die REST-API anbieten, lassen sich
auch über die benutzerfreundliche Web GUI (Abschnitt 7.1) des rc_reason_stack erkunden
und austesten.

Zudem bietet jedes Modul, das Laufzeitparameter bereitstellt, auch einen Service, um die Werk-
seinstellungen aller Parameter wiederherzustellen.

Services: Die meisten Module bieten auch Services, die sich über die REST-API aufrufen lassen. Hier-
zu gehört beispielsweise das oben bereits genannte Wiederherstellen von Parametern oder auch
das Starten und Stoppen von Modulen. Die Services des Moduls zur Hand-Auge-Kalibrierung
(Abschnitt 6.4.1.5) lassen sich beispielsweise wie folgt aufrufen:

curl -X GET http://<host>/api/v2/pipelines/<pipeline number>/nodes/rc_hand_eye_calibration/
→˓services

Um einen Service eines Moduls aufzurufen, wird eine PUT-Anfrage mit servicespezifischen Argu-
menten für die jeweilige Ressource gestellt (siehe das "args"-Feld des Service-Datenmodells,
Abschnitt 7.2.3). Beispielsweise lässt sich folgendermaßen eine Bildaufnahme mit dem Stereo-
Matching-Modul auslösen:

curl -X PUT --header 'Content-Type: application/json' -d '{ "args": {} }' http://<host>/api/
→˓v2/pipelines/<pipeline number>/nodes/rc_stereomatching/services/acquisition_trigger

Bemerkung: Die Services und zugehörigen Argumente sind modulspezifisch und werden im
jeweiligen Softwaremodul (Abschnitt 6) dokumentiert.

Die folgende Liste enthält alle REST-API-Anfragen zum Status der globalen Datenbankmodule und ihrer
Parameter und Services:

GET /nodes
Abruf einer Liste aller verfügbaren globalen Nodes.

Musteranfrage

GET /api/v2/nodes HTTP/1.1

Beispielantwort

Roboception GmbH
Handbuch: rc_reason_stack

327 Rev: 26.01.4
Status: 30.01.2026

7.2. REST-API-Schnittstelle

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"name": "rc_roi_db",
"parameters": [],
"services": [
"set_region_of_interest",
"get_regions_of_interest",
"delete_regions_of_interest",
"set_region_of_interest_2d",
"get_regions_of_interest_2d",
"delete_regions_of_interest_2d"

],
"status": "running"

},
{

"name": "rc_load_carrier_db",
"parameters": [],
"services": [
"set_load_carrier",
"get_load_carriers",
"delete_load_carriers"

],
"status": "running"

},
{

"name": "rc_gripper_db",
"parameters": [],
"services": [
"set_gripper",
"get_grippers",
"delete_grippers"

],
"status": "running"

}
]

Antwort-Headers

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung (Rückgabe: NodeInfo-Array)

Referenzierte Datenmodelle

• NodeInfo (Abschnitt 7.2.3)

GET /nodes/{node}
Abruf von Informationen zu einem einzelnen globalen Modul.

Musteranfrage

GET /api/v2/nodes/<node> HTTP/1.1

Beispielantwort

HTTP/1.1 200 OK
Content-Type: application/json

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

328 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.2. REST-API-Schnittstelle

(Fortsetzung der vorherigen Seite)

{
"name": "rc_roi_db",
"parameters": [],
"services": [

"set_region_of_interest",
"get_regions_of_interest",
"delete_regions_of_interest",
"set_region_of_interest_2d",
"get_regions_of_interest_2d",
"delete_regions_of_interest_2d"

],
"status": "running"

}

Parameter

• node (string) – Modulname (obligatorisch)

Antwort-Headers

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung (Rückgabe: NodeInfo)

• 404 Not Found – Modul nicht gefunden

Referenzierte Datenmodelle

• NodeInfo (Abschnitt 7.2.3)

GET /nodes/{node}/services
Abruf von Beschreibungen aller von einem globalen Modul angebotenen Services.

Musteranfrage

GET /api/v2/nodes/<node>/services HTTP/1.1

Musteranfrage

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"args": {},
"description": "string",
"name": "string",
"response": {}

}
]

Parameter

• node (string) – Modulname (obligatorisch)

Antwort-Headers

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung (Rückgabe: Service-Array)

• 404 Not Found – Modul nicht gefunden

Roboception GmbH
Handbuch: rc_reason_stack

329 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API-Schnittstelle

Referenzierte Datenmodelle

• Service (Abschnitt 7.2.3)

GET /nodes/{node}/services/{service}
Abruf der Beschreibung eines Services eines globalen Moduls.

Musteranfrage

GET /api/v2/nodes/<node>/services/<service> HTTP/1.1

Musteranfrage

HTTP/1.1 200 OK
Content-Type: application/json

{
"args": {},
"description": "string",
"name": "string",
"response": {}

}

Parameter

• node (string) – Modulname (obligatorisch)

• service (string) – Name des Service (obligatorisch)

Antwort-Headers

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung (Rückgabe: Service)

• 404 Not Found – Modul oder Service nicht gefunden

Referenzierte Datenmodelle

• Service (Abschnitt 7.2.3)

PUT /nodes/{node}/services/{service}
Aufruf des Services eines Moduls: Die benötigten Argumente und die zugehörige Antwort hängt
vom Modul und vom Service ab.

Musteranfrage

PUT /api/v2/nodes/<node>/services/<service> HTTP/1.1
Accept: application/json application/ubjson

{}

Musteranfrage

HTTP/1.1 200 OK
Content-Type: application/json

{
"args": {},
"description": "string",
"name": "string",
"response": {}

}

Roboception GmbH
Handbuch: rc_reason_stack

330 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API-Schnittstelle

Parameter

• node (string) – Modulname (obligatorisch)

• service (string) – Name des Service (obligatorisch)

JSON-Objekt zur Anfrage

• service args (object) – Beispielargumente (obligatorisch)

Anfrage-Header

• Accept – application/json application/ubjson

Antwort-Headers

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Serviceaufruf erledigt (Rückgabe: Service)

• 403 Forbidden – Service-Aufruf verboten, z.B. weil keine valide Lizenz für dieses
Modul vorliegt.

• 404 Not Found – Modul oder Service nicht gefunden

Referenzierte Datenmodelle

• Service (Abschnitt 7.2.3)

GET /nodes/{node}/status
Abruf des Status eines globalen Datenbankmoduls.

Musteranfrage

GET /api/v2/nodes/<node>/status HTTP/1.1

Beispielantwort

HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "running",
"timestamp": 1503075030.2335997,
"values": []

}

Parameter

• node (string) – Modulname (obligatorisch)

Antwort-Headers

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung (Rückgabe: NodeStatus)

• 404 Not Found – Modul nicht gefunden

Referenzierte Datenmodelle

• NodeStatus (Abschnitt 7.2.3)

Die folgende Liste enthält alle REST-API-Anfragen zum Status der pipelinespezifischen 3D-Kamera-,
Detektions- und KonfigurationsModule und ihrer Parameter und Services:

Roboception GmbH
Handbuch: rc_reason_stack

331 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API-Schnittstelle

GET /pipelines/{pipeline}/nodes
Abruf einer Liste aller verfügbaren Module.

Musteranfrage

GET /api/v2/pipelines/<pipeline>/nodes HTTP/1.1

Beispielantwort

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"name": "rc_camera",
"parameters": [
"fps",
"exp_auto",
"exp_value",
"exp_max"

],
"services": [
"reset_defaults"

],
"status": "running"

},
{

"name": "rc_hand_eye_calibration",
"parameters": [
"grid_width",
"grid_height",
"robot_mounted"

],
"services": [
"reset_defaults",
"set_pose",
"reset",
"save",
"calibrate",
"get_calibration"

],
"status": "idle"

},
{

"name": "rc_stereomatching",
"parameters": [
"quality",
"seg",
"fill",
"minconf",
"mindepth",
"maxdepth",
"maxdeptherr"

],
"services": [

"reset_defaults"
],
"status": "running"

}
]

Parameter

Roboception GmbH
Handbuch: rc_reason_stack

332 Rev: 26.01.4
Status: 30.01.2026

7.2. REST-API-Schnittstelle

• pipeline (string) – Name der Pipeline (0, 1, 2 oder 3) (obligatorisch)

Antwort-Headers

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung (Rückgabe: NodeInfo-Array)

Referenzierte Datenmodelle

• NodeInfo (Abschnitt 7.2.3)

GET /pipelines/{pipeline}/nodes/{node}
Abruf von Informationen zu einem einzelnen Modul.

Musteranfrage

GET /api/v2/pipelines/<pipeline>/nodes/<node> HTTP/1.1

Beispielantwort

HTTP/1.1 200 OK
Content-Type: application/json

{
"name": "rc_camera",
"parameters": [

"fps",
"exp_auto",
"exp_value",
"exp_max"

],
"services": [
"reset_defaults"

],
"status": "running"

}

Parameter

• pipeline (string) – Name der Pipeline (0, 1, 2 oder 3) (obligatorisch)

• node (string) – Modulname (obligatorisch)

Antwort-Headers

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung (Rückgabe: NodeInfo)

• 404 Not Found – Modul nicht gefunden

Referenzierte Datenmodelle

• NodeInfo (Abschnitt 7.2.3)

GET /pipelines/{pipeline}/nodes/{node}/parameters
Abruf von Parametern eines Moduls.

Musteranfrage

GET /api/v2/pipelines/<pipeline>/nodes/<node>/parameters?name=<name> HTTP/1.1

Beispielantwort

Roboception GmbH
Handbuch: rc_reason_stack

333 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API-Schnittstelle

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"default": 25,
"description": "Frames per second in Hz",
"max": 25,
"min": 1,
"name": "fps",
"type": "float64",
"value": 25

},
{

"default": true,
"description": "Switching between auto and manual exposure",
"max": true,
"min": false,
"name": "exp_auto",
"type": "bool",
"value": true

},
{

"default": 0.007,
"description": "Maximum exposure time in s if exp_auto is true",
"max": 0.018,
"min": 6.6e-05,
"name": "exp_max",
"type": "float64",
"value": 0.007

}
]

Parameter

• pipeline (string) – Name der Pipeline (0, 1, 2 oder 3) (obligatorisch)

• node (string) – Modulname (obligatorisch)

Anfrageparameter

• name (string) – Schränkt Ergebnisse auf Parameter mit diesem Namen ein
(optional).

Antwort-Headers

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung (Rückgabe: NodeInfo-Array)

• 404 Not Found – Modul nicht gefunden

Referenzierte Datenmodelle

• Parameter (Abschnitt 7.2.3)

PUT /pipelines/{pipeline}/nodes/{node}/parameters
Aktualisierung mehrerer Parameter.

Musteranfrage

PUT /api/v2/pipelines/<pipeline>/nodes/<node>/parameters HTTP/1.1
Accept: application/json application/ubjson

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

334 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API-Schnittstelle

(Fortsetzung der vorherigen Seite)

[
{

"name": "string",
"value": {}

}
]

Beispielantwort

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"default": 25,
"description": "Frames per second in Hz",
"max": 25,
"min": 1,
"name": "fps",
"type": "float64",
"value": 10

},
{

"default": true,
"description": "Switching between auto and manual exposure",
"max": true,
"min": false,
"name": "exp_auto",
"type": "bool",
"value": false

},
{

"default": 0.005,
"description": "Manual exposure time in s if exp_auto is false",
"max": 0.018,
"min": 6.6e-05,
"name": "exp_value",
"type": "float64",
"value": 0.005

}
]

Parameter

• pipeline (string) – Name der Pipeline (0, 1, 2 oder 3) (obligatorisch)

• node (string) – Modulname (obligatorisch)

JSON-Objekt-Array zur Anfrage

• parameters (ParameterNameValue) – Liste von Parametern (obligatorisch)

Anfrage-Header

• Accept – application/json application/ubjson

Antwort-Headers

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung (Rückgabe: NodeInfo-Array)

Roboception GmbH
Handbuch: rc_reason_stack

335 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.2. REST-API-Schnittstelle

• 400 Bad Request – Ungültiger Parameterwert

• 403 Forbidden – Aktualisierung des Parameters verboten, z.B. weil er aufgrund
einer laufenden GigE Vision-Anwendung gesperrt ist oder keine valide Lizenz
für dieses Modul vorliegt.

• 404 Not Found – Modul nicht gefunden

Referenzierte Datenmodelle

• ParameterNameValue (Abschnitt 7.2.3)

• Parameter (Abschnitt 7.2.3)

GET /pipelines/{pipeline}/nodes/{node}/parameters/{param}
Abruf eines bestimmten Parameters eines Moduls.

Musteranfrage

GET /api/v2/pipelines/<pipeline>/nodes/<node>/parameters/<param> HTTP/1.1

Beispielantwort

HTTP/1.1 200 OK
Content-Type: application/json

{
"default": 25,
"description": "Frames per second in Hertz",
"max": 25,
"min": 1,
"name": "fps",
"type": "float64",
"value": 10

}

Parameter

• pipeline (string) – Name der Pipeline (0, 1, 2 oder 3) (obligatorisch)

• node (string) – Modulname (obligatorisch)

• param (string) – Name des Parameters (obligatorisch)

Antwort-Headers

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung (Rückgabe: Parameter)

• 404 Not Found – Modul oder Parameter nicht gefunden

Referenzierte Datenmodelle

• Parameter (Abschnitt 7.2.3)

PUT /pipelines/{pipeline}/nodes/{node}/parameters/{param}
Aktualisierung eines bestimmten Parameters eines Moduls.

Musteranfrage

PUT /api/v2/pipelines/<pipeline>/nodes/<node>/parameters/<param> HTTP/1.1
Accept: application/json application/ubjson

{

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

336 Rev: 26.01.4
Status: 30.01.2026

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API-Schnittstelle

(Fortsetzung der vorherigen Seite)

"value": {}
}

Beispielantwort

HTTP/1.1 200 OK
Content-Type: application/json

{
"default": 25,
"description": "Frames per second in Hertz",
"max": 25,
"min": 1,
"name": "fps",
"type": "float64",
"value": 10

}

Parameter

• pipeline (string) – Name der Pipeline (0, 1, 2 oder 3) (obligatorisch)

• node (string) – Modulname (obligatorisch)

• param (string) – Name des Parameters (obligatorisch)

JSON-Objekt zur Anfrage

• parameter (ParameterValue) – zu aktualisierender Parameter als JSON-Objekt
(obligatorisch)

Anfrage-Header

• Accept – application/json application/ubjson

Antwort-Headers

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung (Rückgabe: Parameter)

• 400 Bad Request – Ungültiger Parameterwert

• 403 Forbidden – Aktualisierung des Parameters verboten, z.B. weil er aufgrund
einer laufenden GigE Vision-Anwendung gesperrt ist oder keine valide Lizenz
für dieses Modul vorliegt.

• 404 Not Found – Modul oder Parameter nicht gefunden

Referenzierte Datenmodelle

• ParameterValue (Abschnitt 7.2.3)

• Parameter (Abschnitt 7.2.3)

GET /pipelines/{pipeline}/nodes/{node}/services
Abruf von Beschreibungen aller von einem Modul angebotenen Services.

Musteranfrage

GET /api/v2/pipelines/<pipeline>/nodes/<node>/services HTTP/1.1

Beispielantwort

Roboception GmbH
Handbuch: rc_reason_stack

337 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API-Schnittstelle

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"args": {},
"description": "Restarts the module.",
"name": "restart",
"response": {

"accepted": "bool",
"current_state": "string"

}
},
{

"args": {},
"description": "Starts the module.",
"name": "start",
"response": {

"accepted": "bool",
"current_state": "string"

}
},
{

"args": {},
"description": "Stops the module.",
"name": "stop",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

]

Parameter

• pipeline (string) – Name der Pipeline (0, 1, 2 oder 3) (obligatorisch)

• node (string) – Modulname (obligatorisch)

Antwort-Headers

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung (Rückgabe: Service-Array)

• 404 Not Found – Modul nicht gefunden

Referenzierte Datenmodelle

• Service (Abschnitt 7.2.3)

GET /pipelines/{pipeline}/nodes/{node}/services/{service}
Abruf der Beschreibung eines modulspezifischen Services.

Musteranfrage

GET /api/v2/pipelines/<pipeline>/nodes/<node>/services/<service> HTTP/1.1

Beispielantwort

HTTP/1.1 200 OK
Content-Type: application/json

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

338 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API-Schnittstelle

(Fortsetzung der vorherigen Seite)

{
"args": {

"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"slot": "int32"

},
"description": "Save a pose (grid or gripper) for later calibration.",
"name": "set_pose",
"response": {
"message": "string",
"status": "int32",
"success": "bool"

}
}

Parameter

• pipeline (string) – Name der Pipeline (0, 1, 2 oder 3) (obligatorisch)

• node (string) – Modulname (obligatorisch)

• service (string) – Name des Service (obligatorisch)

Antwort-Headers

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung (Rückgabe: Service)

• 404 Not Found – Modul oder Service nicht gefunden

Referenzierte Datenmodelle

• Service (Abschnitt 7.2.3)

PUT /pipelines/{pipeline}/nodes/{node}/services/{service}
Aufruf des Services eines Moduls: Die benötigten Argumente und die zugehörige Antwort hängt
vom Modul und vom Service ab.

Musteranfrage

PUT /api/v2/pipelines/<pipeline>/nodes/<node>/services/<service> HTTP/1.1
Accept: application/json application/ubjson

{}

Beispielantwort

HTTP/1.1 200 OK
Content-Type: application/json

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

339 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API-Schnittstelle

(Fortsetzung der vorherigen Seite)

{
"name": "set_pose",
"response": {
"message": "Grid detected, pose stored.",
"status": 1,
"success": true

}
}

Parameter

• pipeline (string) – Name der Pipeline (0, 1, 2 oder 3) (obligatorisch)

• node (string) – Modulname (obligatorisch)

• service (string) – Name des Service (obligatorisch)

JSON-Objekt zur Anfrage

• service args (object) – Beispielargumente (obligatorisch)

Anfrage-Header

• Accept – application/json application/ubjson

Antwort-Headers

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Serviceaufruf erledigt (Rückgabe: Service)

• 403 Forbidden – Service-Aufruf verboten, z.B. weil keine valide Lizenz für dieses
Modul vorliegt.

• 404 Not Found – Modul oder Service nicht gefunden

Referenzierte Datenmodelle

• Service (Abschnitt 7.2.3)

GET /pipelines/{pipeline}/nodes/{node}/status
Abruf des Status eines Moduls.

Musteranfrage

GET /api/v2/pipelines/<pipeline>/nodes/<node>/status HTTP/1.1

Beispielantwort

HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "running",
"timestamp": 1503075030.2335997,
"values": {
"baseline": "0.0650542",
"color": "0",
"exp": "0.00426667",
"focal": "0.844893",
"fps": "25.1352",
"gain": "12.0412",
"height": "960",
"temp_left": "39.6",

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

340 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API-Schnittstelle

(Fortsetzung der vorherigen Seite)

"temp_right": "38.2",
"time": "0.00406513",
"width": "1280"

}
}

Parameter

• pipeline (string) – Name der Pipeline (0, 1, 2 oder 3) (obligatorisch)

• node (string) – Modulname (obligatorisch)

Antwort-Headers

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung (Rückgabe: NodeStatus)

• 404 Not Found – Modul nicht gefunden

Referenzierte Datenmodelle

• NodeStatus (Abschnitt 7.2.3)

7.2.2.2 Pipelines

Pipelines repräsentieren die Kamerapipelines des rc_reason_stack.

Die folgende Liste enthält alle REST-API Anfragen bezüglich der Konfiguration der Kamerapipelines:

GET /pipelines
Abruf der aktiven Pipelines

Musteranfrage

GET /api/v2/pipelines HTTP/1.1

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung

GET /pipelines/{pipeline}
Abruf des Pipeline-Typs und -Status

Musteranfrage

GET /api/v2/pipelines/<pipeline> HTTP/1.1

Parameter

• pipeline (string) – Name der Pipeline (0, 1, 2 oder 3) (obligatorisch)

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung

GET /system/pipelines
Abruf der Pipelinekonfiguration

Musteranfrage

GET /api/v2/system/pipelines HTTP/1.1

Roboception GmbH
Handbuch: rc_reason_stack

341 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.2. REST-API-Schnittstelle

Beispielantwort

HTTP/1.1 200 OK
Content-Type: application/json

{
"config": {
"0": {

"type": "rc_visard"
}

},
"max_pipelines": 4,
"pending_changes": false

}

Antwort-Headers

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung

GET /system/pipelines/config/{pipeline}
Abruf der Konfiguration einer spezifischen Pipeline.

Musteranfrage

GET /api/v2/system/pipelines/config/<pipeline> HTTP/1.1

Beispielantwort

HTTP/1.1 200 OK
Content-Type: application/json

{
"0": {

"type": "rc_visard"
}

}

Parameter

• pipeline (string) – Name der Pipeline (0, 1, 2 oder 3) (obligatorisch)

Antwort-Headers

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung

PUT /system/pipelines/config/{pipeline}
Updaten der Konfiguration einer spezifischen Pipeline.

Musteranfrage

PUT /api/v2/system/pipelines/config/<pipeline>?type=<type> HTTP/1.1

Beispielantwort

Roboception GmbH
Handbuch: rc_reason_stack

342 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.2. REST-API-Schnittstelle

HTTP/1.1 200 OK
Content-Type: application/json

{
"type": "rc_visard"

}

Parameter

• pipeline (string) – Name der Pipeline (0, 1, 2 oder 3) (obligatorisch)

Anfrageparameter

• type (string) – Pipelinetyp (rc_visard, rc_viscore,‘‘blaze‘‘, zivid,
stereo_ace) (obligatorisch)

Antwort-Headers

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung

• 400 Bad Request – ungültiger Pipelinename oder -typ

DELETE /system/pipelines/config/{pipeline}
Lösche spezifische Pipelines

Musteranfrage

DELETE /api/v2/system/pipelines/config/<pipeline> HTTP/1.1

Beispielantwort

HTTP/1.1 200 OK
Content-Type: application/json

{
"message": "Pipeline 1 deleted"

}

Parameter

• pipeline (string) – Name der Pipeline (0, 1, 2 oder 3) (obligatorisch)

Antwort-Headers

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung

• 400 Bad Request – ungültiger Pipelinename, z.B. kann Pipeline 0 nicht gelöscht
werden

7.2.2.3 UserSpace

UserSpace Informationen einschließlich laufender Apps und ihre veröffentlichten Ports können über
den userspace Endpunkt abgefragt werden. Eine App kann vom Typ (type) container oder compose
(Compose-Stack mit potenziell mehreren Containern) sein.

Roboception GmbH
Handbuch: rc_reason_stack

343 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

7.2. REST-API-Schnittstelle

7.2.2.4 System und Logs

Die folgenden Ressourcen und Anfragen sind für die System-Level-API des rc_reason_stack verfügbar.
Sie ermöglichen Folgendes:

• Zugriff auf Logdateien (systemweit oder modulspezifisch),

• Abruf von Informationen zum Gerät und zur Laufzeitstatistik, wie Datum, MAC-Adresse, Uhrzeit-
synchronisierungsstatus und verfügbare Ressourcen,

• Verwaltung installierter Softwarelizenzen, und

• Aktualisierung des Firmware-Images des rc_reason_stack.

GET /logs
Abruf einer Liste aller verfügbaren Logdateien.

Musteranfrage

GET /api/v2/logs HTTP/1.1

Beispielantwort

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"date": 1503060035.0625782,
"name": "rcsense-api.log",
"size": 730

},
{

"date": 1503060035.741574,
"name": "stereo.log",
"size": 39024

},
{

"date": 1503060044.0475223,
"name": "camera.log",
"size": 1091

}
]

Antwort-Headers

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung (Rückgabe: LogInfo-Array)

Referenzierte Datenmodelle

• LogInfo (Abschnitt 7.2.3)

GET /logs/{log}
Abruf einer Logdatei: Die Art des Inhalts der Antwort richtet sich nach dem format-Parameter.

Musteranfrage

GET /api/v2/logs/<log>?format=<format>&limit=<limit> HTTP/1.1

Beispielantwort

Roboception GmbH
Handbuch: rc_reason_stack

344 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.2. REST-API-Schnittstelle

HTTP/1.1 200 OK
Content-Type: application/json

{
"date": 1581609251.8168414,
"log": [

{
"component": "rc_gev_server",
"level": "INFO",
"message": "Application from IP 10.0.1.7 registered with control access.",
"timestamp": 1581609249.61

},
{

"component": "rc_gev_server",
"level": "INFO",
"message": "Application from IP 10.0.1.7 deregistered.",
"timestamp": 1581609249.739

},
{

"component": "rc_gev_server",
"level": "INFO",
"message": "Application from IP 10.0.1.7 registered with control access.",
"timestamp": 1581609250.94

},
{

"component": "rc_gev_server",
"level": "INFO",
"message": "Application from IP 10.0.1.7 deregistered.",
"timestamp": 1581609251.819

}
],
"name": "gev.log",
"size": 42112

}

Parameter

• log (string) – Name der Logdatei (obligatorisch)

Anfrageparameter

• format (string) – Rückgabe des Logs im JSON- oder Rohdatenformat (mögli-
che Werte: json oder raw; Voreinstellung: json) (optional)

• limit (integer) – Beschränkung auf die letzten x Zeilen im JSON-Format (Vor-
einstellung: 100) (optional)

Antwort-Headers

• Content-Type – text/plain application/json

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung (Rückgabe: Log)

• 404 Not Found – Log nicht gefunden

Referenzierte Datenmodelle

• Log (Abschnitt 7.2.3)

GET /system
Abruf von Systeminformationen zum Gerät.

Musteranfrage

Roboception GmbH
Handbuch: rc_reason_stack

345 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API-Schnittstelle

GET /api/v2/system HTTP/1.1

Beispielantwort

HTTP/1.1 200 OK
Content-Type: application/json

{
"dongle_id": "wibu:1234",
"firmware": {

"active_image": {
"image_version": "26.01.0"

}
},
"model_name": "rc_reason_stack",
"pipelines": {

"config": {
"0": {

"type": "rc_visard"
},
"1": {

"type": "rc_visard"
}

},
"max_pipelines": 4,
"pending_changes": false

},
"ready": true,
"reboot_required": false,
"time": 1649678734.0306993,
"uptime": 336455.25

}

Antwort-Headers

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung (Rückgabe: SysInfo)

Referenzierte Datenmodelle

• SysInfo (Abschnitt 7.2.3)

GET /system/backup
Abruf eines Backups der Einstellungen.

Musteranfrage

GET /api/v2/system/backup?pipelines=<pipelines>&load_carriers=<load_carriers>®ions_of_

→˓interest=<regions_of_interest>&grippers=<grippers> HTTP/1.1

Anfrageparameter

• pipelines (boolean) – Backup der Pipelines mit Moduleinstellungen, d.h. Para-
meter und bevorzugte TCP-Orientierung (Standardwert: True) (optional)

• load_carriers (boolean) – Backup der Load Carrier (Standardwert: True) (op-
tional)

• regions_of_interest (boolean) – Backup der Regions of Interest (Standard-
wert: True) (optional)

• grippers (boolean) – Backup der Greifer (Standardwert: True) (optional)

Roboception GmbH
Handbuch: rc_reason_stack

346 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.2. REST-API-Schnittstelle

Antwort-Headers

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung

POST /system/backup
Backup einspielen.

Musteranfrage

POST /api/v2/system/backup HTTP/1.1
Accept: application/json application/ubjson

{}

Beispielantwort

HTTP/1.1 200 OK
Content-Type: application/json

{
"return_code": {
"message": "backup restored",
"value": 0

},
"warnings": []

}

Request JSON Object

• backup (object) – Backup-Daten als json-Objekt (erforderlich)

Anfrage-Header

• Accept – application/json application/ubjson

Antwort-Headers

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung

GET /system/disk_info
Abruf der Speicherinformation

Musteranfrage

GET /api/v2/system/disk_info HTTP/1.1

Antwort-Headers

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung

GET /system/license
Abruf von Informationen zu den auf dem Gerät installierten Lizenzen.

Musteranfrage

Roboception GmbH
Handbuch: rc_reason_stack

347 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.2. REST-API-Schnittstelle

GET /api/v2/system/license HTTP/1.1

Beispielantwort

HTTP/1.1 200 OK
Content-Type: application/json

{
"components": {

"hand_eye_calibration": true,
"rectification": true,
"stereo": true

},
"valid": true

}

Antwort-Headers

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung (Rückgabe: LicenseInfo)

Referenzierte Datenmodelle

• LicenseInfo (Abschnitt 7.2.3)

POST /system/license
Aktualisierung der auf dem Gerät installierten Lizenz mithilfe einer Lizenzdatei.

Musteranfrage

POST /api/v2/system/license HTTP/1.1
Accept: multipart/form-data

Formularparameter

• file – Lizenzdatei (obligatorisch)

Anfrage-Header

• Accept – Multipart/Formulardaten

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung

• 400 Bad Request – Keine gültige Lizenz

GET /system/ui_lock
Abruf des UI Lock Status

Musteranfrage

GET /api/v2/system/ui_lock HTTP/1.1

Beispielantwort

HTTP/1.1 200 OK
Content-Type: application/json

{
"enabled": false

}

Roboception GmbH
Handbuch: rc_reason_stack

348 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-5.3.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

7.2. REST-API-Schnittstelle

Antwort-Headers

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung (Rückgabe: UILock)

Referenzierte Datenmodelle

• UILock (Abschnitt 7.2.3)

DELETE /system/ui_lock
UI Lock entfernen.

Musteranfrage

DELETE /api/v2/system/ui_lock HTTP/1.1

Beispielantwort

HTTP/1.1 200 OK
Content-Type: application/json

{
"enabled": false,
"valid": false

}

Antwort-Headers

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung

POST /system/ui_lock
Verifizieren oder Setzen des UI Locks.

Musteranfrage

POST /api/v2/system/ui_lock?hash=<hash>&set=<set> HTTP/1.1

Beispielantwort

HTTP/1.1 200 OK
Content-Type: application/json

{
"enabled": true,
"valid": true

}

Anfrageparameter

• hash (string) – Hash des UI Lock Passworts (obligatorisch)

• set (boolean) – neuen Hash setzen anstatt zu verifizieren (optional)

Antwort-Headers

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung

Roboception GmbH
Handbuch: rc_reason_stack

349 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.2. REST-API-Schnittstelle

7.2.3 Datentyp-Definitionen

Die REST-API definiert folgende Datenmodelle, die verwendet werden, um auf die verfügbaren Res-
sourcen (Abschnitt 7.2.2) zuzugreifen oder diese zu ändern, entweder als benötigte Attribute/Parameter
oder als Rückgabewerte.

FirmwareInfo: Informationen zu aktuell aktiven und inaktiven Firmware-Images und dazu, welches
Image für den Boot-Vorgang verwendet wird.

Ein Objekt des Typs FirmwareInfo besitzt folgende Eigenschaften:

• active_image (ImageInfo): siehe Beschreibung von ImageInfo.

Musterobjekt

{
"active_image": {
"image_version": "string"

}
}

FirmwareInfo-Objekte sind in SysInfo enthalten.

GripperElement: CAD-Greiferelement

Ein Objekt des Typs GripperElement besitzt folgende Eigenschaften:

• id (string): Eindeutiger Name des Elements

Musterobjekt

{
"id": "string"

}

GripperElement-Objekte werden in folgenden Anfragen verwendet:

• GET /cad/gripper_elements

• GET /cad/gripper_elements/{id}

• PUT /cad/gripper_elements/{id}

ImageInfo: Informationen zu einem bestimmten Firmware-Image.

Ein Objekt des Typs ImageInfo besitzt folgende Eigenschaften:

• image_version (string): Image-Version.

Musterobjekt

{
"image_version": "string"

}

ImageInfo-Objekte sind in FirmwareInfo enthalten.

LicenseComponentConstraint: Einschränkungen für die Modul-Version.

Ein Objekt des Typs LicenseComponentConstraint besitzt folgende Eigenschaften:

• max_version (string) - optionale höchste unterstützte Version (exclusive)

• min_version (string) - optionale minimale unterstützte Version (inclusive)

Musterobjekt

Roboception GmbH
Handbuch: rc_reason_stack

350 Rev: 26.01.4
Status: 30.01.2026

7.2. REST-API-Schnittstelle

{
"max_version": "string",
"min_version": "string"

}

LicenseComponentConstraint-Objekte sind in LicenseConstraints enthalten.

LicenseComponents: Liste der Lizenzstatus-Angaben der einzelnen Softwaremodule: Der zugehöri-
ge Statusindikator ist auf TRUE gesetzt, wenn das entsprechende Modul mit einer installierten
Softwarelizenz entsperrt ist.

Ein Objekt des Typs LicenseComponents besitzt folgende Eigenschaften:

• hand_eye_calibration (boolean): Modul zur Hand-Auge-Kalibrierung.

• rectification (boolean): Modul zur Bildrektifizierung.

• stereo (boolean): Stereo-Matching-Modul.

Musterobjekt

{
"hand_eye_calibration": false,
"rectification": false,
"stereo": false

}

LicenseComponents-Objekte sind in LicenseInfo enthalten.

LicenseConstraints: Versionseinschränkungen für Module.

Ein Objekt des Typs LicenseConstraints besitzt folgende Eigenschaften:

• image_version (LicenseComponentConstraint) - siehe Beschreibung von LicenseCompo-
nentConstraint

Musterobjekt

{
"image_version": {

"max_version": "string",
"min_version": "string"

}
}

LicenseConstraints-Objekte sind in LicenseInfo enthalten.

LicenseInfo: Informationen zur aktuell auf dem Gerät angewandten Softwarelizenz.

Ein Objekt des Typs LicenseInfo besitzt folgende Eigenschaften:

• components (LicenseComponents): siehe Beschreibung von LicenseComponents.

• components_constraints (LicenseConstraints) - siehe Beschreibung von LicenseCons-
traints

• valid (boolean): Angabe, ob eine Lizenz gültig ist oder nicht.

Musterobjekt

{
"components": {

"hand_eye_calibration": false,
"rectification": false,
"stereo": false

},
"components_constraints": {

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

351 Rev: 26.01.4
Status: 30.01.2026

7.2. REST-API-Schnittstelle

(Fortsetzung der vorherigen Seite)

"image_version": {
"max_version": "string",
"min_version": "string"

}
},
"valid": false

}

LicenseInfo-Objekte werden in folgenden Anfragen verwendet:

• GET /system/license

Log: Inhalt einer bestimmten Logdatei im JSON-Format.

Ein Objekt des Typs Log besitzt folgende Eigenschaften:

• date (float): UNIX-Uhrzeit, zu der das Log zuletzt geändert wurde.

• log (LogEntry -Array): die eigentlichen Logeinträge.

• name (string): Name der Logdatei.

• size (Integer): Größe der Logdatei in Bytes.

Musterobjekt

{
"date": 0,
"log": [

{
"component": "string",
"level": "string",
"message": "string",
"timestamp": 0

},
{

"component": "string",
"level": "string",
"message": "string",
"timestamp": 0

}
],
"name": "string",
"size": 0

}

Log-Objekte werden in folgenden Anfragen verwendet:

• GET /logs/{log}

LogEntry: Darstellung eines einzelnen Logeintrags in einer Logdatei.

Ein Objekt des Typs LogEntry besitzt folgende Eigenschaften:

• component (string): Name des Moduls, das diesen Eintrag angelegt hat.

• level (string): Logstufe (mögliche Werte: DEBUG, INFO, WARN, ERROR oder FATAL)

• message (string): eigentliche Lognachricht.

• timestamp (float): UNIX-Uhrzeit des Logeintrags.

Musterobjekt

{
"component": "string",
"level": "string",

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

352 Rev: 26.01.4
Status: 30.01.2026

7.2. REST-API-Schnittstelle

(Fortsetzung der vorherigen Seite)

"message": "string",
"timestamp": 0

}

LogEntry-Objekte sind in Log enthalten.

LogInfo: Informationen zu einer bestimmten Logdatei.

Ein Objekt des Typs LogInfo besitzt folgende Eigenschaften:

• date (float): UNIX-Uhrzeit, zu der das Log zuletzt geändert wurde.

• name (string): Name der Logdatei.

• size (Integer): Größe der Logdatei in Bytes.

Musterobjekt

{
"date": 0,
"name": "string",
"size": 0

}

LogInfo-Objekte werden in folgenden Anfragen verwendet:

• GET /logs

NodeInfo: Beschreibung eines auf dem Gerät laufenden Softwaremoduls.

Ein Objekt des Typs NodeInfo besitzt folgende Eigenschaften:

• name (string): Name des Moduls.

• parameters (string-Array): Liste der Laufzeitparameter des Moduls.

• services (string-Array): Liste der von diesem Modul angebotenen Services.

• status (string): Status des Moduls (mögliche Werte: unknown, down, idle oder running).

Musterobjekt

{
"name": "string",
"parameters": [

"string",
"string"

],
"services": [

"string",
"string"

],
"status": "string"

}

NodeInfo-Objekte werden in folgenden Anfragen verwendet:

• GET /nodes

• GET /nodes/{node}

• GET /pipelines/{pipeline}/nodes

• GET /pipelines/{pipeline}/nodes/{node}

NodeStatus: Detaillierter aktueller Status des Moduls, einschließlich Laufzeitstatistik.

Ein Objekt des Typs NodeStatus besitzt folgende Eigenschaften:

Roboception GmbH
Handbuch: rc_reason_stack

353 Rev: 26.01.4
Status: 30.01.2026

7.2. REST-API-Schnittstelle

• status (string): Status des Moduls (mögliche Werte: unknown, down, idle oder running).

• timestamp (float): UNIX-Uhrzeit, zu der die Werte zuletzt aktualisiert wurden.

• values (object): Dictionary (Schlüssel-Werte-Auflistung) mit den aktuellen Statuswer-
ten/Statistiken des Moduls.

Musterobjekt

{
"status": "string",
"timestamp": 0,
"values": {}

}

NodeStatus-Objekte werden in folgenden Anfragen verwendet:

• GET /nodes/{node}/status

• GET /pipelines/{pipeline}/nodes/{node}/status

Parameter: Darstellung der Laufzeitparameter eines Moduls: Der Datentyp des Werts („value“) eines
Parameters (und damit der Datentyp der Felder „min“, „max“ und „default“) lässt sich vom Feld
„type“ ableiten und kann ein primitiver Datentyp sein.

Ein Objekt des Typs Parameter besitzt folgende Eigenschaften:

• default (Typ nicht definiert): ab Werk voreingestellter Wert des Parameters.

• description (string): Beschreibung des Parameters.

• max (Typ nicht definiert): Höchstwert, der diesem Parameter zugewiesen werden kann.

• min (Typ nicht definiert): Mindestwert, der diesem Parameter zugewiesen werden kann.

• name (string): Name des Parameters.

• type (string): als Zeichenfolge dargestellter primitiver Datentyp des Parameters (mögliche
Werte: bool, int8, uint8, int16, uint16, int32, uint32, int64, uint64, float32, float64
oder string).

• value (Typ nicht definiert): aktueller Wert des Parameters.

Musterobjekt

{
"default": {},
"description": "string",
"max": {},
"min": {},
"name": "string",
"type": "string",
"value": {}

}

Parameter-Objekte werden in folgenden Anfragen verwendet:

• GET /pipelines/{pipeline}/nodes/{node}/parameters

• PUT /pipelines/{pipeline}/nodes/{node}/parameters

• GET /pipelines/{pipeline}/nodes/{node}/parameters/{param}

• PUT /pipelines/{pipeline}/nodes/{node}/parameters/{param}

ParameterNameValue: Parametername und -wert. Der Typ des Parameterwerts (Felder ‚value‘ und
‚min‘, ‚max‘, ‚default‘) ist durch das Feld ‚type‘ angegeben und kann einer der eingebauten primi-
tiven Datentypen sein.

Ein Objekt des Typs ParameterNameValue besitzt folgende Eigenschaften:

Roboception GmbH
Handbuch: rc_reason_stack

354 Rev: 26.01.4
Status: 30.01.2026

7.2. REST-API-Schnittstelle

• name (string): Name des Parameters.

• value (Typ nicht definiert): aktueller Wert des Parameters.

Musterobjekt

{
"name": "string",
"value": {}

}

ParameterNameValue-Objekte werden in folgenden Anfragen verwendet:

• PUT /pipelines/{pipeline}/nodes/{node}/parameters

ParameterValue: Parameterwert. Der Typ des Parameterwerts (Felder ‚value‘ und ‚min‘, ‚max‘,
‚default‘) ist durch das Feld ‚type‘ angegeben und kann einer der eingebauten primitiven Datenty-
pen sein.

Ein Objekt des Typs ParameterValue besitzt folgende Eigenschaften:

• value (Typ nicht definiert): aktueller Wert des Parameters.

Musterobjekt

{
"value": {}

}

ParameterValue-Objekte werden in folgenden Anfragen verwendet:

• PUT /pipelines/{pipeline}/nodes/{node}/parameters/{param}

Service: Darstellung eines von einem Modul angebotenen Services.

Ein Objekt des Typs Service besitzt folgende Eigenschaften:

• args (ServiceArgs): siehe Beschreibung von ServiceArgs.

• description (string): Kurzbeschreibung des Services.

• name (string): Name des Services.

• response (ServiceResponse): siehe Beschreibung von ServiceResponse.

Musterobjekt

{
"args": {},
"description": "string",
"name": "string",
"response": {}

}

Service-Objekte werden in folgenden Anfragen verwendet:

• GET /nodes/{node}/services

• GET /nodes/{node}/services/{service}

• PUT /nodes/{node}/services/{service}

• GET /pipelines/{pipeline}/nodes/{node}/services

• GET /pipelines/{pipeline}/nodes/{node}/services/{service}

• PUT /pipelines/{pipeline}/nodes/{node}/services/{service}

ServiceArgs: Argumente, die für den Aufruf eines Services benötigt werden: Diese Argumente werden
in der Regel in einem (verschachtelten) Dictionary (Schlüssel-Werte-Auflistung) dargestellt. Der
genaue Inhalt dieses Dictionarys hängt vom jeweiligen Modul und vom Serviceaufruf ab.

Roboception GmbH
Handbuch: rc_reason_stack

355 Rev: 26.01.4
Status: 30.01.2026

7.2. REST-API-Schnittstelle

ServiceArg-Objekte sind in Service enthalten.

ServiceResponse: Die von dem Serviceaufruf zurückgegebene Antwort: Die Antwort wird in der Regel
in einem (verschachtelten) Dictionary (Schlüssel-Werte-Auflistung) dargestellt. Der genaue Inhalt
dieses Dictionarys hängt vom jeweiligen Modul und von dem Serviceaufruf ab.

ServiceResponse-Objekte sind in Service enthalten.

SysInfo: Systeminformationen über das Gerät.

Ein Objekt des Typs SysInfo besitzt folgende Eigenschaften:

• firmware (FirmwareInfo): siehe Beschreibung von FirmwareInfo.

• ready (boolean): Das System ist vollständig hochgefahren und betriebsbereit.

• time (float): Systemzeit als UNIX-Zeitstempel.

• ui_lock (UILock): siehe Beschreibung von UILock

• uptime (float): Betriebszeit in Sekunden.

Musterobjekt

{
"firmware": {

"active_image": {
"image_version": "string"

}
},
"ready": false,
"time": 0,
"ui_lock": {
"enabled": false

},
"uptime": 0

}

SysInfo-Objekte werden in folgenden Anfragen verwendet:

• GET /system

Template: Template für die Erkennung

Ein Objekt des Typs Template besitzt folgende Eigenschaften:

• id (string): Eindeutiger Name des Templates

Musterobjekt

{
"id": "string"

}

Template-Objekte werden in folgenden Anfragen verwendet:

• GET /templates/rc_boxpick

• GET /templates/rc_boxpick/{id}

• PUT /templates/rc_boxpick/{id}

• GET /templates/rc_cadmatch

• GET /templates/rc_cadmatch/{id}

• PUT /templates/rc_cadmatch/{id}

• GET /templates/rc_silhouettematch

• GET /templates/rc_silhouettematch/{id}

Roboception GmbH
Handbuch: rc_reason_stack

356 Rev: 26.01.4
Status: 30.01.2026

7.2. REST-API-Schnittstelle

• PUT /templates/rc_silhouettematch/{id}

UILock: UI Lock Status.

Ein Objekt des Typs UILock besitzt folgende Eigenschaften:

• enabled (boolean)

Musterobjekt

{
"enabled": false

}

UILock-Objekte sind in SysInfo enthalten und werden für folgende Anfragen verwendet:

• GET /system/ui_lock

7.2.4 Swagger UI

Die Swagger UI des rc_reason_stack ermöglicht es Entwicklern, die REST-API – beispielsweise zu
Entwicklungs- und Testzwecken – leicht darzustellen und zu verwenden. Der Zugriff auf http://<host>/
api/ oder auf http://<host>/api/swagger (der erste Link leitet automatisch auf den zweiten Link wei-
ter) öffnet eine Vorschau der allgemeinen API-Struktur des rc_reason_stack, einschließlich aller verfüg-
baren Ressourcen und Anfragen (Abschnitt 7.2.2). Auf dieser vereinfachten Benutzeroberfläche lassen
sich alle Funktionen erkunden und austesten.

Bemerkung: Der Benutzer muss bedenken, dass die Swagger UI des rc_reason_stack, auch wenn
sie zur Erprobung der REST-API bestimmt ist, eine voll funktionstüchtige Schnittstelle ist. Das be-
deutet, dass alle ausgelösten Anfragen tatsächlich bearbeitet werden und den Zustand und/oder
das Verhalten des Geräts beeinflussen. Dies gilt insbesondere für Anfragen des Typs PUT, POST und
DELETE.

Mithilfe dieser Schnittstelle können alle verfügbaren Ressourcen und Anfragen erprobt werden, indem
diese durch Klick auf- und zugeklappt werden. Die folgende Abbildung zeigt ein Beispiel dafür, wie
sich der aktuelle Zustand eines Moduls abrufen lässt, indem die erforderlichen Parameter (pipeline-
Nummer und node-Name) ausgefüllt werden und anschließend Execute geklickt wird. Daraufhin zeigt
die Swagger UI unter anderem den curl-Befehl an, der bei Auslösung der Anfrage ausgeführt wurde,
sowie den Antworttext, in dem der aktuelle Status des angefragten Moduls in einer Zeichenfolge im
JSON-Format enthalten ist.

Roboception GmbH
Handbuch: rc_reason_stack

357 Rev: 26.01.4
Status: 30.01.2026

https://swagger.io/

7.2. REST-API-Schnittstelle

Abb. 7.3: Ergebnis nach Abfrage des Status des rc_stereomatching-Moduls

Einige Aktionen, wie das Setzen von Parametern oder der Aufruf von Services, bedürfen komplexerer
Parameter als eine HTTP-Anfrage. Die Swagger UI erlaubt es Entwicklern, die für diese Aktionen benö-
tigten Attribute, wie im nächsten Beispiel gezeigt, während der Laufzeit zu erkunden. In der folgenden
Abbildung werden die Attribute, die für den set_pose-Service des rc_hand_eye_calibration-Moduls
benötigt werden, erkundet, indem eine GET-Anfrage zu dieser Ressource durchgeführt wird. Die Ant-
wort enthält eine vollständige Beschreibung des angebotenen Services, einschließlich aller erforderli-
chen Argumente mit ihren Namen und Typen in einer Zeichenfolge im JSON-Format.

Roboception GmbH
Handbuch: rc_reason_stack

358 Rev: 26.01.4
Status: 30.01.2026

7.2. REST-API-Schnittstelle

Abb. 7.4: Ergebnis der GET-Anfrage zum set_pose-Service zeigt die für diesen Service benötigten Ar-
gumente

Der Benutzer kann diesen vorformatierten JSON-Text als Muster für die Argumente nutzen, um damit
den Service tatsächlich aufzurufen:

Roboception GmbH
Handbuch: rc_reason_stack

359 Rev: 26.01.4
Status: 30.01.2026

7.3. Generic Robot Interface

Abb. 7.5: Ausfüllen der Argumente des set_pose-Services

7.3 Generic Robot Interface

Das Generic Robot Interface (GRI) ist ein Integrationslayer, der die REST-API v2 (Abschnitt 7.2) über-
brückt und eine standardisierte Kommunikationsschnittstelle zu den Softwaremodulen über eine einfa-
che TCP-Socket-Kommunikation auf Port 7100 bietet.

Das GRI ermöglicht es, Konfigurationen zu erstellen und als nummerierte Jobs zu speichern. Diese
Jobs können durch einfache Befehle des Roboters über TCP-Socket-Kommunikation getriggert werden.
Das GRI übernimmt intern die REST-API-Kommunikation und liefert die ausgewählten Posenergebnisse
in einem roboterspezifisch wählbaren Format.

7.3.1 Job Definition

Jobs sind vorkonfigurierte Aufgaben, die von der Roboteranwendung getriggert werden können. Jeder
Job hat eine eindeutige ID und enthält alle notwendigen Informationen für eine bestimmte Operation,
z.B. das Berechnen von Greifpunkten für das Bin Picking oder das Ändern von Laufzeitparametern ei-
nes Moduls. Einmal konfiguriert, kann der Roboter diese Jobs mit einfachen Socket-Befehlen ausführen
und gegebenenfalls die zurückgegebenen Posen empfangen.

7.3.1.1 Job Arten

Das Generic Robot Interface unterstützt drei Arten von Jobs:

Pipeline Service Job (CALL_PIPELINE_SERVICE)

Roboception GmbH
Handbuch: rc_reason_stack

360 Rev: 26.01.4
Status: 30.01.2026

7.3. Generic Robot Interface

Dieser Job ruft einen Service auf einer bestimmten Kamera-Pipeline auf, um beispielsweise Objekte zu
erkennen oder Greifpunkte zu berechnen, und gibt Posendaten an den Roboter zurück (z.B. Greifpo-
sen).

Ein Pipeline-Service-Job besteht aus:

• job_type: die Art des Jobs CALL_PIPELINE_SERVICE

• name: Name des Jobs (beschreibender Name zur Unterscheidung von Jobs)

• pipeline: die Kamerapipeline, die für den Job verwendet werden soll (z.B. „0“)

• node: der REST-API Name der Pipeline-Node die genutzt werden soll (z.B. rc_load_carrier)

• service: der REST-API Name des Services, der aufgerufen werden soll

• args: die REST-API Json Argumente, die dem Service übergeben werden sollen

• selected_return: der REST-API Name des Felds, das zurückgeliefert werden soll

Eine Beispieldefinition für einen Pipeline-Service-Job ist:

{
"args": {

"pose_frame": "external",
"suction_surface_length": 0.02,
"suction_surface_width": 0.02

},
"job_type": "CALL_PIPELINE_SERVICE",
"name": "Compute Grasps",
"node": "rc_itempick",
"pipeline": "0",
"selected_return": "grasps",
"service": "compute_grasps"

}

Die verfügbaren Werte für selected_return hängen von der gewählten Node (Modul) ab und können
z.B. grasps oder matches sein. Details zu node, service, args und selected_return sind in den Ser-
vicedefinitionen des entsprechenden Moduls beschrieben.

Globaler Service-Job (CALL_GLOBAL_SERVICE)

Dieser Job ruft einen Service auf, der nicht an eine bestimmte Pipeline gebunden ist, z.B. Datenbank
Services zum Festlegen von Regions of Interest oder Load Carriern. Globale Service Jobs geben keine
Posen zurück.

Ein globaler Service-Job besteht aus:

• job_type: die Art des Jobs CALL_GLOBAL_SERVICE

• name: Name des Jobs (beschreibender Name zur Unterscheidung von Jobs)

• node: der REST-API Name der globalen Node die genutzt werden soll (z.B. rc_load_carrier_db)

• service: der REST-API Name des Services, der aufgerufen werden soll

• args: die REST-API Json Argumente, die dem Service übergeben werden sollen

Eine Beispieldefinition für einen globalen Service-Job ist:

{
"args": {

"region_of_interest_2d": {
"id": "2d_roi",
"width": 526,
"height": 501,
"offset_x": 558,
"offset_y": 307

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

361 Rev: 26.01.4
Status: 30.01.2026

7.3. Generic Robot Interface

(Fortsetzung der vorherigen Seite)

}
},
"job_type": "CALL_GLOBAL_SERVICE",
"name": "Set 2D ROI",
"node": "rc_roi_db",
"service": "set_region_of_interest_2d"

}

Details zu node, service und args sind in den Servicedefinitionen des entsprechenden Moduls be-
schrieben.

Parameter-Job (SET_PIPELINE_PARAMETER)

Dieser Job setzt Laufzeitparameter von Pipeline-Nodes, z.B. zum Anpassen von Kamera- oder Detek-
tionsmoduleinstellungen. Parameter-Jobs geben keine Posen zurück.

Ein Parameter-Job besteht aus:

• job_type: die Art des Jobs SET_PIPELINE_PARAMETER

• name: Name des Jobs (beschreibender Name zur Unterscheidung von Jobs)

• pipeline: die Kamerapipeline, die für den Job verwendet werden soll (z.B. „0“)

• node: der REST-API Name der Pipeline-Node die genutzt werden soll (z.B. rc_stereomatching)

• parameters: die zu setzenden Parameter als Key-Value Paare

Eine Beispieldefinition für einen Parameter-Job ist:

{
"job_type": "SET_PIPELINE_PARAMETERS",
"name": "Set Stereo Parameters",
"node": "rc_stereomatching",
"parameters": {

"maxdepth": 2,
"quality": "High"

},
"pipeline": "0"

}

Details zu node und parameters sind in den Laufzeitparameterdefinitionen des entsprechenden Moduls
beschrieben.

Die Jobs können über die Web GUI oder über die REST-API definiert werden (siehe Job und
HEC_config API).

7.3.1.2 Primäre und zugehörige Objekte

Die primären Objekte sind die Objekte, die als selected_return festgelegt wurden, z.B. die Greifpunkte
grasps. Die zugehörigen Objekte sind dann die gefundenen Objekte items oder matches, auf denen der
zurückgegebene Greifpunkt liegt. Während ein primäres Objekt grasp genau ein zugehöriges Objekt
item oder match hat, kann ein primäres Objekt match mehrere zugehörige Objekte grasp haben.

7.3.1.3 Ausführungsmodi

Das Generic Robot Interface unterstützt zwei Ausführungsmodi zur Optimierung der Roboterzykluszeit:

• Synchrone Ausführung: Der Roboter startet einen Job und wartet auf das erste Ergebnis. Dieser
Modus empfiehlt sich, wenn die Ergebnisse sofort benötigt werden.

Roboception GmbH
Handbuch: rc_reason_stack

362 Rev: 26.01.4
Status: 30.01.2026

7.3. Generic Robot Interface

• Asynchrone Ausführung: Der Roboter startet einen Job und kann mit anderen Vorgängen fortfah-
ren, während der Job im Hintergrund läuft. Der Jobstatus kann abgefragt und Ergebnisse abgeru-
fen werden, sobald diese vorliegen. Dieser Modus maximiert die Effizienz bei langen Erkennungs-
zeiten.

7.3.2 Hand-Auge-Kalibrierung

Für jede Kamera-Pipeline kann eine Hand-Auge-Kalibrierkonfiguration definiert werden, um eine
programmgesteuerte Hand-Auge-Kalibrierung mithilfe des GRI zu ermöglichen. Jede Hand-Auge-
Kalibrierkonfiguration besteht aus den folgenden Informationen:

• grid_height: Höhe des Kalibriermusters in Metern

• grid_width: Breite des Kalibriermusters in Metern

• robot_mounted: Boolean, das festlegt, ob die Kamera am Roboter montiert ist

• tcp_offset: 0 für 6DOF-Roboter. Für 4DOF-Roboter: der vorzeichenbehaftete Offset vom TCP
zum Kamerakoordinatensystem (am Roboter montierter Sensor) oder zur sichtbaren Oberfläche
des Kalibriermusters (statisch montierter Sensor) entlang der TCP-Rotationsachse in Metern.

• tcp_rotation_axis: -1 für 6DOF-Roboter. Für 4DOF-Roboter: Bestimmt die Achse des Roboter-
koordinatensystems, um die der Roboter seinen TCP drehen kann (0 wird für X, 1 für Y und 2 für
die Z-Achse verwendet).

Nähere Informationen zu diesen Einstellungen und zur Hand-Auge-Kalibrierung im Allgemeinen sind in
Hand-Auge-Kalibrierung beschrieben.

Die Hand-Auge-Kalibrierkonfigurationen können über die Web GUI oder über die REST-API (siehe Job
und HEC_config API) gesetzt werden.

7.3.3 Spezifikation des Binären GRI Protokolls

Diese Spezifikation definiert das genaue On-Wire-Format für Client-Server-Nachrichten. Eine Nach-
richt besteht aus einem festen 8-Byte-Header und einem Body, dessen Layout von der Protokollversion
abhängt. Derzeit gibt es nur die Protokollversion 1.

Bemerkung: Alle Mehrbyte-Ganzzahlen sind Little-Endian. Die Typen sind uint8 (8 Bit ohne Vor-
zeichen), int16 (16 Bit mit Vorzeichen) und int32 (32 Bit mit Vorzeichen).

7.3.3.1 Header (8 Bytes)

Tab. 7.1: Header Definition
Feld Typ Größe Beschreibung
Magic Number uint32 4 ASCII tag „GRI0“, Bytes 47 52 49 00 (Little-Endian)
protocol_version uint8 1 Protokollversion: derzeit 1
message_length uint8 1 Gesamte Nachrichtengröße (Bytes), inkl. Header + Body
pose_format uint8 1 Datenformat für Posen (siehe Posenformate)
Aktion uint8 1 Kommando/Aktion (siehe Aktionen)

7.3.3.2 Posenformate

Das GRI verwendet zur Positionsdarstellung immer Millimeter. Die folgenden Tabellen zeigen verschie-
dene Rotationsformate, die passend zur Rotationsdarstellung des verwendeten Roboters ausgewählt
werden können. Die Formate sind in Nicht-Euler-Rotationsformate, Tait-Bryan-Euler-Rotationsformate

Roboception GmbH
Handbuch: rc_reason_stack

363 Rev: 26.01.4
Status: 30.01.2026

7.3. Generic Robot Interface

(alle drei Achsen werden verwendet) und reine Euler-Rotationsformate (erste und letzte Rotationsachse
sind identisch) unterteilt.

Tab. 7.2: Nicht-Euler Rotationsformate
Name Wert rot_1 rot_2 rot_3 rot_4 Einheit Beispielroboter
QUAT_WXYZ 1 w x y z – ABB
QUAT_XYZW 2 x y z w – Fruitcore HORST
AXIS_ANGLE_RAD 3 rx ry rz – rad Universal Robots

In der folgenden Notation kennzeichnen Hochstriche aufeinanderfolgende Rotationen im intrinsischen
Bezugssystem (z. B. Y‘ = Rotation um die neue Y-Achse nach der ersten Rotation). _B und _F bestimmen
die Reihenfolge der Rotationskomponenten. F steht für vorwärts (forward), d.h. die Rotationskomponen-
ten werden in derselben Reihenfolge angegeben, in der die Rotation angewendet wird, und B steht für
rückwärts (backward), d.h. die Rotationskomponenten werden in umgekehrter Reihenfolge angegeben.
_RAD und _DEG bestimmen, ob die Rotationskomponenten gegebenenfalls in Radian oder Grad ange-
geben werden. Das Format EULER_ZYX_B_DEG bedeutet also, dass die intrinsische Rotationsreihenfolge
z-y‘-x‘ ist (zuerst Rotation um die z-Achse, dann Rotation um die neue y-Achse, dann Rotation um die
neue x-Achse), die Reihenfolge der Rotationskomponenten rückwärts ist (das erste Rotationselement
ist also der Winkel um die x-Achse), und die Winkel in Grad angegeben werden.

Roboception GmbH
Handbuch: rc_reason_stack

364 Rev: 26.01.4
Status: 30.01.2026

7.3. Generic Robot Interface

Tab. 7.3: Tait-Bryan-Euler-Rotationsformate. Hochstriche zeigen
aufeinanderfolgende Rotationen im intrinsischen Koordinatensys-
tem an (z.B. ist Y‘ eine Rotation um die neue Y-Achse nach der
ersten Rotation). _F (Forward): [1., 2., 3.] | _B (Backward): [3.,
2., 1.], _DEG (degrees): Grad | _RAD (radian): Radian.

Name Wert rot_1 rot_2 rot_3 rot_4 Ein-
heit

Beispielroboter

EU-
LER_XYZ_F_DEG

4 X Y‘ Z“ – deg

EU-
LER_XYZ_F_RAD

5 X Y‘ Z“ – rad

EU-
LER_XYZ_B_DEG

6 Z“ Y‘ X – deg

EU-
LER_XYZ_B_RAD

7 Z“ Y‘ X – rad

EU-
LER_XZY_F_DEG

8 X Z‘ Y“ – deg

EU-
LER_XZY_F_RAD

9 X Z‘ Y“ – rad

EU-
LER_XZY_B_DEG

10 Y“ Z‘ X – deg

EU-
LER_XZY_B_RAD

11 Y“ Z‘ X – rad

EU-
LER_YXZ_F_DEG

12 Y X‘ Z“ – deg

EU-
LER_YXZ_F_RAD

13 Y X‘ Z“ – rad

EU-
LER_YXZ_B_DEG

14 Z“ X‘ Y – deg

EU-
LER_YXZ_B_RAD

15 Z“ X‘ Y – rad

EU-
LER_YZX_F_DEG

16 Y Z‘ X“ – deg

EU-
LER_YZX_F_RAD

17 Y Z‘ X“ – rad

EU-
LER_YZX_B_DEG

18 X“ Z‘ Y – deg

EU-
LER_YZX_B_RAD

19 X“ Z‘ Y – rad

EU-
LER_ZXY_F_DEG

20 Z X‘ Y“ – deg

EU-
LER_ZXY_F_RAD

21 Z X‘ Y“ – rad

EU-
LER_ZXY_B_DEG

22 Y“ X‘ Z – deg

EU-
LER_ZXY_B_RAD

23 Y“ X‘ Z – rad

EU-
LER_ZYX_F_DEG

24 Z Y‘ X“ – deg KUKA

EU-
LER_ZYX_F_RAD

25 Z Y‘ X“ – rad

EU-
LER_ZYX_B_DEG

26 X“ Y‘ Z – deg FANUC, Mitsubishi, Yaska-
wa

EU-
LER_ZYX_B_RAD

27 X“ Y‘ Z – rad

Roboception GmbH
Handbuch: rc_reason_stack

365 Rev: 26.01.4
Status: 30.01.2026

7.3. Generic Robot Interface

Tab. 7.4: Euler-Rotationsformate. Hochstriche zeigen aufeinan-
derfolgende Rotationen im intrinsischen Koordinatensystem an
(z.B. ist Y‘ eine Rotation um die neue Y-Achse nach der ersten
Rotation). _F (Forward): [1., 2., 3.] | _B (Backward): [3., 2., 1.],
_DEG (degrees): Grad | _RAD (radian): Radian.

Name Wert rot_1 rot_2 rot_3 rot_4 Einheit Beispielroboter
EULER_XYX_F_DEG 28 X Y‘ X“ – deg
EULER_XYX_F_RAD 29 X Y‘ X“ – rad
EULER_XYX_B_DEG 30 X“ Y‘ X – deg
EULER_XYX_B_RAD 31 X“ Y‘ X – rad
EULER_XZX_F_DEG 32 X Z‘ X“ – deg
EULER_XZX_F_RAD 33 X Z‘ X“ – rad
EULER_XZX_B_DEG 34 X“ Z‘ X – deg
EULER_XZX_B_RAD 35 X“ Z‘ X – rad
EULER_YXY_F_DEG 36 Y X‘ Y“ – deg
EULER_YXY_F_RAD 37 Y X‘ Y“ – rad
EULER_YXY_B_DEG 38 Y“ X‘ Y – deg
EULER_YXY_B_RAD 39 Y“ X‘ Y – rad
EULER_YZY_F_DEG 40 Y Z‘ Y“ – deg
EULER_YZY_F_RAD 41 Y Z‘ Y“ – rad
EULER_YZY_B_DEG 42 Y“ Z‘ Y – deg
EULER_YZY_B_RAD 43 Y“ Z‘ Y – rad
EULER_ZXZ_F_DEG 44 Z X‘ Z“ – deg
EULER_ZXZ_F_RAD 45 Z X‘ Z“ – rad
EULER_ZXZ_B_DEG 46 Z“ X‘ Z – deg
EULER_ZXZ_B_RAD 47 Z“ X‘ Z – rad
EULER_ZYZ_F_DEG 88 Z Y‘ Z“ – deg Kawasaki
EULER_ZYZ_F_RAD 49 Z Y‘ Z“ – rad
EULER_ZYZ_B_DEG 50 Z“ Y‘ Z – deg
EULER_ZYZ_B_RAD 51 Z“ Y‘ Z – rad

Alle Posenkomponenten (Position und Rotation) sind int32 mit 1.000.000 skaliert.

• Float zu Int: int = round(float * 1000000)

• Int zu Float: float = int / 1000000.0

• Positionen werden vor der Skalierung in Millimetern erwartet.

• Winkel werden vor der Skalierung in Grad/Radian (je nach Format) erwartet.

• Quaternion-Komponenten haben keine Einheit, verwenden aber dieselbe Skalierung.

• rot_4 ist bei Euler oder Axis-Angle format ungenutzt (auf 0 gesetzt)

7.3.3.3 Aktionen

Die folgenden Aktionen können gesendet werden.

Roboception GmbH
Handbuch: rc_reason_stack

366 Rev: 26.01.4
Status: 30.01.2026

7.3. Generic Robot Interface

Tab. 7.5: GRI Aktionen
Name Wert Beschreibung
STATUS 1 Ready-Zustand des Systems abfragen; schreibt den Ready-Zustand

auf data_2 (1 oder 0)
TRIG-
GER_JOB_SYNC

2 Führt einen Job synchron aus

TRIG-
GER_JOB_ASYNC

3 Startet einen Job asynchron

GET_JOB_STATUS 4 Abfrage des Jobstatus (siehe Jobstatus)
GET_NEXT_POSE 5 Abfrage des nächsten verfügbaren Ergebnisses
GET_RELATED_POSE6 Abtrage der nächsten zugehörigen Pose
HEC_INIT 7 Hand-Auge-Kalibrierung initialisieren
HEC_SET_POSE 8 Kalibrierpose abspeichern
HEC_CALIBRATE 9 Kalibrierung durchführen und Ergebnis speichern

STATUS (1)

Liefert den Ready-Zustand des rc_reason_stack in data_2 (1 wenn ready, 0 wenn nicht).

TRIGGER_JOB_SYNC (2)

Führt den Job aus und gibt sofort das erste Ergebnis zurück. Weitere Ergebnisse werden für einen spä-
teren Abruf gespeichert. Wenn der Job erfolgreich ist und Ergebnisse zurückliefert, ist der error_code
Null und die Pose befüllt. Wenn keine Ergebnisse zurückgeliefert werden, liefert der error_code den
Wert NO_POSES_FOUND (positiver Wert als Warnung). Außerdem wird Folgendes gemeldet:

• data_1 = return_code Wert der Node

• data_2 = Anzahl der verbleibenden primären Objekte (siehe Primäre und zugehörige Objekte)

• data_3 = Anzahl der verbleibenden zugehörigen Objekte (ref. Primäre und zugehörige Objekte)

TRIGGER_JOB_ASYNC (3)

Startet den Job und endet sofort. Der Status des Jobs kann mit GET_JOB_STATUS (4) (siehe Jobstatus)
abgefragt und die Ergebnisse mit GET_NEXT_POSE (5) abgerufen werden, sobald der Job abgeschlossen
(DONE) ist

GET_JOB_STATUS (4)

Liefert den Jobstatus. Es wird gemeldet:

• data_1 = return_code Wert der Node

• data_2 = Jobstatus (siehe Tabelle Job Statuswerte)

Fehlerdetails sind in error_code enthalten.

GET_NEXT_POSE (5)

Gibt das nächste Ergebnis des primären Objekts zurück. Außerdem wird Folgendes gemeldet:

• data_1 = return_code Wert der Node

• data_2 = Anzahl der verbleibenden primären Objekte (siehe Primäre und zugehörige Objekte)

• data_3 = Anzahl der verbleibenden zugehörigen Objekte (ref. Primäre und zugehörige Objekte)

Wenn keine primären Objekte mehr verfügbar sind, wird NO_POSES_FOUND zurückgegeben und der Job
zurückgesetzt.

GET_RELATED_POSE (6)

Gibt die nächste Pose des zugehörigen Objekts zum aktuellen primären Objekt zurück. Außerdem wird
Folgendes gemeldet:

• data_1 = return_code Wert der Node

Roboception GmbH
Handbuch: rc_reason_stack

367 Rev: 26.01.4
Status: 30.01.2026

7.3. Generic Robot Interface

• data_2 = Anzahl der verbleibenden primären Objekte (siehe Primäre und zugehörige Objekte)

• data_3 = Anzahl der verbleibenden zugehörigen Objekte (ref. Primäre und zugehörige Objekte)

Wenn keine zugehörigen Posen gefunden wurden, wird NO_RELATED_POSES zurückgeliefert.

HEC_INIT (7)

Diese Aktion initialisiert die Hand-Auge-Kalibrierung. Sie löscht existierende Kalibrierdaten, wendet die
Hand-Auge-Kalibrierkonfiguration der Pipeline an und bereitet das System zum Aufnehmen von Kali-
brierposen vor. Der Wert in data_1 gibt die Zielpipeline für die Kalibrierung an.

HEC_SET_POSE (8)

Diese Aktion wird achtmal verwendet, um unterschiedliche Roboterposen mit sichtbarem Kalibriermus-
ter aufzuzeichnen. Das Feld data_2 dient zur Angabe des Bildspeicherplatzes (Slot) (0-7). Eine vorhe-
rige Pose in einem Slot wird überschrieben, wenn dieser wiederverwendet wird. Jede Pose muss eine
andere Ansicht des Kalibriermusters liefern, wie in Hand-Auge-Kalibrierung beschrieben. Der Inhalt von
data_1 gibt die Zielpipeline an.

HEC_CALIBRATE (9)

Diese Aktion verarbeitet alle aufgezeichneten Posen und berechnet die Transformation zwischen Ka-
mera und Roboter. Erfolgreiche Kalibrierergebnisse werden automatisch gespeichert. Der Inhalt von
data_1 gibt die Zielpipeline an.

7.3.3.4 Jobstatus

Die folgenden Statuswerte für Jobs können zurückgeliefert werden.

Tab. 7.6: Job Statuswerte
Name Wert
INACTIVE 1
RUNNING 2
DONE 3
FAILED 4

7.3.3.5 Body Definitionen

Es gibt unterschiedliche Body-Definitionen, je nachdem, ob eine Anfrage gesendet oder eine Antwort
empfangen wird. Der Anfrage-Body besteht aus insgesamt 54 Bytes und seine Definition ist in der
Tabelle Anfrage-Body Definition angegeben.

Tab. 7.7: Anfrage-Body Definition
Feld Typ Größe Beschreibung
Header struct 8 Nachrichtenheader (siehe Header (8 Bytes))
job_id uint16 2 Eindeutige Job ID aus der Job Konfiguration
pos_x int32 4 Position X (skaliert imt 10^6)
pos_y int32 4 Position Y (skaliert imt 10^6)
pos_z int32 4 Position Z (skaliert imt 10^6)
rot_1 int32 4 Rotationskomponente 1 (skaliert mit 10^6)
rot_2 int32 4 Rotationskomponente 2 (skaliert mit 10^6)
rot_3 int32 4 Rotationskomponente 3 (skaliert mit 10^6)
rot_4 int32 4 Rotationskomponente 4 (skaliert mit 10^6)
data_1 int32 4 Zusätzlicher Parameter 1
data_2 int32 4 Zusätzlicher Parameter 2
data_3 int32 4 Zusätzlicher Parameter 3
data_4 int32 4 Zusätzlicher Parameter 4

Roboception GmbH
Handbuch: rc_reason_stack

368 Rev: 26.01.4
Status: 30.01.2026

7.3. Generic Robot Interface

Die Job-ID ist die eindeutige Kennung aus der Job-Konfiguration. Die Verwendung der Felder data_1.
..data_4 ist abhängig von der Aktion und vom Job. Bei Nichtverwendung werden sie auf 0 gesetzt.

Der Antwort-Body besteht aus insgesamt 80 Bytes, Seine Definition ist in Tabelle Antwort-Body Defini-
tion angegeben.

Tab. 7.8: Antwort-Body Definition
Feld Typ Größe Beschreibung
Header struct 8 Protokollheader
job_id uint16 2 Verarbeitete Job Nummer
error_code int16 2 GRI Ergebnisstatus (Schweregrad nach Vorzeichen)
pos_x int32 4 Position X (skaliert imt 10^6)
pos_y int32 4 Position Y (skaliert imt 10^6)
pos_z int32 4 Position Z (skaliert imt 10^6)
rot_1 int32 4 Rotationskomponente 1 (skaliert mit 10^6)
rot_2 int32 4 Rotationskomponente 2 (skaliert mit 10^6)
rot_3 int32 4 Rotationskomponente 3 (skaliert mit 10^6)
rot_4 int32 4 Rotationskomponente 4 (skaliert mit 10^6)
data_1 int32 4 Rückgabecode der Node (0 wenn keiner)
data_2 int32 4 Zusätzliches Ergebnis 2
data_3 int32 4 Zusätzliches Ergebnis 3
data_4 int32 4 Zusätzliches Ergebnis 4
data_5 int32 4 Zusätzliches Ergebnis 5
data_6 int32 4 Zusätzliches Ergebnis 6
data_7 int32 4 Zusätzliches Ergebnis 7
data_8 int32 4 Zusätzliches Ergebnis 8
data_9 int32 4 Zusätzliches Ergebnis 9
data_10 int32 4 Zusätzliches Ergebnis 10

Bemerkung: Für rc_measure wird mean_z auf pos_x/pos_y/pos_z ausgegeben.

7.3.3.6 Fehlercodes und Bedeutung

Der Fehlercode error_code ist ein int16 und kodiert Fehler/Warnungen durch Vorzeichen:

• Negativ < 0 = error (Fehler)

• Null = 0 = success (Erfolg)

• Positiv > 0 = warning (Erfolg mit Warnung)

Die folgenden Tabellen geben die verschiedenen Fehlercodes an und sind nach Vorzeichen aufgeteilt
und sortiert.

Erfolg

Name Wert Beschreibung
NO_ERROR 0 Verarbeitung erfolgreich

Negative Fehlercodes

Roboception GmbH
Handbuch: rc_reason_stack

369 Rev: 26.01.4
Status: 30.01.2026

7.3. Generic Robot Interface

Name Wert Beschreibung
UNKNOWN_ERROR -1 GRI intern, nicht spezifiziert
INTERNAL_ERROR -2 GRI interner Systemfehler
API_NOT_REACHABLE -3 API nicht erreichbar
API_RESPONSE_ERROR -4 API hat negativen Code zurückgeliefert
PIPELINE_NOT_AVAILABLE -5 Pipeline nicht verfügbar
INVALID_REQUEST_ERROR -6 Fehlerhafte Anfrage
INVA-
LID_REQUEST_LENGTH

-7 Falsche Nachrichtenlänge

INVALID_ACTION -8 Nicht unterstützte Aktion
PROCESSING_TIMEOUT -9 Timeout während der Verarbeitung
UN-
KNOWN_PROTOCOL_VERSION

-10 Protokollversion nicht unterstützt

WRONG_PROTOCOL_FOR_JOB-11 Job passt nicht zur Protokollversion
JOB_DOES_NOT_EXIST -12 Invalid job ID
MISCONFIGURED_JOB -13 Ungültige Job Konfiguration
HEC_CONFIG_ERROR -14 Ungültige Konfigurationsparameter
HEC_INIT_ERROR -15 Initialisierung der Kalibrierung fehlgeschlagen
HEC_SET_POSE_ERROR -16 Pose konnte nicht in angegebenem Slot aufgenommen wer-

den
HEC_CALIBRATE_ERROR -17 Kalibrierung konnte aus aufgenommenen Posen nicht be-

rechnet werden
HEC_INSUFFICIENT_DETECTION-18 Kalibriermuster nicht sichtbar oder nicht erkannt

Positive Codes

Name Wert Beschreibung
NO_POSES_FOUND 1 Keine Ergebnisse verfügbar
NO_RELATED_POSES 2 Keine zugehörigen Objekte gefunden
NO_RETURN_SPECIFIED 3 Job ohne Rückgabewerte konfiguriert
JOB_STILL_RUNNING 4 Asynchroner Job nicht beendet

Node Rückgabecode Bedeutung

Die Module/Nodes können einen return_code zurückgeben. Dieser Node-Rückgabecode wird im Ant-
wortfeld data_1 platziert (standardmäßig 0, wenn kein Code vorhanden ist). Der primäre Status des
GRI wird in error_code zurückgegeben (vorzeichenbasierte Bedeutung).

7.3.4 Integration mit einem Roboter

Die Generic Robot Interface bietet die Kommunikation auf Port 7100 an.

Für die Integration der GRI-Kommunikation mit einem Roboter werden Beispiele für verschiedene Ro-
botersprachen unter https://github.com/roboception/rc_generic_robot_interface_robot angeboten.

Unterschiedliche Roboterplattformen können durch die Implementierung eines TCP-Socket-Clients un-
terstützt werden, der dem GRI-Binärprotokoll folgt (siehe Spezifikation des Binären GRI Protokolls).
Dies erfordert einen Robotercontroller mit TCP/IP-Unterstützung und der Fähigkeit, Roboterposen in
Binärnachrichten zu packen und Binärnachrichten in Roboterposen zu parsen.

Die Implementierungsschritte sind wie folgt:

1. TCP Socketverbindung aufbauen

2. Anfragenachricht zusammenstellen:

• Nachrichtenheader setzen (8 Bytes)

• Job ID setzen (2 Bytes)

Roboception GmbH
Handbuch: rc_reason_stack

370 Rev: 26.01.4
Status: 30.01.2026

https://github.com/roboception/rc_generic_robot_interface_robot

7.3. Generic Robot Interface

• Position verpacken (12 Bytes, 3x int32)

• Rotation verpacken (16 Bytes, 4x int32)

• Zusätzliche Daten verpacken (16 Bytes, 4x int32)

3. Anfrage senden (54 Bytes insgesamt)

4. Antwort empfangen (80 Bytes insgesamt)

5. Antwort parsen:

• Header (8 Bytes)

• Job ID (2 Bytes)

• Fehlercode (2 Bytes)

• Position (12 Bytes, 3x int32)

• Rotation (16 Bytes, 4x int32)

• Zusätzliche Daten (40 bytes, 10x int32)

7.3.4.1 Byte-Interpretation in der Socket-Kommunikation

Einige Skriptsprachen für Roboter interpretieren einzelne Socket-Bytes als vorzeichenbehaftete Werte
im Bereich [-128, 127] anstatt als vorzeichenlose Werte im Bereich [0, 255]. Falls dies der Fall ist,
muss jedes Byte vor der Rekonstruktion von int32-Werten in einen vorzeichenlosen Wert konvertiert
werden.

Convert signed byte to unsigned
if byte_value < 0:

byte_value = byte_value + 256

Nach der Konvertierung muss der int32 Wert in Little-Endian-Byte-Reihenfolge rekonstruiert werden.
Anschließend wird die Vorzeicheninterpretation auf das höchstwertige Byte (most significant byte, MSB)
angewendet, um festzustellen, ob der Gesamtwert des int32 negativ ist.

Bemerkung: Alle Posenkomponenten verwenden die in Posenformate beschriebene Skalierung.

7.3.5 Job und HEC_config API

Die Jobdefinitionen und die Definitionen von HEC_configs für die Hand-Auge-Kalibrierung können über
die folgenden REST-API-Endpunkte gesetzt, abgerufen und gelöscht werden.

GET /generic_robot_interface/hec_configs
Liefert die definierten Hand-Auge-Kalibrierkonfigurationen zurück

Musteranfrage

GET /api/v2/generic_robot_interface/hec_configs HTTP/1.1

Musterantwort

HTTP/1.1 200 OK
Content-Type: application/json

{
"0": {

"grid_height": 0.18,
"grid_width": 0.26,
"robot_mounted": true,

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

371 Rev: 26.01.4
Status: 30.01.2026

7.3. Generic Robot Interface

(Fortsetzung der vorherigen Seite)

"tcp_offset": 0,
"tcp_rotation_axis": -1

}
}

Antwort-Header

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung

GET /generic_robot_interface/hec_configs/{pipeline}
Liefert die Hand-Auge-Kalibrierkonfiguration für die ausgewählte Pipeline

Musteranfrage

GET /api/v2/generic_robot_interface/hec_configs/<pipeline> HTTP/1.1

Musterantwort

HTTP/1.1 200 OK
Content-Type: application/json

{
"grid_height": 0.18,
"grid_width": 0.26,
"robot_mounted": true,
"tcp_offset": 0,
"tcp_rotation_axis": -1

}

Parameter

• pipeline (string) – Pipeline der Hand-Auge-Kalibrierkonfiguration (obligato-
risch)

Antwort-Header

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung

PUT /generic_robot_interface/hec_configs/{pipeline}
Setzt eine Hand-Auge-Kalibrierkonfiguration für die ausgewählte Pipeline.

Musteranfrage

PUT /api/v2/generic_robot_interface/hec_configs/<pipeline> HTTP/1.1
Accept: application/json application/ubjson

{}

Musterantwort

HTTP/1.1 200 OK
Content-Type: application/json

{
"return_code": {

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

372 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.3. Generic Robot Interface

(Fortsetzung der vorherigen Seite)

"message": "HEC configuration saved successfully",
"value": 0

}
}

Parameter

• pipeline (string) – Pipeline der Hand-Auge-Kalibrierkonfiguration (obligato-
risch)

JSON-Objekt zur Anfrage

• hand-eye calibration configuration (object) – Beispielargumente (obliga-
torisch)

Anfrage-Header

• Accept – application/json application/ubjson

Antwort-Header

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung

DELETE /generic_robot_interface/hec_configs/{pipeline}
Entfernt eine Hand-Auge-Kalibrierkonfiguration.

Musteranfrage

DELETE /api/v2/generic_robot_interface/hec_configs/<pipeline> HTTP/1.1
Accept: application/json application/ubjson

Parameter

• pipeline (string) – Pipeline der Hand-Auge-Kalibrierkonfiguration (obligato-
risch)

Anfrage-Header

• Accept – application/json application/ubjson

Antwort-Header

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung

• 403 Forbidden – Verboten, z.B. weil keine gültige Lizenz für das CADMatch-
Modul vorliegt.

• 404 Not Found – Konfiguration für die angegebene Pipeline nicht gefunden

GET /generic_robot_interface/jobs
Liefert die definierten Jobs zurück

Musteranfrage

GET /api/v2/generic_robot_interface/jobs HTTP/1.1

Musterantwort

Roboception GmbH
Handbuch: rc_reason_stack

373 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.3. Generic Robot Interface

HTTP/1.1 200 OK
Content-Type: application/json

{
"0": {

"args": {
"pose_frame": "external",
"tags": []

},
"job_type": "CALL_PIPELINE_SERVICE",
"name": "detect_qr_code",
"node": "rc_qr_code_detect",
"pipeline": "0",
"selected_return": "tags",
"service": "detect"

},
"1": {

"job_type": "SET_PARAMETERS_SERVICE",
"name": "set_depth_full_quality",
"node": "rc_stereomatching",
"parameters": {
"double_shot": true,
"quality": "Full"

},
"pipeline": "0"

}
}

Antwort-Header

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung

GET /generic_robot_interface/jobs/{job_id}
Liefert die Definition des ausgewählten Jobs zurück

Musteranfrage

GET /api/v2/generic_robot_interface/jobs/<job_id> HTTP/1.1

Musterantwort

HTTP/1.1 200 OK
Content-Type: application/json

{
"args": {

"pose_frame": "camera",
"tags": []

},
"job_type": "CALL_PIPELINE_SERVICE",
"name": "detect_qr_code",
"node": "rc_qr_code_detect",
"pipeline": "0",
"selected_return": "tags",
"service": "detect"

}

Parameter

Roboception GmbH
Handbuch: rc_reason_stack

374 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.3. Generic Robot Interface

• job_id (string) – ID des Jobs (obligatorisch)

Antwort-Header

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung

PUT /generic_robot_interface/jobs/{job_id}
Legt eine Jobdefinition für die ausgewählte Job-Art fest. Die erforderlichen Felder hängen vom
gewählten Job-Art ab.

Musteranfrage

PUT /api/v2/generic_robot_interface/jobs/<job_id> HTTP/1.1
Accept: application/json application/ubjson

{}

Musterantwort

HTTP/1.1 200 OK
Content-Type: application/json

{
"job_id": "1",
"return_code": {
"message": "Job configuration updated successfully",
"value": 0

}
}

Parameter

• job_id (string) – ID des Jobs (obligatorisch)

JSON-Objekt zur Anfrage

• job definition (object) – Beispielargumente (obligatorisch)

Anfrage-Header

• Accept – application/json application/ubjson

Antwort-Header

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung

DELETE /generic_robot_interface/jobs/{job_id}
Entfernt eine Jobdefinition

Musteranfrage

DELETE /api/v2/generic_robot_interface/jobs/<job_id> HTTP/1.1
Accept: application/json application/ubjson

Parameter

• job_id (string) – ID des Jobs (obligatorisch)

Anfrage-Header

Roboception GmbH
Handbuch: rc_reason_stack

375 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.4. OPC UA Interface

• Accept – application/json application/ubjson

Antwort-Header

• Content-Type – application/json application/ubjson

Statuscodes

• 200 OK – Erfolgreiche Verarbeitung

• 403 Forbidden – Verboten, z.B. weil keine gültige Lizenz für das CADMatch-
Modul vorliegt.

• 404 Not Found – Job mit angegebener ID nicht gefunden

7.4 OPC UA Interface

Der rc_reason_stack bietet auch ein optionales OPC UA Interface auf dem TCP Port 4840 an. Der OPC
UA Server kann über eine separate Lizenz (Abschnitt 8.2) aktiviert werden.

Der OPC UA Server ermöglicht Zugriff auf die Parameter und Services aller verfügbaren Softwaremo-
dule analog zur REST-API. Um den OPC UA Adressraum zu durchsuchen kann z.B. der frei erhältliche
UAExpert GUI Client verwendet werden.

Der OPC UA Server nutzt das DataTypeDefinition Attribut (verfügbar in OPC UA Version 1.04) für
benutzerdefinierte Datentypen und verwendet auch Methoden und Arrays variabler Länge. Bitte über-
prüfen Sie, ob Ihr OPC UA Client dies unterstützt.

Bemerkung: Der OPC UA Server unterstützt aktuell nur das Äquivalent zu API Version 1 (d.h. nur
Kamerapipeline 0).

Bitte kontaktieren Sie support@roboception.de wenn Sie Interesse haben den OPC UA Server zu nut-
zen.

7.5 KUKA Ethernet KRL Schnittstelle

Der rc_reason_stack stellt ein Ethernet KRL Interface (EKI-Bridge) zur Verfügung, welches eine Kom-
munikation von KUKA KRL via KUKA.EthernetKRL XML mit dem rc_reason_stack erlaubt.

Bemerkung: Dieses Modul ist optional und benötigt eine gesonderte EKIBridge-Lizenz (Abschnitt
8.2).

Bemerkung: Das KUKA.EthernetKRL add-on Software-Paket Version 2.2 bis maximal 5.x muss auf
der Robotersteuerung aktiviert sein, um dieses Modul zu benutzen.

Die EKI-Bridge kann benutzt werden, um programmatisch

• Serviceanfragen auszuführen, z.B. um individuelle Module zu starten und stoppen, oder um ange-
botene Services wie z.B. die Hand-Auge-Kalibrierung oder Berechnung von Greifposen zu nutzen,

• Laufzeitparameter abzufragen und zu ändern, z.B. der Kamera oder Disparitätsberechnung.

Bemerkung: Eine bekannte Einschränkung der EKI Bridge ist, dass Strings, die valide Zahlen dar-
stellen, nach int/float konvertiert werden. Daher sollten benutzerdefinierte Namen (wie ROI IDs, etc.)
immer mindestens einen Buchstaben enthalten, sodass diese als Serviceargumente benutzt werden
können.

Roboception GmbH
Handbuch: rc_reason_stack

376 Rev: 26.01.4
Status: 30.01.2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.unified-automation.com/products/development-tools/uaexpert.html
mailto:support@roboception.de

7.5. KUKA Ethernet KRL Schnittstelle

7.5.1 Konfiguration der Ethernet-Verbindung

Die EKI-Bridge hört auf Port 7000 auf EKI-XML-Nachrichten und übersetzt diese transparent zur
rc_reason_stack REST-API v2 (Abschnitt 7.2). Die empfangenen EKI-Nachrichten werden in JSON
umgewandelt und an die rc_reason_stack REST-API weitergeleitet. Die Antwort der REST-API wird
anschließend zurück in EKI-XML gewandelt.

Die EKI-Bridge erlaubt den Zugriff auf Laufzeitparameter und Services aller Module, die in Softwaremo-
dule (Abschnitt 6) beschrieben sind.

Die Ethernet-Verbindung zum rc_reason_stack wird auf der Robotersteuerung mit XML-Dateien konfi-
guriert.

Die Ethernet-Verbindung zum rc_reason_stack wird auf der Robotersteuerung mit XML-Dateien konfi-
guriert. Die EKI-XML-Konfigurationsdateien aller Module auf dem rc_reason_stack können hier herun-
tergeladen werden:

https://doc.rc-visard.com/latest/de/eki.html#eki-xml-configuration-files

Für jedes Softwaremodul, das Laufzeitparameter anbietet, gibt es eine XML-Konfigurationsdatei, um
die Parameter abzufragen und zu setzen. Diese sind nach dem Schema <node_name>-parameters.xml
benannt. Für jeden Service eines Softwaremoduls gibt eine eigene XML-Konfigurationsdatei. Diese ist
nach dem Schema <node_name>-<service_name>.xml benannt.

Die IP des Host-PC, auf dem der rc_reason_stack läuft, muss in der XML Datei eingetragen werden.

Der Port ist bereits auf 7000 gesetzt, was der Pipeline 0 entspricht. Dieser muss angepasst werden falls
eine andere Pipeline benutzt werden soll. Die Port Nummer ist 7000 + Pipeline Nummer, also 7001 für
Pipeline 1, etc.

Diese Konfigurationsdateien müssen im Verzeichnis C:\KRC\ROBOTER\Config\User\Common\EthernetKRL
auf der Robotersteuerung abgelegt werden. Sie werden gelesen, sobald eine Verbindung initialisiert
wird.

Um z.B. eine Ethernet-Verbindung mit dem Ziel aufzubauen, um die rc_stereomatching-Parameter zu
konfigurieren, ist der folgende KRL-Code notwendig.

DECL EKI_Status RET
RET = EKI_INIT("rc_stereomatching-parameters")
RET = EKI_Open("rc_stereomatching-parameters")

; ----------- Desired operation -----------

RET = EKI_Close("rc_stereomatching-parameters")

Bemerkung: Die EKI-Bridge terminiert automatisch die Verbindung zum Client, wenn eine empfan-
gene XML-Nachricht ungültig ist.

7.5.2 Allgemeine XML-Struktur

Für die Datenanfrage nutzt die EKI-Bridge <req> als Wurzelelement (kurz für „Request“).

Das Wurzelelement enthält immer die folgenden Elemente.

• <node>: Dieses enthält ein Unterelement, über das die EKI-Bridge das Ziel-Softwaremodul identi-
fiziert. Der Modulname ist bereits in der XML-Konfigurationsdatei vorausgefüllt.

• <end_of_request>: „End-of-Request“ Flag, das das Ende der Anfrage markiert und diese auslöst.

Die generische XML-Struktur sieht wie folgt aus.

Roboception GmbH
Handbuch: rc_reason_stack

377 Rev: 26.01.4
Status: 30.01.2026

https://doc.rc-visard.com/latest/de/eki.html#eki-xml-configuration-files

7.5. KUKA Ethernet KRL Schnittstelle

<SEND>
<XML>

<ELEMENT Tag="req/node/<node_name>" Type="STRING"/>
<ELEMENT Tag="req/end_of_request" Type="BOOL"/>

</XML>
</SEND>

Für den Datenempfang nutzt die EKI-Bridge <res> als Wurzelelement (kurz für „Response“). Das Wur-
zelelement enthält immer ein <return_code> Unterelement.

<RECEIVE>
<XML>

<ELEMENT Tag="res/return_code/@value" Type="INT"/>
<ELEMENT Tag="res/return_code/@message" Type="STRING"/>
<ELEMENT Tag="res" Set_Flag="998"/>

</XML>
</RECEIVE>

Bemerkung: Standardmäßig ist in den Konfigurationsdateien 998 als Flag angegeben, über welches
KRL benachrichtigt wird, sobald eine Antwortnachricht empfangen wurde. Falls dieser Wert bereits
in Benutzung ist, sollte dieser in der entsprechenden Konfigurationsdatei geändert werden.

7.5.2.1 Rückgabecode

Das <return_code>-Element enthält die Attribute value und message.

Wie für alle anderen Softwaremodule gibt eine erfolgreiche Anfrage ein res/return_code/@value mit
dem Wert 0 zurück. Negative Werte geben an, dass die Anfrage fehlgeschlagen ist. Die Fehlermeldung
ist in res/return_code/@message enthalten. Positive Werte geben an, dass die Anfrage erfolgreich war,
aber weitere Informationen in res/return_code/@message enthalten sind.

Die folgenden Rückgabecodes können von der EKI-Bridge zurückgegeben werden:

Tab. 7.9: Rückgabecodes der EKI-Bridge
Code Beschreibung

0 Erfolgreich
-1 Parsing-Fehler in der Konvertierung von XML zu JSON
-2 Interner Fehler
-5 Verbindungsfehler von der REST-API
-9 Fehlende oder ungültige Lizenz für das EKI-Bridge-Modul

Bemerkung: Die EKI-Bridge liefert auch Rückgabecodes spezifisch zu den individuellen Software-
modulen zurück. Diese sind im jeweiligen Softwaremodul (Abschnitt 6) dokumentiert.

Bemerkung: Aufgrund von Limitierungen in KRL ist die maximale Länge eines Strings, der von der
EKI-Bridge zurückgegeben wird, auf 512 Zeichen begrenzt. Alle längeren Strings werden gekürzt.

7.5.3 Services

Das XML-Schema für die Services der Softwaremodule wird aus den Argumenten und der Antwort in
JavaScript Object Notation (JSON) generiert, wie in Softwaremodule (Abschnitt 6) beschrieben. Diese
Umwandlung ist bis auf die unten beschriebenen Regeln transparent.

Konvertierung von Posen:

Eine Pose ist ein JSON-Objekt, das die Schlüssel position und orientation enthält.

Roboception GmbH
Handbuch: rc_reason_stack

378 Rev: 26.01.4
Status: 30.01.2026

7.5. KUKA Ethernet KRL Schnittstelle

{
"pose": {
"position": {
"x": "float64",
"y": "float64",
"z": "float64",

},
"orientation": {
"x": "float64",
"y": "float64",
"z": "float64",
"w": "float64",

}
}

}

Dieses JSON-Objekt wird zu einem KRL FRAME in der XML-Nachricht konvertiert.

<pose X="..." Y="..." Z="..." A="..." B="..." C="..."></pose>

Positionen werden von Metern in Millimetern umgerechnet und Orientierungen von Quater-
nionen in das KUKA-ABC-Format (in Grad).

Bemerkung: Es werden in der EKI-Bridge keine anderen Größenumrechnungen vor-
genommen. Alle Abmessungen und 3D-Koordinaten, die nicht zu einer Pose gehören,
werden in Metern erwartet und zurückgegeben.

Arrays:

Arrays enthalten die Unterelemente <le> (kurz für „List Element“). Als Beispiel wird das
JSON-Objekt

{
"rectangles": [
{
"x": "float64",
"y": "float64"

}
]

}

in das folgende XML-Fragment konvertiert

<rectangles>
<le>
<x>...</x>
<y>...</y>

</le>
</rectangles>

XML-Attribute:

Alle JSON-Schlüssel, deren Wert ein primitiver Datentyp ist und die nicht zu einem Array
gehören, werden in XML-Attributen gespeichert. Als Beispiel wird das JSON-Objekt

{
"item": {
"uuid": "string",
"confidence": "float64",
"rectangle": {
"x": "float64",

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

379 Rev: 26.01.4
Status: 30.01.2026

7.5. KUKA Ethernet KRL Schnittstelle

(Fortsetzung der vorherigen Seite)

"y": "float64"
}

}
}

in das folgende XML-Fragment konvertiert

<item uuid="..." confidence="...">
<rectangle x="..." y="...">
</rectangle>

</item>

7.5.3.1 Anfrage-XML-Struktur

Das <SEND>-Element in der XML-Konfigurationsdatei für einen generischen Service folgt der folgenden
Spezifikation:

<SEND>
<XML>

<ELEMENT Tag="req/node/<node_name>" Type="STRING"/>
<ELEMENT Tag="req/service/<service_name>" Type="STRING"/>
<ELEMENT Tag="req/args/<argX>" Type="<argX_type>"/>
<ELEMENT Tag="req/end_of_request" Type="BOOL"/>

</XML>
</SEND>

Das <service>-Element hat ein XML-Unterelement, über das die EKI-Bridge den angefragten Service
identifiziert. Es ist bereits vorausgefüllt in der Konfigurationsdatei enthalten.

Das <args> Element beinhaltet die Service-Argumente. Diese können jeweils mit der KRL-Instruktion
EKI_Set<Type> gesetzt werden.

Beispielsweise sieht das <SEND>-Element des rc_load_carrier_db get_load_carriers Services (siehe
LoadCarrierDB, Abschnitt 6.5.1) wie folgt aus.

<SEND>
<XML>

<ELEMENT Tag="req/node/rc_load_carrier_db" Type="STRING"/>
<ELEMENT Tag="req/service/get_load_carriers" Type="STRING"/>
<ELEMENT Tag="req/args/load_carrier_ids/le" Type="STRING"/>
<ELEMENT Tag="req/end_of_request" Type="BOOL"/>

</XML>
</SEND>

Das <end_of_request>-Element erlaubt es, Anfragen mit Arrays zu übermitteln. Um ein Array zu sen-
den, wird die Anfrage in so viele Nachrichten wie Array-Elemente aufgeteilt. Die letzte Nachricht bein-
haltet alle XML-Tags inklusive dem <end_of_request>-Flag, während alle anderen Nachrichten jeweils
nur ein Array-Element enthalten.

Um z.B. zwei Load-Carrier-Modelle mit dem get_load_carriers Service vom rc_load_carrier_db ab-
zufragen, muss der Nutzer zwei XML-Nachrichten senden. Die erste XML-Nachricht lautet:

<req>
<args>

<load_carrier_ids>
<le>load_carrier1</le>

</load_carrier_ids>
</args>

</req>

Roboception GmbH
Handbuch: rc_reason_stack

380 Rev: 26.01.4
Status: 30.01.2026

7.5. KUKA Ethernet KRL Schnittstelle

Diese Nachricht kann über KRL mit dem EKI_Send Kommando gesendet werden, indem das Listenele-
ment als Pfad angegeben wird.

DECL EKI_STATUS RET
RET = EKI_SetString("rc_load_carrier_db-get_load_carriers", "req/args/load_carrier_ids/
→˓le", "load_carrier1")
RET = EKI_Send("rc_load_carrier_db-get_load_carriers", "req/args/load_carrier_ids/le")

Die zweite Nachricht beinhaltet alle XML-Tags und löst die Anfrage beim rc_load_carrier_db Softwa-
remodul aus.

<req>
<node>

<rc_load_carrier_db></rc_load_carrier_db>
</node>
<service>

<get_load_carriers></get_load_carriers>
</service>
<args>

<load_carrier_ids>
<le>load_carrier2</le>

</load_carrier_ids>
</args>
<end_of_request></end_of_request>

</req>

Diese Nachricht kann über KRL gesendet werden, indem req als Pfad für EKI_Send angegeben wird:

DECL EKI_STATUS RET
RET = EKI_SetString("rc_load_carrier_db-get_load_carriers", "req/args/load_carrier_ids/
→˓le", "load_carrier2")
RET = EKI_Send("rc_load_carrier_db-get_load_carriers", "req")

7.5.3.2 Antwort-XML-Struktur

Das <SEND>-Element in der XML-Konfigurationsdatei für einen generischen Service folgt der folgenden
Spezifikation:

<RECEIVE>
<XML>

<ELEMENT Tag="res/<resX>" Type="<resX_type>"/>
<ELEMENT Tag="res/return_code/@value" Type="INT"/>
<ELEMENT Tag="res/return_code/@message" Type="STRING"/>
<ELEMENT Tag="res" Set_Flag="998"/>

</XML>
</RECEIVE>

Beispielsweise sieht das <RECEIVE>-Element des rc_april_tag_detect detect Services (siehe TagDe-
tect , Abschnitt 6.3.3) wie folgt aus.

<RECEIVE>
<XML>

<ELEMENT Tag="res/timestamp/@sec" Type="INT"/>
<ELEMENT Tag="res/timestamp/@nsec" Type="INT"/>
<ELEMENT Tag="res/return_code/@message" Type="STRING"/>
<ELEMENT Tag="res/return_code/@value" Type="INT"/>
<ELEMENT Tag="res/tags/le/pose_frame" Type="STRING"/>
<ELEMENT Tag="res/tags/le/timestamp/@sec" Type="INT"/>
<ELEMENT Tag="res/tags/le/timestamp/@nsec" Type="INT"/>
<ELEMENT Tag="res/tags/le/pose/@X" Type="REAL"/>

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

381 Rev: 26.01.4
Status: 30.01.2026

7.5. KUKA Ethernet KRL Schnittstelle

(Fortsetzung der vorherigen Seite)

<ELEMENT Tag="res/tags/le/pose/@Y" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@Z" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@A" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@B" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@C" Type="REAL"/>
<ELEMENT Tag="res/tags/le/instance_id" Type="STRING"/>
<ELEMENT Tag="res/tags/le/id" Type="STRING"/>
<ELEMENT Tag="res/tags/le/size" Type="REAL"/>
<ELEMENT Tag="res" Set_Flag="998"/>

</XML>
</RECEIVE>

Bei Arrays beinhaltet die Antwort mehrere Instanzen des gleichen XML-Elements. Jedes Element wird in
einen separaten Puffer in EKI geschrieben und kann daraus mit KRL-Instruktionen ausgelesen werden.
Die Anzahl an Instanzen (Array-Elementen) kann über EKI_CheckBuffer abgefragt werden und jede
Instanz mit EKI_Get<Type> ausgelesen werden.

Beispielsweise können die Ergebnisposen aus einer Antwort des rc_april_tag_detect detect Ser-
vices in KRL wie folgt ausgelesen werden:

DECL EKI_STATUS RET
DECL INT i
DECL INT num_instances
DECL FRAME poses[32]

DECL FRAME pose = {X 0.0, Y 0.0, Z 0.0, A 0.0, B 0.0, C 0.0}

RET = EKI_CheckBuffer("rc_april_tag_detect-detect", "res/tags/le/pose")
num_instances = RET.Buff
for i=1 to num_instances

RET = EKI_GetFrame("rc_april_tag_detect-detect", "res/tags/le/pose", pose)
poses[i] = pose

endfor
RET = EKI_ClearBuffer("rc_april_tag_detect-detect", "res")

Bemerkung: Vor jeder Anfrage über EKI zum rc_reason_stack sollten alle Puffer geleert werden,
um sicherzustellen, dass nur die aktuelle Antwort in den EKI-Puffern enthalten ist.

7.5.4 Parameter

Die Parameter aller Softwaremodule können über die EKI-Bridge ausgelesen und gesetzt werden. Die
XML-Konfigurationsdatei für ein generisches Softwaremodul folgt dieser Spezifikation:

<SEND>
<XML>

<ELEMENT Tag="req/node/<node_name>" Type="STRING"/>
<ELEMENT Tag="req/parameters/<parameter_x>/@value" Type="INT"/>
<ELEMENT Tag="req/parameters/<parameter_y>/@value" Type="STRING"/>
<ELEMENT Tag="req/end_of_request" Type="BOOL"/>

</XML>
</SEND>
<RECEIVE>

<XML>
<ELEMENT Tag="res/parameters/<parameter_x>/@value" Type="INT"/>
<ELEMENT Tag="res/parameters/<parameter_x>/@default" Type="INT"/>
<ELEMENT Tag="res/parameters/<parameter_x>/@min" Type="INT"/>
<ELEMENT Tag="res/parameters/<parameter_x>/@max" Type="INT"/>
<ELEMENT Tag="res/parameters/<parameter_y>/@value" Type="REAL"/>

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

382 Rev: 26.01.4
Status: 30.01.2026

7.5. KUKA Ethernet KRL Schnittstelle

(Fortsetzung der vorherigen Seite)

<ELEMENT Tag="res/parameters/<parameter_y>/@default" Type="REAL"/>
<ELEMENT Tag="res/parameters/<parameter_y>/@min" Type="REAL"/>
<ELEMENT Tag="res/parameters/<parameter_y>/@max" Type="REAL"/>
<ELEMENT Tag="res/return_code/@value" Type="INT"/>
<ELEMENT Tag="res/return_code/@message" Type="STRING"/>
<ELEMENT Tag="res" Set_Flag="998"/>

</XML>
</RECEIVE>

Die Anfrage wird als Anfrage zum Lesen von Parametern interpretiert, wenn die value-Attribute aller
Parameter leer sind. Falls mindestens ein value-Attribut befüllt ist, wird die Anfrage als Anfrage zum
Setzen von Parametern interpretiert und die befüllten Parameter gesetzt.

Beispielsweise können die aktuellen Werte aller Parameter von rc_stereomatching mit der folgenden
XML-Nachricht abgefragt werden:

<req>
<node>

<rc_stereomatching></rc_stereomatching>
</node>
<parameters></parameters>
<end_of_request></end_of_request>

</req>

Diese XML-Nachricht kann folgendermaßen über KRL gesendet werden:

DECL EKI_STATUS RET
RET = EKI_Send("rc_stereomatching-parameters", "req")

Die Antwort der EKI-Bridge enthält alle Parameter:

<res>
<parameters>

<acquisition_mode default="Continuous" max="" min="" value="Continuous"/>
<quality default="High" max="" min="" value="High"/>
<static_scene default="0" max="1" min="0" value="0"/>
<seg default="200" max="4000" min="0" value="200"/>
<smooth default="1" max="1" min="0" value="1"/>
<fill default="3" max="4" min="0" value="3"/>
<minconf default="0.5" max="1.0" min="0.5" value="0.5"/>
<mindepth default="0.1" max="100.0" min="0.1" value="0.1"/>
<maxdepth default="100.0" max="100.0" min="0.1" value="100.0"/>
<maxdeptherr default="100.0" max="100.0" min="0.01" value="100.0"/>

</parameters>
<return_code message="" value="0"/>

</res>

Der quality-Parameter von rc_stereomatching kann mit folgender XML-Nachricht auf Low gesetzt wer-
den:

<req>
<node>

<rc_stereomatching></rc_stereomatching>
</node>
<parameters>

<quality value="Low"></quality>
</parameters>
<end_of_request></end_of_request>

</req>

Diese XML-Nachricht kann folgendermaßen über KRL gesendet werden:

Roboception GmbH
Handbuch: rc_reason_stack

383 Rev: 26.01.4
Status: 30.01.2026

7.6. gRPC Bilddatenschnittstelle

DECL EKI_STATUS RET
RET = EKI_SetString("rc_stereomatching-parameters", "req/parameters/quality/@value",
→˓"Low")
RET = EKI_Send("rc_stereomatching-parameters", "req")

In diesem Fall wird nur der gesetzte Wert von quality zurückgegeben:

<res>
<parameters>

<quality default="High" max="" min="" value="Low"/>
</parameters>
<return_code message="" value="0"/>

</res>

7.5.5 Beispielanwendungen

Ausführlichere Beispielanwendungen können unter https://github.com/roboception/eki_examples abge-
rufen werden.

7.5.6 Fehlerbehebung

SmartPad Fehlermeldung: Limit of element memory reached

Dieser Fehler kann auftreten, wenn die Anzahl der Matches das Speicherlimit überschreitet.

• Erhöhen Sie den Wert BUFFERING und setzen Sie BUFFSIZE in den EKI Konfigurationsdateien.
Passen Sie diese Einstellungen an Ihre spezielle KRC an.

• Verringern Sie den Parameter ‚Maximale Matches‘ im Detektionsmodul.

• Selbst wenn das Gesamtspeicherlimit (BUFFSIZE) einer Nachricht nicht erreicht wird, kann
die KRC die Anzahl der Elemente im XML-Baum möglicherweise nicht analysieren, wenn das
BUFFERING-Limit zu klein ist. Wenn Ihre Anwendung beispielsweise 50 verschiedene Greifpunk-
te vorschlägt, muss das BUFFERING-Limit ebenfalls 50 betragen.

7.6 gRPC Bilddatenschnittstelle

Die gRPC Bilddatenschnittstelle kann zum Streamen von Kamerabildern und synchronisierten Bildda-
ten (z.B. linkes Kamerabild und das dazugehörige Disparitätsbild) genutzt werden.

gRPC ist ein System zur Interprozesskommunikation über Rechnergrenzen hinweg, welches auch das
Streamen von Daten unterstützt. Es benutzt Protocol Buffers (siehe https://developers.google.com/
protocol-buffers/) als Beschreibungssprache und zur Datenserialisierung. Eine Einführung und mehr
Details zu gRPC sind auf der offiziellen Webseite verfügbar (https://grpc.io/).

Die Vorteile der gRPC Schnittstelle gegenüber GigE Vision sind:

• Es ist in eigenen Programmen einfacher zu benutzen als GigE Vision.

• Es gibt gRPC Unterstützung für sehr viele Programmiersprachen (siehe https://grpc.io/).

• Die Kommunikation basiert auf TCP statt auf UDP und funktioniert deshalb besser über weniger
stabile Netzwerke wie z.B. WLAN.

Die Nachteile der gRPC Schnittstelle im Vergleich zu GigE Vision sind:

• Es unterstützt nicht das Ändern von Parametern. Allerdings können alle Parameter über die REST-
API-Schnittstelle (Abschnitt 7.2) geändert werden.

• Es ist keine Standard-Bildverarbeitungsschnittstelle wie z.B. GigE Vision.

Roboception GmbH
Handbuch: rc_reason_stack

384 Rev: 26.01.4
Status: 30.01.2026

https://github.com/roboception/eki_examples
https://grpc.io/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://grpc.io/
https://grpc.io/

7.6. gRPC Bilddatenschnittstelle

Der rc_reason_stack bietet synchronisierte Bilddaten über gRPC Serverstreams auf einem separaten
Port pro Pipeline an. Der Port ist 50051 + Pipeline Nummer, also 50051 für Pipeline 0, 50052 für Pipeline
1, etc.

Die Kommunikation wird gestartet indem eine ImageSetRequest Nachricht an den Server geschickt
wird. Die Nachricht enthält die Information über angeforderte Bilder, d.h. linkes, rechtes, Disparitäts-,
Konfidenz- oder Fehlerbild, die separat an- und abgeschaltet werden können.

Nach dem Empfangen der Anfrage sendet der Server kontinuierlich ImageSet Nachrichten, welche alle
angeforderten Bilder mit allen Parametern enthalten, die notwendig sind, um die Bilder zu interpretieren.
Die Bilder in einer ImageSet Nachricht sind synchronisiert, d.h. sie sind alle zum selben Zeitpunkt auf-
genommen. Die einzige Ausnahme von dieser Regel besteht, wenn der out1_mode (Abschnitt 6.4.4.1)
auf AlternateExposureActive gesetzt ist. In diesem Fall werden die Kamera- und Disparitätsbilder um
40 ms versetzt aufgenommen, sodass GPIO Out1 auf aus (LOW) steht, wenn das linke und rechte
Bild aufgenommen werden, und auf an (HIGH) für das Disparitäts-, Konfidenz- und Fehlerbild. Dies ist
sinnvoll, wenn ein Musterprojektor genutzt wird, da der Projektor dann bei der Aufnahme des linken und
rechten Bildes aus ist und für das Disparitätsbild an, wodurch die Kamerabilder ungestört sind, aber
das Disparitätsbild deutlich dichter und genauer wird.

Das Streamen von Bildern wird beendet, sobald der Client die Verbindung schließt.

Eine ImageEventsRequest Nachricht kann gesendet werden, um das Streaming von ImageEvents zu
starten. Diese Nachricht enthält das Ereignis depth_acquisition_done, welches signalisiert, dass die
Bildaufnahme zur Tiefenberechnung abgeschlossen ist. Sie enthält außerdem den imageset_timestamp
des zugehörigen ImageSet. Dieses Ereignis kann verwendet werden, um die Zykluszeit in einer Robo-
teranwendung zu optimieren, da es signalisiert, ab wann die Kamera oder die Szene nach dem Auslö-
sen einer Erkennung sicher bewegt werden können.

7.6.1 gRPC Servicedefinition

syntax = "proto3";

message Time
{

int32 sec = 1; ///< Seconds
int32 nsec = 2; ///< Nanoseconds

}

message Gpios
{

uint32 inputs = 1; ///< bitmask of available inputs
uint32 outputs = 2; ///< bitmask of available outputs
uint32 values = 3; ///< bitmask of GPIO values

}

message Image
{

Time timestamp = 1; ///< Acquisition timestamp of the image
uint32 height = 2; ///< image height (number of rows)
uint32 width = 3; ///< image width (number of columns)
float focal_length = 4; ///< focal length in pixels
float principal_point_u = 5; ///< horizontal position of the principal point
float principal_point_v = 6; ///< vertical position of the principal point
string encoding = 7; ///< Encoding of pixels ["mono8", "mono16", "rgb8"]
bool is_bigendian = 8; ///< is data bigendian, (in our case false)
uint32 step = 9; ///< full row length in bytes
bytes data = 10; ///< actual matrix data, size is (step * height)
Gpios gpios = 11; ///< GPIOs as of acquisition timestamp
float exposure_time = 12; ///< exposure time in seconds
float gain = 13; ///< gain factor in decibel
float noise = 14; ///< noise

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

385 Rev: 26.01.4
Status: 30.01.2026

7.6. gRPC Bilddatenschnittstelle

(Fortsetzung der vorherigen Seite)

float out1_reduction = 16; ///< Fraction of reduction (0.0 - 1.0) of exposure time for
→˓images with GPIO Out1=Low in exp_auto_mode=AdaptiveOut1
float brightness = 17; ///< Current brightness of the image as value between 0 and 1

}

message DisparityImage
{

Time timestamp = 1; ///< Acquisition timestamp of the image
float scale = 2; ///< scale factor
float offset = 3; ///< offset in pixels (in our case 0)
float invalid_data_value = 4; ///< value used to mark pixels as invalid (in our case 0)
float baseline = 5; ///< baseline in meters
float delta_d = 6; ///< Smallest allowed disparity increment. The smallest

→˓achievable depth range resolution is delta_Z = (Z^2/image.focal_length*baseline)*delta_d.
Image image = 7; ///< disparity image

}

message Mesh
{

Time timestamp = 1; ///< Acquisition timestamp of disparity image from which the mesh
→˓is computed
string format = 2; ///< currently only "ply" is supported
bytes data = 3; ///< actual mesh data

}

message ImageSet
{

Time timestamp = 1;
Image left = 2;
Image right = 3;
DisparityImage disparity = 4;
Image disparity_error = 5;
Image confidence = 6;
Mesh mesh = 7;

}

message MeshOptions
{

uint32 max_points = 1; ///< limit maximum number of points, zero means default (up
→˓to 3.1MP), minimum is 1000
enum BinningMethod {

AVERAGE = 0; ///< average over all points in bin
MIN_DEPTH = 1; ///< use point with minimum depth (i.e. closest to camera) in

→˓bin
}
BinningMethod binning_method = 2; ///< method used for binning if limited by max_points
bool watertight = 3; ///< connect all edges and fill all holes, e.g. for collision

→˓checking
bool textured = 4; ///< add texture information to mesh

}

message ImageSetRequest
{

bool left_enabled = 1;
bool right_enabled = 2;
bool disparity_enabled = 3;
bool disparity_error_enabled = 4;
bool confidence_enabled = 5;
bool mesh_enabled = 6;
MeshOptions mesh_options = 7;
bool color = 8; ///< send left/right image as color (rgb8) images

(Fortsetzung auf der nächsten Seite)

Roboception GmbH
Handbuch: rc_reason_stack

386 Rev: 26.01.4
Status: 30.01.2026

7.6. gRPC Bilddatenschnittstelle

(Fortsetzung der vorherigen Seite)

}

service ImageInterface
{

// A server-to-client streaming RPC.
rpc StreamImageSets(ImageSetRequest) returns (stream ImageSet) {}

}

message Event
{

Time timestamp = 1; ///< timestamp of the event
string message = 2; ///< optional message of the event

}

message ImageEvents
{

Time imageset_timestamp = 1; ///< timestamp of the ImageSet that the event belongs to
Event depth_acquisition_done = 2; ///< Depth image acquisition is done (e.g. stereo images

→˓captured)
}

message ImageEventsRequest
{

bool depth_acquisition_done_enabled = 1; ///< send event when depth acquisition is done
}

service ImageEventsInterface
{

// A server-to-client streaming RPC.
rpc StreamImageEvents(ImageEventsRequest) returns (stream ImageEvents) {}

}

7.6.1.1 Umwandlung von Bild-Streams

Das Disparitätsbild enthält vorzeichenlose 16-Bit-Ganzzahlwerte. Diese Werte müssen mit dem scale
Wert der DisparityImage Nachricht multipliziert werden, um die Disparitätswerte 𝑑 in Pixeln zu er-
mitteln. Um die 3D-Objektkoordinaten aus den Disparitätswerten berechnen zu können, werden der
Basisabstand baseline = 𝑡 aus der DisparityImage Nachricht, die Brennweite focal_length = 𝑓 , und
der Bildhauptpunkt principal_point_u = 𝑐𝑥 und principal_point_v = 𝑐𝑦 aus der ImageData Nach-
richt benötigt. Die Brennweite und der Bildhauptpunkt hängen von der Bildauflösung der Kamera ab
und müssen auf die Auflösung des Disparitätsbilds skaliert werden. Sind diese Werte bekannt, können
die Pixel-Koordinaten und die Disparitätswerte mithilfe der im Abschnitt Berechnung von Tiefenbildern
und Punktwolken (Abschnitt 4.2.2) angegebenen Gleichungen in 3D-Objektkoordination im Kamera-
Koordinatensystem umgerechnet werden.

Unter der Annahme, dass es sich bei 𝑑𝑖𝑘 um den 16-Bit-Disparitätswert in der Spalte 𝑖 und Zeile 𝑘 eines
Disparitätsbildes handelt, ist der Fließkomma-Disparitätswert in Pixeln 𝑑𝑖𝑘 gegeben durch

𝑑𝑖𝑘 = 𝑑16𝑖𝑘 · scale

Die 3D-Rekonstruktion (in Metern) kann wie folgt durchgeführt werden:

𝑃𝑥 = (𝑖+ 0.5− 𝑐𝑥)
𝑡

𝑑𝑖𝑘
,

𝑃𝑦 = (𝑘 + 0.5− 𝑐𝑦)
𝑡

𝑑𝑖𝑘
,

𝑃𝑧 = 𝑓
𝑡

𝑑𝑖𝑘
.

Roboception GmbH
Handbuch: rc_reason_stack

387 Rev: 26.01.4
Status: 30.01.2026

7.6. gRPC Bilddatenschnittstelle

Das Konfidenzbild umfasst vorzeichenlose 8-Bit-Ganzzahlwerte. Diese Werte müssen durch 255 geteilt
werden, um die zwischen 0 und 1 liegenden Konfidenzwerte zu berechnen.

Das Fehlerbild umfasst vorzeichenlose 8-Bit-Ganzzahlwerte. Der Fehler 𝑒𝑖𝑘 muss mit dem im scale
Wert der DisparityImage Nachricht angegebenen Skalierungsfaktor multipliziert werden, um die Dispa-
ritätsfehlerwerte 𝑑𝑒𝑝𝑠 in Pixeln zu ermitteln. Der Beschreibung in Konfidenz- und Fehlerbilder (Abschnitt
4.2.3) zufolge lässt sich der Tiefenfehler 𝑧𝑒𝑝𝑠 (in Metern) wie folgt berechnen:

𝑑𝑖𝑘 = 𝑑16𝑖𝑘 · scale,

𝑧𝑒𝑝𝑠 =
𝑒𝑖𝑘 · scale · 𝑓 · 𝑡

(𝑑𝑖𝑘)2
.

Für nähere Informationen zu Disparitäts-, Fehler- und Konfidenzbildern siehe Stereo-Matching Mo-
dul (Abschnitt 6.2.2).

7.6.2 Beispielclient

Ein einfacher C++ Client kann von https://github.com/roboception/grpc_image_client_example herun-
tergeladen werden.

Roboception GmbH
Handbuch: rc_reason_stack

388 Rev: 26.01.4
Status: 30.01.2026

https://github.com/roboception/grpc_image_client_example

8 Wartung

8.1 Backup der Einstellungen

Der rc_reason_stack bietet die Möglichkeit, die aktuellen Einstellungen als Backup oder zum Übertra-
gen auf einen anderen rc_visard oder rc_cube herunterzuladen.

Die aktuellen Einstellungen des rc_reason_stack können über die Web GUI (Abschnitt 7.1) auf der Seite
System im Abschnitt rc_reason_stack Einstellungen heruntergeladen werden, oder über die REST-API-
Schnittstelle (Abschnitt 7.2) des rc_reason_stack mit Hilfe des Aufrufs GET /system/backup.

Beim Herunterladen des Backups kann der Nutzer entscheiden, welche Einstellungen das Backup ent-
halten soll:

• nodes: die Einstellungen aller Module (Parameter, bevorzugte TCP-Orientierungen und Sortier-
strategien)

• load_carriers: die erstellten Load Carrier

• regions_of_interest: die erstellten 2D und 3D Regions of Interest

• grippers: die erstellten Greifer (ohne CAD Elemente)

Das zurückgelieferte Backup sollte als .json-Datei gespeichert werden.

Die Templates der SilhouetteMatch und CADMatch Module sind nicht im Backup enthalten, aber können
manuell über die REST-API oder die Web GUI heruntergeladen werden (siehe Template API, Abschnitt
6.3.6.14 und Template API, Abschnitt 6.3.7.13).

Ein Backup kann auf dem rc_reason_stack über die Web GUI (Abschnitt 7.1) auf der Seite System im
Abschnitt rc_reason_stack Einstellungen eingespielt werden, indem die Backup .json-Datei hochgela-
den wird. In der Web GUI werden die im Backup enthaltenen Einstellungen angezeigt und können für
das Einspielen ausgewählt werden. Der zugehörige Aufruf der REST-API-Schnittstelle (Abschnitt 7.2)
ist POST /system/backup.

Warnung: Wenn ein Backup von Load Carriern eingespielt wird, gehen alle bestehenden Load
Carrier auf dem rc_reason_stack verloren und werden durch die Load Carrier im Backup ersetzt.
Das gleiche trifft auf das Einspielen von Greifern und Regions of Interest zu.

Wenn ein Backup eingespielt wird, werden nur die Einstellungen gesetzt, die für den jeweiligen
rc_reason_stack zutreffend sind. Parameter für Module, die nicht existieren oder keine gültige Lizenz
haben, werden ignoriert. Wenn ein Backup nur teilweise eingespielt werden konnte, wird der Benutzer
über Warnungen darüber informiert.

8.2 Aktualisierung der Softwarelizenz

Lizenzen zur Aktivierung zusätzlicher Funktionen können von Roboception erworben werden.

Roboception GmbH
Handbuch: rc_reason_stack

389 Rev: 26.01.4
Status: 30.01.2026

8.3. Download der Logdateien

8.3 Download der Logdateien

Während des Betriebs dokumentiert der rc_reason_stack wichtige Informationen, Hinweise und Fehler
in sogenannten Logdateien. Zeigt der rc_reason_stack ein unerwartetes oder fehlerhaftes Verhalten,
kann mithilfe der Logdateien nach der Fehlerursache geforscht werden. Logeinträge lassen sich über
die Seite System → Logs auf der Web GUI (Abschnitt 7.1) ansehen und filtern. Wird der Support
kontaktiert (Kontakt , Abschnitt 10), sind die Logdateien sehr hilfreich, um Probleme aufzuspüren. Um
diese als tar.gz-Datei herunterzuladen, ist der Button Alle Logs herunterladen auf der Seite System →
Logs der Web GUI unter System zu klicken.

Die Logs sind nicht nur über die Web GUI, sondern auch über die REST-API-Schnittstelle (Abschnitt
7.2) des rc_reason_stack zugänglich. Hierfür können die Anfragen des Typs GET /logs und GET /logs/
{log} verwendet werden.

Roboception GmbH
Handbuch: rc_reason_stack

390 Rev: 26.01.4
Status: 30.01.2026

9 Fehlerbehebung

9.1 Probleme mit den Kamerabildern

Kamerabild ist zu hell

• Wenn die Kamera im manuellen Belichtungsmodus arbeitet, versuchen Sie, die Belichtungszeit
zu verkürzen oder

• schalten Sie auf automatische Belichtung um.

Kamerabild ist zu dunkel

• Wenn die Kamera im manuellen Belichtungsmodus arbeitet, versuchen Sie, die Belichtungszeit
zu verlängern oder

• schalten Sie auf automatische Belichtung um.

Kamerabild rauscht zu stark

Große Gain-Faktoren verursachen ein Bildrauschen mit hoher Amplitude. Wollen Sie das Bildrauschen
verringern,

• verwenden Sie eine zusätzliche Lichtquelle, um die Lichtintensität der Aufnahme zu erhöhen, oder

• stellen Sie eine größere maximale Autobelichtungszeit ein.

Kamerabild ist unscharf

• Überprüfen Sie, ob das Objekt zu nahe an der Linse liegt, und erhöhen Sie bei Bedarf den Abstand
zwischen dem Objekt und der Linse.

• Überprüfen Sie, ob die Kameralinsen verschmutzt sind, und reinigen Sie diese bei Bedarf.

• Trifft keiner der vorstehenden Punkte zu, kann es sein, dass ein schweres Hardware-Problem
vorliegt. Bitte wenden Sie sich an den Support (Abschnitt 10).

Kamerabild ist verschwommen

Schnelle Bewegungen können in Kombination mit langen Belichtungszeiten zu Unschärfe führen. Um
Bewegungsunschärfe zu verringern,

• verringern Sie die Bewegungsgeschwindigkeit der Kamera,

• verringern Sie die Bewegungsgeschwindigkeit von Objekten im Sichtfeld der Kamera oder

• verkürzen Sie die Belichtungszeit der Kameras.

Bildwiederholrate ist zu niedrig

• Erhöhen Sie die Bildwiederholrate.

• Die maximale Bildwiederholrate der Kameras beträgt 25 Hz.

Roboception GmbH
Handbuch: rc_reason_stack

391 Rev: 26.01.4
Status: 30.01.2026

9.2. Probleme mit Tiefen-/Disparitäts-, Fehler- oder Konfidenzbildern

9.2 Probleme mit Tiefen-/Disparitäts-, Fehler- oder Konfidenzbil-
dern

Die folgenden Hinweise gelten auch für Fehler- und Konfidenzbilder, da sie direkt mit den Disparitäts-
bildern zusammenhängen.

Disparitätsbild spärlich befüllt oder leer

• Überprüfen Sie, ob die Kamerabilder gut belichtet und scharf sind. Befolgen Sie bei Bedarf die
Anweisungen in Probleme mit den Kamerabildern (Abschnitt 9.1).

• Überprüfen Sie, ob die Szene genügend Textur hat und installieren Sie bei Bedarf einen Muster-
projektor.

• Senken Sie den Minimalen Abstand (Abschnitt 6.2.2.1).

• Erhöhen Sie den Maximalen Abstand (Abschnitt 6.2.2.1).

• Überprüfen Sie, ob das Objekt zu nahe an der Kamera liegt. Beachten Sie die unterschiedlichen
Tiefenmessbereiche der Kameravarianten.

• Senken Sie die Minimale Konfidenz (Abschnitt 6.2.2.1).

• Erhöhen Sie den Maximalen Fehler (Abschnitt 6.2.2.1).

• Wählen Sie eine geringere Qualität des Disparitätsbilds (Abschnitt 6.2.2.1). Disparitätsbilder mit
einer geringeren Auflösung sind in der Regel nicht so spärlich befüllt.

• Überprüfen Sie die Kalibrierung der Kameras und führen Sie bei Bedarf eine Neukalibrierung
durch (siehe Kamerakalibrierung, Abschnitt 6.4.3).

Bildwiederholrate der Disparitätsbilder ist zu niedrig

• Überprüfen und erhöhen Sie die Bildwiederholrate der Kamerabilder. Die Bildwiederholrate der
Disparitätsbilder kann nicht größer sein als die Bildwiederholrate der Kamerabilder.

• Wählen Sie eine geringere Qualität des Disparitätsbilds (Abschnitt 6.2.2.1).

• Erhöhen Sie den Minimalen Abstand (Abschnitt 6.2.2.1) so viel wie für die Applikation möglich.

Disparitätsbild zeigt keine nahe liegenden Objekte

• Überprüfen Sie, ob das Objekt zu nahe an der Linse liegt. Beachten Sie die unterschiedlichen
Tiefenmessbereiche der Kameravarianten.

• Senken Sie den Minimalen Abstand (Abschnitt 6.2.2.1).

Disparitätsbild zeigt keine weit entfernten Objekte

• Erhöhen Sie den Maximalen Abstand (Abschnitt 6.2.2.1).

• Erhöhen Sie den Maximalen Fehler (Abschnitt 6.2.2.1).

• Senken Sie die Minimale Konfidenz (Abschnitt 6.2.2.1).

Disparitätsbild rauscht zu stark

• Erhöhen Sie den Segmentierungswert (Abschnitt 6.2.2.1).

• Erhöhen Sie den Füllen-Wert (Abschnitt 6.2.2.1).

Disparitätswerte oder resultierende Tiefenwerte sind zu ungenau

• Verringern Sie den Abstand zwischen der Kamera und der Szene. Der Tiefenmessfehler nimmt
quadratisch mit dem Abstand zu den Kameras zu.

• Überprüfen Sie, ob die Szene wiederkehrende Muster enthält und entfernen Sie diese bei Bedarf.
Diese könnten falsche Disparitätsmessungen verursachen.

Disparitätsbild ist zu glatt

Roboception GmbH
Handbuch: rc_reason_stack

392 Rev: 26.01.4
Status: 30.01.2026

9.2. Probleme mit Tiefen-/Disparitäts-, Fehler- oder Konfidenzbildern

• Senken Sie den Füllen-Wert (Abschnitt 6.2.2.1).

Disparitätsbild zeigt keine feinen Strukturen

• Senken Sie den Segmentierungswert (Abschnitt 6.2.2.1).

• Senken Sie den Füllen-Wert (Abschnitt 6.2.2.1).

Roboception GmbH
Handbuch: rc_reason_stack

393 Rev: 26.01.4
Status: 30.01.2026

10 Kontakt

10.1 Support

Support-Anfragen können Sie uns entweder über die Seite http://www.roboception.com/support oder
per E-Mail an support@roboception.de zukommen lassen.

10.2 Downloads

Software-SDKs usw. können von der Roboception-Homepage heruntergeladen werden: http://www.
roboception.com/download.

10.3 Adresse

Roboception GmbH
Kaflerstraße 2
81241 München
Deutschland

Web: http://www.roboception.com
E-Mail: info@roboception.de
Telefon: +49 89 889 50 79-0

Roboception GmbH
Handbuch: rc_reason_stack

394 Rev: 26.01.4
Status: 30.01.2026

http://www.roboception.com/support
mailto:support@roboception.de
http://www.roboception.com/download
http://www.roboception.com/download
http://www.roboception.com
mailto:info@roboception.de

11 Anhang

11.1 Formate für Posendaten

Eine Pose besteht aus einer Translation und einer Rotation. Die Translation definiert die Verschiebung
entlang der 𝑥, 𝑦 und 𝑧-Achsen. Die Rotation kann auf viele verschiedene Arten definiert werden. Der
rc_reason_stack benutzt Quaternionen, um Rotationen zu definieren, und Translationen werden in Me-
tern angegeben. Dies wird als XYZ+Quaternion Format bezeichnet. Dieses Kapitel erklärt Umrechnun-
gen zwischen verschiedenen üblichen Posenformaten und dem XYZ+Quaternion Format.

Es ist weit verbreitet, Rotationen in 3D durch drei Winkel als Drehungen um die Koordinatenachsen zu
definieren. Leider existieren hierfür viele verschiedene Möglichkeiten. Übliche Konventionen sind Euler-
oder Kardanwinkel (letztere werden auch als Tait-Bryan Winkel bezeichnet). In beiden Konventionen
können die drei Rotationen auf die bereits gedrehten Achsen (intrinsische Rotation) oder auf die Achsen
des festen Koordinatensystems (extrinsische Rotation) angewendet werden.

Wir benutzen 𝑥, 𝑦 und 𝑧 zur Bezeichnung der drei Koordinatenachsen. 𝑥′, 𝑦′ und 𝑧′ bezeichnen die
Achsen, die einmal rotiert wurden. 𝑥′′, 𝑦′′ und 𝑧′′ bezeichnen die Achsen nach zwei Rotationen.

In der ursprünglichen Eulerwinkelkonvention ist die erste und dritte Drehachse immer identisch. Die
Rotationsreihenfolge 𝑧-𝑥′-𝑧′′ bedeutet z.B. eine Drehung um die 𝑧-Achse, dann eine Drehung um die
gedrehte 𝑥-Achse und schließlich eine Drehung um die (zweimal) gedrehte 𝑧-Achse. In der Kardan-
winkelkonvention sind alle drei Drehachsen unterschiedlich, z.B. 𝑧-𝑦′-𝑥′′. Kardanwinkel werden häufig
ebenfalls als Eulerwinkel bezeichnet.

Für jede intrinsische Rotationsreihenfolge gibt es eine äquivalente extrinsische Rotationsreihenfolge,
die genau umgekehrt ist. Die intrinsische Rotationsreihenfolge 𝑧-𝑦′-𝑥′′ ist zum Beispiel äquivalent zu
der extrinsischen Rotationsreihenfolge 𝑥-𝑦-𝑧.

Rotationen um die 𝑥, 𝑦 und 𝑧-Achse können mit Quaternionen definiert werden als

𝑟𝑥(𝛼) =

⎛⎜⎜⎝
sin 𝛼

2
0
0

cos 𝛼
2

⎞⎟⎟⎠ , 𝑟𝑦(𝛽) =

⎛⎜⎜⎝
0

sin 𝛽
2

0

cos 𝛽
2

⎞⎟⎟⎠ , 𝑟𝑧(𝛾) =

⎛⎜⎜⎝
0
0

sin 𝛾
2

cos 𝛾
2

⎞⎟⎟⎠ ,

oder durch Rotationsmatrizen als

𝑟𝑥(𝛼) =

⎛⎝ 1 0 0
0 cos𝛼 − sin𝛼
0 sin𝛼 cos𝛼

⎞⎠ ,

𝑟𝑦(𝛽) =

⎛⎝ cos𝛽 0 sin𝛽
0 1 0

− sin𝛽 0 cos𝛽

⎞⎠ ,

𝑟𝑧(𝛾) =

⎛⎝ cos 𝛾 − sin 𝛾 0
sin 𝛾 cos 𝛾 0
0 0 1

⎞⎠ .

Die extrinsische Rotationsreihenfolge 𝑥-𝑦-𝑧 kann durch die Multiplikation einzelner Rotationen in umge-

Roboception GmbH
Handbuch: rc_reason_stack

395 Rev: 26.01.4
Status: 30.01.2026

11.1. Formate für Posendaten

kehrter Reihenfolge berechnet werden, d.h. 𝑟𝑧(𝛾)𝑟𝑦(𝛽)𝑟𝑥(𝛼).

Basierend auf diesen Definitionen beschreiben die folgenden Abschnitte die Umrechnung zwischen
üblichen Konventionen und dem XYZ+Quaternion Format.

Bemerkung: Zu beachten sind stets die Einheiten für Positionen und Orientierungen.
rc_reason_stack Geräte benutzen stets Meter als Längeneinheit, während die meisten Roboterher-
steller Längen in Millimeter oder Inch angeben. Winkel werden üblicherweise in Grad angegeben,
können aber auch im Bogenmaß angegeben sein.

11.1.1 Rotationsmatrix und Translationsvektor

Eine Pose kann mit einer Rotationsmatrix 𝑅 und einem Translationsvektor 𝑇 definiert werden.

𝑅 =

⎛⎝ 𝑟00 𝑟01 𝑟02
𝑟10 𝑟11 𝑟12
𝑟20 𝑟21 𝑟22

⎞⎠ , 𝑇 =

⎛⎝ 𝑋
𝑌
𝑍

⎞⎠ .

Die Posentransformation für einen Punkt 𝑃 ist

𝑃 ′ = 𝑅𝑃 + 𝑇.

11.1.1.1 Umrechnung von Rotationsmatrizen in Quaternionen

Die Umrechnung von einer Rotationsmatrix (mit 𝑑𝑒𝑡(𝑅) = 1) in eine Quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤)
kann wie folgt durchgeführt werden.

𝑥 = sign(𝑟21 − 𝑟12)
1

2

√︀
max(0, 1 + 𝑟00 − 𝑟11 − 𝑟22)

𝑦 = sign(𝑟02 − 𝑟20)
1

2

√︀
max(0, 1− 𝑟00 + 𝑟11 − 𝑟22)

𝑧 = sign(𝑟10 − 𝑟01)
1

2

√︀
max(0, 1− 𝑟00 − 𝑟11 + 𝑟22)

𝑤 =
1

2

√︀
max(0, 1 + 𝑟00 + 𝑟11 + 𝑟22)

Der sign Operator gibt -1 zurück, falls sein Argument negativ ist. Sonst wird 1 zurück gegeben. Er wird
zur Wiederherstellung das Vorzeichens der Wurzel benutzt. Die max Funktion stellt sicher, dass das
Argument der Wurzel nicht negativ ist, was in der Praxis durch Rundungsfehler passieren kann.

11.1.1.2 Umrechnung von Quaternionen in Rotationsmatrizen

Die Umrechnung von einer Quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) mit ||𝑞|| = 1 in eine Rotationsmatrix kann
wie folgt durchgeführt werden.

𝑅 = 2

⎛⎝ 1
2 − 𝑦2 − 𝑧2 𝑥𝑦 − 𝑧𝑤 𝑥𝑧 + 𝑦𝑤
𝑥𝑦 + 𝑧𝑤 1

2 − 𝑥2 − 𝑧2 𝑦𝑧 − 𝑥𝑤
𝑥𝑧 − 𝑦𝑤 𝑦𝑧 + 𝑥𝑤 1

2 − 𝑥2 − 𝑦2

⎞⎠

11.1.2 ABB Posenformat

ABB Roboter beschreiben eine Pose durch Position 𝑋, 𝑌 , 𝑍 und Quaternion 𝑄1, 𝑄2, 𝑄3, 𝑄4, ähn-
lich wie rc_reason_stack Geräte. Jedoch muss die Position in Millimetern angegeben werden und die
Quaternion Reihenfolge ist wie folgt definiert:

𝑞 = (𝑥 𝑦 𝑧 𝑤) = (𝑄2 𝑄3 𝑄4 𝑄1).

Roboception GmbH
Handbuch: rc_reason_stack

396 Rev: 26.01.4
Status: 30.01.2026

11.1. Formate für Posendaten

11.1.3 FANUC XYZ-WPR Format

Das Posenformat, welches von FANUC Robotern benutzt wird, besteht aus einer Position 𝑋𝑌 𝑍 in
Millimetern und einer Orientierung 𝑊𝑃𝑅, welche durch drei Winkel in Grad gegeben ist. 𝑊 rotiert um
die 𝑥-Achse, 𝑃 rotiert um die 𝑦-Achse und 𝑅 rotiert um die 𝑧-Achse. Die Rotationsreihenfolge ist 𝑥-𝑦-𝑧
und wird berechnet durch 𝑟𝑧(𝑅)𝑟𝑦(𝑃)𝑟𝑥(𝑊).

11.1.3.1 Umrechnung von FANUC-WPR in Quaternionen

Zur Umrechnung von 𝑊𝑃𝑅 Winkeln in Grad in eine Quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) werden zunächst
die Winkel ins Bogenmaß umgerechnet

𝑊𝑟 = 𝑊
𝜋

180
,

𝑃𝑟 = 𝑃
𝜋

180
,

𝑅𝑟 = 𝑅
𝜋

180
,

und damit wird die Quaternion berechnet als

𝑥 = cos (𝑅𝑟/2) cos (𝑃𝑟/2) sin (𝑊𝑟/2)− sin (𝑅𝑟/2) sin (𝑃𝑟/2) cos (𝑊𝑟/2),
𝑦 = cos (𝑅𝑟/2) sin (𝑃𝑟/2) cos (𝑊𝑟/2) + sin (𝑅𝑟/2) cos (𝑃𝑟/2) sin (𝑊𝑟/2),
𝑧 = sin (𝑅𝑟/2) cos (𝑃𝑟/2) cos (𝑊𝑟/2)− cos (𝑅𝑟/2) sin (𝑃𝑟/2) sin (𝑊𝑟/2),
𝑤 = cos (𝑅𝑟/2) cos (𝑃𝑟/2) cos (𝑊𝑟/2) + sin (𝑅𝑟/2) sin (𝑃𝑟/2) sin (𝑊𝑟/2).

11.1.3.2 Umrechnung von Quaternionen in FANUC-WPR

Die Umrechnung von einer Quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) mit ||𝑞|| = 1 in 𝑊𝑃𝑅 Winkel in Grad kann
wie folgt durchgeführt werden.

𝑅 = atan2(2(𝑤𝑧 + 𝑥𝑦), 1− 2(𝑦2 + 𝑧2))
180

𝜋

𝑃 = asin(2(𝑤𝑦 − 𝑧𝑥))
180

𝜋

𝑊 = atan2(2(𝑤𝑥+ 𝑦𝑧), 1− 2(𝑥2 + 𝑦2))
180

𝜋

11.1.4 Franka Emika Posenformat

Franka Emika Roboter nutzen eine Transformationsmatrix 𝑇 um eine Pose zu definieren. Eine Transfor-
mationsmatrix kombiniert eine Rotationsmatrix 𝑅 und einen Translationsvektor 𝑡 = (𝑥 𝑦 𝑧)𝑇 .

𝑇 =

⎛⎜⎜⎝
𝑟00 𝑟01 𝑟02 𝑥
𝑟10 𝑟11 𝑟12 𝑦
𝑟20 𝑟21 𝑟22 𝑧
0 0 0 1

⎞⎟⎟⎠
Die Posen, die Franka Emika’s „Measure Pose“ App ausgibt, bestehen aus einer Translation 𝑥, 𝑦, 𝑧 in
Millimetern und einer Rotation 𝑥, 𝑦, 𝑧 in Grad. Die Rotationsreihenfolge ist 𝑧-𝑦′-𝑥′′ (d.h. 𝑥-𝑦-𝑧) und die
Rotation wird berechnet durch 𝑟𝑧(𝑧)𝑟𝑦(𝑦)𝑟𝑥(𝑥).

Roboception GmbH
Handbuch: rc_reason_stack

397 Rev: 26.01.4
Status: 30.01.2026

11.1. Formate für Posendaten

11.1.4.1 Umrechnung von Transformation in Quaternion

Die Umrechnung von einer Rotationsmatrix (mit 𝑑𝑒𝑡(𝑅) = 1) in eine Quaternion 𝑞 = (𝑞𝑥 𝑞𝑦 𝑞𝑧 𝑞𝑤)
kann wie folgt durchgeführt werden.

𝑞𝑥 = sign(𝑟21 − 𝑟12)
1

2

√︀
max(0, 1 + 𝑟00 − 𝑟11 − 𝑟22)

𝑞𝑦 = sign(𝑟02 − 𝑟20)
1

2

√︀
max(0, 1− 𝑟00 + 𝑟11 − 𝑟22)

𝑞𝑧 = sign(𝑟10 − 𝑟01)
1

2

√︀
max(0, 1− 𝑟00 − 𝑟11 + 𝑟22)

𝑞𝑤 =
1

2

√︀
max(0, 1 + 𝑟00 + 𝑟11 + 𝑟22)

Der sign Operator gibt -1 zurück, falls sein Argument negativ ist. Sonst wird 1 zurück gegeben. Er wird
zur Wiederherstellung das Vorzeichens der Wurzel benutzt. Die max Funktion stellt sicher, dass das
Argument der Wurzel nicht negativ ist, was in der Praxis durch Rundungsfehler passieren kann.

11.1.4.2 Umrechnung von Rotation-XYZ in Quaternion

Zur Umrechnung von der Rotationswinkel 𝑥, 𝑦, 𝑧 in Grad in eine Quaternion 𝑞 = (𝑞𝑥 𝑞𝑦 𝑞𝑧 𝑞𝑤)
werden zuerst alle Winkel in das Bogenmaß umgerechnet mit

𝑋𝑟 = 𝑥
𝜋

180
,

𝑌𝑟 = 𝑦
𝜋

180
,

𝑍𝑟 = 𝑧
𝜋

180
,

und damit die Quaternion berechnet durch

𝑞𝑥 = cos (𝑍𝑟/2) cos (𝑌𝑟/2) sin (𝑋𝑟/2)− sin (𝑍𝑟/2) sin (𝑌𝑟/2) cos (𝑋𝑟/2),
𝑞𝑦 = cos (𝑍𝑟/2) sin (𝑌𝑟/2) cos (𝑋𝑟/2) + sin (𝑍𝑟/2) cos (𝑌𝑟/2) sin (𝑋𝑟/2),
𝑞𝑧 = sin (𝑍𝑟/2) cos (𝑌𝑟/2) cos (𝑋𝑟/2)− cos (𝑍𝑟/2) sin (𝑌𝑟/2) sin (𝑋𝑟/2),
𝑞𝑤 = cos (𝑍𝑟/2) cos (𝑌𝑟/2) cos (𝑋𝑟/2) + sin (𝑍𝑟/2) sin (𝑌𝑟/2) sin (𝑋𝑟/2).

11.1.4.3 Umrechnung von Quaternion und Translation in Transformation

Die Umrechnung von einer Quaternion 𝑞 = (𝑞𝑥 𝑞𝑦 𝑞𝑧 𝑞𝑤) und einem Translationsvektor 𝑡 =
(𝑥 𝑦 𝑧)𝑇 in eine Transformationsmatrix 𝑇 kann wie folgt durchgeführt werden.

𝑇 =

⎛⎜⎜⎝
1− 2𝑠(𝑞2𝑦 + 𝑞2𝑧) 2𝑠(𝑞𝑥𝑞𝑦 − 𝑞𝑧𝑞𝑤) 2𝑠(𝑞𝑥𝑞𝑧 + 𝑞𝑦𝑞𝑤) 𝑥
2𝑠(𝑞𝑥𝑞𝑦 + 𝑞𝑧𝑞𝑤) 1− 2𝑠(𝑞2𝑥 + 𝑞2𝑧) 2𝑠(𝑞𝑦𝑞𝑧 − 𝑞𝑥𝑞𝑤) 𝑦
2𝑠(𝑞𝑥𝑞𝑧 − 𝑞𝑦𝑞𝑤) 2𝑠(𝑞𝑦𝑞𝑧 + 𝑞𝑥𝑞𝑤) 1− 2𝑠(𝑞2𝑥 + 𝑞2𝑦) 𝑧

0 0 0 1

⎞⎟⎟⎠
wobei 𝑠 = ||𝑞||−2 = 1

𝑞2𝑥+𝑞2𝑦+𝑞2𝑧+𝑞2𝑤
und 𝑠 = 1 wenn 𝑞 eine Einheitsquaternion ist.

Roboception GmbH
Handbuch: rc_reason_stack

398 Rev: 26.01.4
Status: 30.01.2026

11.1. Formate für Posendaten

11.1.4.4 Umrechnung von Quaternion in Rotation-XYZ

Die Umrechnung von einer Quaternion 𝑞 = (𝑞𝑥 𝑞𝑦 𝑞𝑧 𝑞𝑤) mit ||𝑞|| = 1 in 𝑥, 𝑦, 𝑧 Winkel in Grad
kann wie folgt durchgeführt werden.

𝑥 = atan2(2(𝑞𝑤𝑞𝑧 + 𝑞𝑥𝑞𝑦), 1− 2(𝑞2𝑦 + 𝑞2𝑧))
180

𝜋

𝑦 = asin(2(𝑞𝑤𝑞𝑦 − 𝑞𝑧𝑞𝑥))
180

𝜋

𝑧 = atan2(2(𝑞𝑤𝑞𝑥 + 𝑞𝑦𝑞𝑧), 1− 2(𝑞2𝑥 + 𝑞2𝑦))
180

𝜋

11.1.4.5 Posenrepräsentation in RaceCom Messages und Statemachines

In RaceCom Messages und in Statemachines wird eine Pose normalerweise als eindimensionales Array
aus 16 Floatwerten definiert, die in spaltenweiser Anordnung eine Transformationsmatrix repräsentie-
ren. Die Indizes der Einträge der folgenden Matrix entsprechen den Array-Indizes.

𝑇 =

⎛⎜⎜⎝
𝑎0 𝑎4 𝑎8 𝑎12
𝑎1 𝑎5 𝑎9 𝑎13
𝑎2 𝑎6 𝑎10 𝑎14
𝑎3 𝑎7 𝑎11 𝑎15

⎞⎟⎟⎠

11.1.5 Fruitcore HORST Posenformat

Fruitcore HORST Roboter beschreiben eine Pose durch eine Position in Metern und ein Quaternion
mit 𝑞0 = 𝑤, 𝑞1 = 𝑥, 𝑞2 = 𝑦 und 𝑞3 = 𝑧 wie auch rc_reason_stack Geräte. Es ist keine Konvertierung
notwendig.

11.1.6 Kawasaki XYZ-OAT Format

Das Posenformat, welches von Kawasaki Robotern benutzt wird, besteht aus einer Position 𝑋𝑌 𝑍 in
Millimetern und einer Orientierung 𝑂𝐴𝑇 , welche durch drei Winkel in Grad angegeben wird. 𝑂 rotiert
um die 𝑧-Achse, 𝐴 rotiert um die gedrehte 𝑦-Achse und 𝑇 rotiert um die gedrehte 𝑧-Achse. Die Rotati-
onsreihenfolge ist 𝑧-𝑦′-𝑧′′ (d.h. 𝑧-𝑦-𝑧) und wird berechnet durch 𝑟𝑧(𝑂)𝑟𝑦(𝐴)𝑟𝑧(𝑇).

11.1.6.1 Umrechnung von Kawasaki-OAT in Quaternionen

Zur Umrechnung von 𝑂𝐴𝑇 Winkeln in Grad in eine Quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) werden zunächst
alle Winkel in das Bogenmaß umgerechnet durch

𝑂𝑟 = 𝑂
𝜋

180
,

𝐴𝑟 = 𝐴
𝜋

180
,

𝑇𝑟 = 𝑇
𝜋

180
,

und damit wird die Quaternion berechnet durch

𝑥 = cos (𝑂𝑟/2) sin (𝐴𝑟/2) sin (𝑇𝑟/2)− sin (𝑂𝑟/2) sin (𝐴𝑟/2) cos (𝑇𝑟/2),
𝑦 = cos (𝑂𝑟/2) sin (𝐴𝑟/2) cos (𝑇𝑟/2) + sin (𝑂𝑟/2) sin (𝐴𝑟/2) sin (𝑇𝑟/2),
𝑧 = sin (𝑂𝑟/2) cos (𝐴𝑟/2) cos (𝑇𝑟/2) + cos (𝑂𝑟/2) cos (𝐴𝑟/2) sin (𝑇𝑟/2),
𝑤 = cos (𝑂𝑟/2) cos (𝐴𝑟/2) cos (𝑇𝑟/2)− sin (𝑂𝑟/2) cos (𝐴𝑟/2) sin (𝑇𝑟/2).

Roboception GmbH
Handbuch: rc_reason_stack

399 Rev: 26.01.4
Status: 30.01.2026

11.1. Formate für Posendaten

11.1.6.2 Umrechnung von Quaternionen in Kawasaki-OAT

Die Umrechnung von einer Quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) mit ||𝑞|| = 1 in 𝑂𝐴𝑇 Winkel in Grad kann
wie folgt durchgeführt werden.

Wenn 𝑥 = 0 und 𝑦 = 0 ist die Umrechnung

𝑂 = atan2(2(𝑧 − 𝑤), 2(𝑧 + 𝑤))
180

𝜋

𝐴 = acos(𝑤2 + 𝑧2)
180

𝜋

𝑇 = atan2(2(𝑧 + 𝑤), 2(𝑤 − 𝑧))
180

𝜋

Wenn 𝑧 = 0 und 𝑤 = 0 ist die Umrechnung

𝑂 = atan2(2(𝑦 − 𝑥), 2(𝑥+ 𝑦))
180

𝜋

𝐴 = acos(−1.0)
180

𝜋

𝑇 = atan2(2(𝑦 + 𝑥), 2(𝑦 − 𝑥))
180

𝜋

In allen anderen Fällen ist die Umrechnung

𝑂 = atan2(2(𝑦𝑧 − 𝑤𝑥), 2(𝑥𝑧 + 𝑤𝑦))
180

𝜋

𝐴 = acos(𝑤2 − 𝑥2 − 𝑦2 + 𝑧2)
180

𝜋

𝑇 = atan2(2(𝑦𝑧 + 𝑤𝑥), 2(𝑤𝑦 − 𝑥𝑧))
180

𝜋

11.1.7 KUKA XYZ-ABC Format

KUKA Roboter nutzen das sogenannte XYZ-ABC Format. 𝑋𝑌 𝑍 ist die Position in Millimetern. 𝐴𝐵𝐶
sind Winkel in Grad, wobei 𝐴 um die 𝑧-Achse rotiert, 𝐵 rotiert um die 𝑦-Achse und 𝐶 rotiert um die
𝑥-Achse. Die Rotationsreihenfolge ist 𝑧-𝑦′-𝑥′′ (i.e. 𝑥-𝑦-𝑧) und wird berechnet durch 𝑟𝑧(𝐴)𝑟𝑦(𝐵)𝑟𝑥(𝐶).

11.1.7.1 Umrechnung von KUKA-ABC in Quaternionen

Zur Umrechnung von 𝐴𝐵𝐶 Winkeln in Grad in eine Quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) werden zuerst alle
Winkel in das Bogenmaß umgerechnet mit

𝐴𝑟 = 𝐴
𝜋

180
,

𝐵𝑟 = 𝐵
𝜋

180
,

𝐶𝑟 = 𝐶
𝜋

180
,

und damit die Quaternion berechnet durch

𝑥 = cos (𝐴𝑟/2) cos (𝐵𝑟/2) sin (𝐶𝑟/2)− sin (𝐴𝑟/2) sin (𝐵𝑟/2) cos (𝐶𝑟/2),
𝑦 = cos (𝐴𝑟/2) sin (𝐵𝑟/2) cos (𝐶𝑟/2) + sin (𝐴𝑟/2) cos (𝐵𝑟/2) sin (𝐶𝑟/2),
𝑧 = sin (𝐴𝑟/2) cos (𝐵𝑟/2) cos (𝐶𝑟/2)− cos (𝐴𝑟/2) sin (𝐵𝑟/2) sin (𝐶𝑟/2),
𝑤 = cos (𝐴𝑟/2) cos (𝐵𝑟/2) cos (𝐶𝑟/2) + sin (𝐴𝑟/2) sin (𝐵𝑟/2) sin (𝐶𝑟/2).

Roboception GmbH
Handbuch: rc_reason_stack

400 Rev: 26.01.4
Status: 30.01.2026

11.1. Formate für Posendaten

11.1.7.2 Umrechnung von Quaternionen in KUKA-ABC

Die Umrechnung von einer Quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) mit ||𝑞|| = 1 in 𝐴𝐵𝐶 Winkel in Grad kann
wie folgt durchgeführt werden.

𝐴 = atan2(2(𝑤𝑧 + 𝑥𝑦), 1− 2(𝑦2 + 𝑧2))
180

𝜋

𝐵 = asin(2(𝑤𝑦 − 𝑧𝑥))
180

𝜋

𝐶 = atan2(2(𝑤𝑥+ 𝑦𝑧), 1− 2(𝑥2 + 𝑦2))
180

𝜋

11.1.8 Mitsubishi XYZ-ABC Format

Das Posenformat, welches von Mitsubishi Robotern benutzt wird, ist das gleiche wie für KUKA Roboter
(siehe KUKA XYZ-ABC Format , Abschnitt 11.1.7), außer, dass der Winkel 𝐴 um die 𝑥-Achse rotiert und
𝐶 eine Rotation um die 𝑧-Achse ist. Damit wird die Rotation berechnet durch 𝑟𝑧(𝐶)𝑟𝑦(𝐵)𝑟𝑥(𝐴).

11.1.8.1 Umrechnung von Mitsubishi-ABC in Quaternionen

Zur Umrechnung von 𝐴𝐵𝐶 Winkeln in Grad in eine Quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) werden die Winkel
zunächst ins Bogenmaß umgerechnet mit

𝐴𝑟 = 𝐴
𝜋

180
,

𝐵𝑟 = 𝐵
𝜋

180
,

𝐶𝑟 = 𝐶
𝜋

180
,

und damit die Quaternion berechnet durch

𝑥 = cos (𝐶𝑟/2) cos (𝐵𝑟/2) sin (𝐴𝑟/2)− sin (𝐶𝑟/2) sin (𝐵𝑟/2) cos (𝐴𝑟/2),
𝑦 = cos (𝐶𝑟/2) sin (𝐵𝑟/2) cos (𝐴𝑟/2) + sin (𝐶𝑟/2) cos (𝐵𝑟/2) sin (𝐴𝑟/2),
𝑧 = sin (𝐶𝑟/2) cos (𝐵𝑟/2) cos (𝐴𝑟/2)− cos (𝐶𝑟/2) sin (𝐵𝑟/2) sin (𝐴𝑟/2),
𝑤 = cos (𝐶𝑟/2) cos (𝐵𝑟/2) cos (𝐴𝑟/2) + sin (𝐶𝑟/2) sin (𝐵𝑟/2) sin (𝐴𝑟/2).

11.1.8.2 Umrechnung von Quaternionen in Mitsubishi-ABC

Die Umrechnung von einer Quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) mit ||𝑞|| = 1 in 𝐴𝐵𝐶 Winkel in Grad kann
wie folgt durchgeführt werden.

𝐴 = atan2(2(𝑤𝑥+ 𝑦𝑧), 1− 2(𝑥2 + 𝑦2))
180

𝜋

𝐵 = asin(2(𝑤𝑦 − 𝑧𝑥))
180

𝜋

𝐶 = atan2(2(𝑤𝑧 + 𝑥𝑦), 1− 2(𝑦2 + 𝑧2))
180

𝜋

11.1.9 Universal Robots Posenformat

Das Posenformat, welches von Universal Robots verwendet wird, besteht aus einer Position 𝑋𝑌 𝑍 in
Millimetern und einer Orientierung im Angle-Axis Format 𝑉 = (𝑅𝑋 𝑅𝑌 𝑅𝑍)𝑇 . Der Rotationswin-

Roboception GmbH
Handbuch: rc_reason_stack

401 Rev: 26.01.4
Status: 30.01.2026

11.1. Formate für Posendaten

kel 𝜃 im Bogenmaß ist die Länge der Rotationsachse 𝑈 .

𝑉 =

⎛⎝ 𝑅𝑋
𝑅𝑌
𝑅𝑍

⎞⎠ =

⎛⎝ 𝜃𝑢𝑥

𝜃𝑢𝑦

𝜃𝑢𝑧

⎞⎠
𝑉 wird als Rotationsvektor bezeichnet.

11.1.9.1 Umrechnung vom Angle-Axis Format in Quaternionen

Die Umrechnung von einem Rotationsvektor 𝑉 in eine Quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) kann wie folgt
durchgeführt werden.

Zunächst wird der Winkel 𝜃 im Bogenmaß aus dem Rotationsvektor 𝑉 gewonnen durch

𝜃 =
√︀
𝑅𝑋2 +𝑅𝑌 2 +𝑅𝑍2.

Wenn 𝜃 = 0, dann ist die Quaternion gleich 𝑞 = (0 0 0 1), sonst wird sie berechnet durch

𝑥 = 𝑅𝑋
sin(𝜃/2)

𝜃
,

𝑦 = 𝑅𝑌
sin(𝜃/2)

𝜃
,

𝑧 = 𝑅𝑍
sin(𝜃/2)

𝜃
,

𝑤 = cos(𝜃/2).

11.1.9.2 Umrechnung von Quaternionen ins Angle-Axis Format

Die Umrechnung von einer Quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) mit ||𝑞|| = 1 in einen Rotationsvektor im
Angle-Axis Format kann wie folgt durchgeführt werden.

Zunächst wird der Winkel 𝜃 im Bogenmaß aus dem Quaternion gewonnen durch

𝜃 = 2 · acos(𝑤).

Wenn 𝜃 = 0, dann ist der Rotationsvektor 𝑉 = (0 0 0)𝑇 , sonst wird er berechnet durch

𝑅𝑋 = 𝜃
𝑥√

1− 𝑤2
,

𝑅𝑌 = 𝜃
𝑦√

1− 𝑤2
,

𝑅𝑍 = 𝜃
𝑧√

1− 𝑤2
.

11.1.10 Yaskawa Posenformat

Das Posenformat, welches von Yaskawa Robotern benutzt wird, besteht aus einer Position 𝑋𝑌 𝑍 in
Millimetern und einer Orientierung, welche durch drei Winkel in Grad gegeben ist. 𝑅𝑥 rotiert um die
𝑥-Achse, 𝑅𝑦 rotiert um die 𝑦-Achse und 𝑅𝑧 rotiert um die 𝑧-Achse. Die Rotationsreihenfolge ist 𝑥-𝑦-𝑧
und wird berechnet durch 𝑟𝑧(𝑅𝑧)𝑟𝑦(𝑅𝑦)𝑟𝑥(𝑅𝑥).

Roboception GmbH
Handbuch: rc_reason_stack

402 Rev: 26.01.4
Status: 30.01.2026

11.1. Formate für Posendaten

11.1.10.1 Umrechnung von Yaskawa Rx, Ry, Rz in Quaternionen

Zur Umrechnung von 𝑅𝑥,𝑅𝑦,𝑅𝑧 Winkeln in Grad in eine Quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) werden
zunächst die Winkel ins Bogenmaß umgerechnet

𝑋𝑟 = 𝑅𝑥
𝜋

180
,

𝑌𝑟 = 𝑅𝑦
𝜋

180
,

𝑍𝑟 = 𝑅𝑧
𝜋

180
,

und damit wird die Quaternion berechnet als

𝑥 = cos (𝑍𝑟/2) cos (𝑌𝑟/2) sin (𝑋𝑟/2)− sin (𝑍𝑟/2) sin (𝑌𝑟/2) cos (𝑋𝑟/2),
𝑦 = cos (𝑍𝑟/2) sin (𝑌𝑟/2) cos (𝑋𝑟/2) + sin (𝑍𝑟/2) cos (𝑌𝑟/2) sin (𝑋𝑟/2),
𝑧 = sin (𝑍𝑟/2) cos (𝑌𝑟/2) cos (𝑋𝑟/2)− cos (𝑍𝑟/2) sin (𝑌𝑟/2) sin (𝑋𝑟/2),
𝑤 = cos (𝑍𝑟/2) cos (𝑌𝑟/2) cos (𝑋𝑟/2) + sin (𝑍𝑟/2) sin (𝑌𝑟/2) sin (𝑋𝑟/2).

11.1.10.2 Umrechnung von Quaternionen in Yaskawa Rx, Ry, Rz

Die Umrechnung von einer Quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) mit ||𝑞|| = 1 in 𝑅𝑥,𝑅𝑦,𝑅𝑧 Winkel in Grad
kann wie folgt durchgeführt werden.

𝑅𝑥 = atan2(2(𝑤𝑥+ 𝑦𝑧), 1− 2(𝑥2 + 𝑦2))
180

𝜋

𝑅𝑦 = asin(2(𝑤𝑦 − 𝑧𝑥))
180

𝜋

𝑅𝑧 = atan2(2(𝑤𝑧 + 𝑥𝑦), 1− 2(𝑦2 + 𝑧2))
180

𝜋

Roboception GmbH
Handbuch: rc_reason_stack

403 Rev: 26.01.4
Status: 30.01.2026

HTTP Routing Table

HTTP Routing Table

/cad
GET /cad/gripper_elements, 317
GET /cad/gripper_elements/{id}, 318
PUT /cad/gripper_elements/{id}, 318
DELETE /cad/gripper_elements/{id}, 319

/generic_robot_interface
GET /generic_robot_interface/hec_configs,

371
GET /generic_robot_interface/hec_configs/{pipeline},

372
GET /generic_robot_interface/jobs, 373
GET /generic_robot_interface/jobs/{job_id},

374
PUT /generic_robot_interface/hec_configs/{pipeline},

372
PUT /generic_robot_interface/jobs/{job_id},

375
DELETE /generic_robot_interface/hec_configs/{pipeline},

373
DELETE /generic_robot_interface/jobs/{job_id},

375

/logs
GET /logs, 344
GET /logs/{log}, 344

/nodes
GET /nodes, 327
GET /nodes/{node}, 328
GET /nodes/{node}/services, 329
GET /nodes/{node}/services/{service}, 330
GET /nodes/{node}/status, 331
PUT /nodes/{node}/services/{service}, 330

/pipelines
GET /pipelines, 341
GET /pipelines/{pipeline}, 341
GET /pipelines/{pipeline}/nodes, 331
GET /pipelines/{pipeline}/nodes/{node}, 333
GET /pipelines/{pipeline}/nodes/{node}/parameters,

333
GET /pipelines/{pipeline}/nodes/{node}/parameters/{param},

336
GET /pipelines/{pipeline}/nodes/{node}/services,

337
GET /pipelines/{pipeline}/nodes/{node}/services/{service},

338

GET /pipelines/{pipeline}/nodes/{node}/status,
340

PUT /pipelines/{pipeline}/nodes/{node}/parameters,
334

PUT /pipelines/{pipeline}/nodes/{node}/parameters/{param},
336

PUT /pipelines/{pipeline}/nodes/{node}/services/{service},
339

/presets
GET /presets/rc_zivid/2d_presets, 52
GET /presets/rc_zivid/2d_presets/{id}, 52
GET /presets/rc_zivid/3d_presets, 66
GET /presets/rc_zivid/3d_presets/{id}, 66
PUT /presets/rc_zivid/2d_presets/{id}, 52
PUT /presets/rc_zivid/3d_presets/{id}, 66
DELETE /presets/rc_zivid/2d_presets/{id}, 53
DELETE /presets/rc_zivid/3d_presets/{id}, 67

/system
GET /system, 345
GET /system/backup, 346
GET /system/disk_info, 347
GET /system/license, 347
GET /system/pipelines, 341
GET /system/pipelines/config/{pipeline}, 342
GET /system/ui_lock, 348
POST /system/backup, 347
POST /system/license, 348
POST /system/ui_lock, 349
PUT /system/pipelines/config/{pipeline}, 342
DELETE /system/pipelines/config/{pipeline},

343
DELETE /system/ui_lock, 349

/templates
GET /templates/rc_boxpick, 161
GET /templates/rc_boxpick/{id}, 162
GET /templates/rc_cadmatch, 245
GET /templates/rc_cadmatch/{id}, 246
GET /templates/rc_silhouettematch, 204
GET /templates/rc_silhouettematch/{id}, 205
PUT /templates/rc_boxpick/{id}, 162
PUT /templates/rc_cadmatch/{id}, 246
PUT /templates/rc_silhouettematch/{id}, 205
DELETE /templates/rc_boxpick/{id}, 163
DELETE /templates/rc_cadmatch/{id}, 247

Roboception GmbH
Handbuch: rc_reason_stack

404 Rev: 26.01.4
Status: 30.01.2026

HTTP Routing Table

DELETE /templates/rc_silhouettematch/{id},
206

Roboception GmbH
Handbuch: rc_reason_stack

405 Rev: 26.01.4
Status: 30.01.2026

Stichwortverzeichnis

Stichwortverzeichnis

Sonderzeichen
‘‘gamma‘‘

Stereo ace Kamera, 36
3D Objekterkennung, 207
3D-Koordinaten, 17

Disparitätsbild, 17
3D-Modellierung, 17

A
Abmessungen

Load Carrier, 294
Abteil

Load Carrier, 296
AdaptiveOut1

automatische Belichtung, 28
AprilTag, 93

Posenschätzung, 96
Rückgabecodes, 105
Services, 99
Tag-Wiedererkennung, 97

Aufnahmemodus
Disparitätsbild, 55
Stereo ace Kamera, 35

automatisch
Belichtung, 28

automatische Belichtung, 27, 28, 45
AdaptiveOut1, 28
Normal, 28
Out1High, 28
Stereo ace Kamera, 37

B
Backup

Einstellungen, 389
Basisabstand, 24
Basisebene

SilhouetteMatch, 166
Belichtung

automatisch, 27, 28, 45
HDR, 27, 45
manuell, 27, 45
Stereo ace Kamera, 37

Belichtungsregion, 29, 45
Stereo ace Kamera, 39

Belichtungszeit, 30, 46
Maximum, 28, 45
Stereo ace Kamera, 39

Bewegungsunschärfe, 28, 45

Bild
Zeitstempel, 53

Bildaufnahmemodus
zivid, 49

Bilder
Download, 24

Bildrauschen, 28, 45
Bildwiederholrate

Kamera, 26, 49
Stereo ace Kamera, 36

Bin Picking, 207
Bin-Picking, 106, 130
Blauanteil

Stereo ace Kamera, 41
BoxPick, 130

bevorzugte TCP-Orientierung, 134
Füllstand, 78
Greifpunktsortierung, 133
Griff, 133
Load Carrier, 77, 293
Objektmodelle, 131
Parameter, 136
RECTANGLE, 131
Region of Interest, 301
Rückgabecodes, 161
services, 143
Statuswerte, 143
Template API, 161
Template Download, 161
Template löschen, 161
Template Upload, 161
Textur, 132
TEXTURED_BOX, 132
Views, 132

Brennweite, 24

C
CAD-Greiferelement API, 317
CAD-Greiferelement Download, 317
CAD-Greiferelement löschen, 317
CAD-Greiferelement Upload, 317
CADMatch, 207

bevorzugte TCP-Orientierung, 208
Füllstand, 78
Greifpunkte, 208
Kollisionsprüfung, 212
Load Carrier, 77, 293
Objekt-Template, 208, 209

Roboception GmbH
Handbuch: rc_reason_stack

406 Rev: 26.01.4
Status: 30.01.2026

Stichwortverzeichnis

Objekterkennung, 209
Parameter, 213
Posenvorgaben, 208
Region of Interest, 301
Rückgabecodes, 244
Services, 219
Sortierung, 209
Status, 218
Template API, 245
Template Download, 245
Template löschen, 245
Template Upload, 245

collision check, 271, 309
CollisionCheck, 271

Rückgabecodes, 280

D
Datenmodell

REST-API, 350
Datentyp

REST-API, 350
Definition

Load Carrier, 294
Detektion

Load Carrier, 77
Disparität, 15, 16, 24, 54
Disparitätsbild, 15, 16, 54

3D-Koordinaten, 17
Aufnahmemodus, 55
double_shot, 57
Parameter, 54
Qualität, 56
smooth, 58, 68
static_scene, 57
Timeout Belichtungsautomatik, 56
Web GUI, 54

Disparitätsfehler, 18
double_shot

Disparitätsbild, 57
Download

Bilder, 24
Einstellungen, 389
Logdateien, 390
Punktwolke, 53

E
Einstellungen

Backup, 389
Download, 389
Upload, 389
Wiederherstellung, 389

eki, 376
Erkennung

Tag, 92
externes Referenzkoordinatensystem

Hand-Auge-Kalibrierung, 248

F
Fehler, 18

Hand-Auge-Kalibrierung, 258
FPS, siehe Bildwiederholrate
fps, siehe Bildwiederholrate

Stereo ace Kamera, 36
Füllen, 59, 69
Füllstand

BoxPick, 78
ItemPick, 78
LoadCarrier, 78
SilhouetteMatch, 78

G
gamma

Kamera, 27, 44
Generic Robot Interface, 360
GM", 15
Greifpunktberechnung, 207
GRI, 360
Griffberechnung, 106, 130
GripperDB, 309

Rückgabecodes, 317
gRPC, 384
gRPC Bild-Stream

Umwandlung, 387
Grünanteil

Stereo ace Kamera, 41

H
Hand-Auge-Kalibrierung

externes Referenzkoordinatensystem, 248
Fehler, 258
Kalibrierung, 252
Parameter, 259
Roboterkoordinatensystem, 248
Sensormontage, 249
Slot, 255

Helligkeit
Stereo ace Kamera, 39, 40

I
Innenvolumen

Load Carrier, 294
Installation, 8

Kameraverbindung, 14
ItemPick, 106

bevorzugte TCP-Orientierung, 108
Füllstand, 78
Greifpunktsortierung, 106
Griff, 106
Load Carrier, 77, 293
Region of Interest, 301
Rückgabecodes, 129
services, 115
Statuswerte, 115

ItemPickAI, 106
bevorzugte TCP-Orientierung, 108

Roboception GmbH
Handbuch: rc_reason_stack

407 Rev: 26.01.4
Status: 30.01.2026

Stichwortverzeichnis

Greifpunktsortierung, 106
Griff, 106
Parameter, 110
Rückgabecodes, 129
services, 115
Statuswerte, 115

K
Kalibriermuster, 281
Kalibrierung

Hand-Auge-Kalibrierung, 252
Kamera, 280
Rektifizierung, 24

Kalibrierung der Basisebene
SilhouetteMatch, 166

Kamera
Bildwiederholrate, 26, 49
gamma, 27, 44
Kalibrierung, 280
Parameter, 24
Web GUI, 24

Kamerakalibrierung
Monokalibrierung, 286
Parameter, 287
Services, 288
Stereokalibrierung, 284

Kameramodell, 24
Kamerapipelines, 18, 23
Kameraverbindung

Installation, 14
Konfidenz, 18

Minimum, 59
Kontrast

Stereo ace Kamera, 37
Kontrastmodus

Linear, 36
S-Kurve, 36
Stereo ace Kamera, 36

L
Linear

Kontrastmodus, 36
Load Carrier

Abmessungen, 294
Abteil, 296
BoxPick, 77, 293
Definition, 294
Detektion, 77
Innenvolumen, 294
ItemPick, 77, 293
Orientierungsprior, 294
Pose, 294
Rand, 294
SilhouetteMatch, 77, 293

Load Carrier Erkennung, 77
Load Carrier Modell, 293
LoadCarrier, 77

Füllstand, 78

Parameter, 80
Rückgabecodes, 91
Services, 82

LoadCarrierDB, 293
Rückgabecodes, 301
Services, 298

Logdateien
Download, 390

Logs
REST-API, 344

M
manuelle Belichtung, 27, 30, 45, 46
maximale Belichtung

Stereo ace Kamera, 38
maximaler Abstand, 58, 68
maximaler Fehler, 60
Maximum

Belichtungszeit, 28, 45
Tiefenfehler, 60

Measure, 71
Parameter, 72
Rückgabecodes, 76
Services, 73

minimale Konfidenz, 59
minimaler Abstand, 58, 68
Minimum

Konfidenz, 59
Monokalibrierung

Kamerakalibrierung, 286

N
node

REST-API, 326, 341
Normal

automatische Belichtung, 28

O
Objekterkennung, 164, 207
OPC UA, 376
orbbec, 67

Parameter, 67
Orientierungsprior

Load Carrier, 294
Out1High

automatische Belichtung, 28

P
Parameter

Disparitätsbild, 54
Hand-Auge-Kalibrierung, 259
Kamera, 24
Kamerakalibrierung, 287
orbbec, 67
REST-API, 326
Services, 32
Stereo ace, 33
zivid, 63

Roboception GmbH
Handbuch: rc_reason_stack

408 Rev: 26.01.4
Status: 30.01.2026

Stichwortverzeichnis

Pose
Load Carrier, 294

Posenschätzung
AprilTag, 96
QR-Code, 96

Punktwolke, 17
Download, 53

Q
QR-Code, 93

Posenschätzung, 96
Rückgabecodes, 105
Services, 99
Tag-Wiedererkennung, 97

Qualität
Disparitätsbild, 56

R
Rand

Load Carrier, 294
Rektifizierung, 24
REST-API, 323

Datenmodell, 350
Datentyp, 350
Einstiegspunkt, 324
Logs, 344
node, 326, 341
Parameter, 326
Services, 327
Statuswert, 326
System, 344
UserSpace, 343
Version, 324

Roboterkoordinatensystem
Hand-Auge-Kalibrierung, 248

ROI, 301
RoiDB, 301

Rückgabecodes, 308
Services, 303

Rotanteil
Stereo ace Kamera, 41

Rückgabecodes
AprilTag, 105
BoxPick, 161
CADMatch, 244
CollisionCheck, 280
GripperDB, 317
ItemPick, 129
ItemPickAI, 129
LoadCarrier, 91
LoadCarrierDB, 301
Measure, 76
QR-Code, 105
RoiDB, 308
SilhouetteMatch, 203

S
S-Kurve

Kontrastmodus, 36
Segmentierung, 59, 69
Semi-Global Matching, siehe SGM
Sensormontage

Hand-Auge-Kalibrierung, 249
Services

AprilTag, 99
Kamerakalibrierung, 288
Parameter, 32
QR-Code, 99
REST-API, 327
Stereo ace Kamera, 42
Tagerkennung, 99

SGM, 16
Silhouette, 164
SilhouetteMatch, 164

Basisebene, 166
bevorzugte TCP-Orientierung, 169
Füllstand, 78
Greifpunkte, 167
Kalibrierung der Basisebene, 166
Kollisionsprüfung, 174
Load Carrier, 77, 293
Objekt-Template, 167
Objekterkennung, 170
Parameter, 174
Region of Interest, 167, 301
Rückgabecodes, 203
Services, 180
Sortierung, 170
Statuswerte, 180
Template API, 204
Template Download, 204
Template löschen, 204
Template Upload, 204

SilhouetteMatchAI, 164
Slot

Hand-Auge-Kalibrierung, 255
smooth

Disparitätsbild, 58, 68
static_scene

Disparitätsbild, 57
Statuswert

REST-API, 326
Statuswerte

Stereo ace Kamera, 42
Stereo ace

Parameter, 33
Stereo ace Kamera

‘‘gamma‘‘, 36
Aufnahmemodus, 35
automatische Belichtung, 37
Belichtung, 37
Belichtungsregion, 39
Belichtungszeit, 39
Bildwiederholrate, 36
Blauanteil, 41
fps, 36

Roboception GmbH
Handbuch: rc_reason_stack

409 Rev: 26.01.4
Status: 30.01.2026

Stichwortverzeichnis

Grünanteil, 41
Helligkeit, 39, 40
Kontrast, 37
Kontrastmodus, 36
maximale Belichtung, 38
Rotanteil, 41
Services, 42
Statuswerte, 42
Sättigung, 41
Triggeraktivierung, 35
Verstärkung, 40
Voreinstellung Lichtquelle, 41
Weißabgleich, 40

Stereo-Matching, 15
Stereokalibrierung

Kamerakalibrierung, 284
Stereokamera, 24
Swagger UI, 357
System

REST-API, 344
Sättigung

Stereo ace Kamera, 41

T
Tag-Wiedererkennung

AprilTag, 97
QR-Code, 97

Tagerkennung, 92
Familien, 93
Posenschätzung, 96
Services, 99
Tag-Wiedererkennung, 97

Textur, 16
Tiefenbild, 16, 17, 17, 54, 62, 67

Web GUI, 54
Tiefenbild-Aufnahmemodus

zivid, 63
Tiefenfehler

Maximum, 60
Tiefenmessung, 71
Timeout Belichtungsautomatik

Disparitätsbild, 56
Triggeraktivierung

Stereo ace Kamera, 35

U
Umwandlung

gRPC Bild-Stream, 387
Upload

Einstellungen, 389
UserSpace

REST-API, 343

V
Version

REST-API, 324
Verstärkung

Stereo ace Kamera, 40

Verstärkungsfaktor, 28, 30, 45, 46
Voreinstellung

zivid, 50, 63
Voreinstellung Lichtquelle

Stereo ace Kamera, 41

W
Web GUI, 320

Backup, 389
Disparitätsbild, 54
Kamera, 24
Logs, 390
Tiefenbild, 54

Weißabgleich, 30, 46
Stereo ace Kamera, 40

Wiederherstellung
Einstellungen, 389

Z
Zeitstempel

Bild, 53
zivid, 62

Bildaufnahmemodus, 49
Parameter, 63
Tiefenbild-Aufnahmemodus, 63
Voreinstellung, 50, 63

Roboception GmbH
Handbuch: rc_reason_stack

410 Rev: 26.01.4
Status: 30.01.2026

rc_reason_stack 3D Vision Software Platform
INSTALLATIONS- UND BEDIENUNGSANLEITUNG

Roboception GmbH

Kaflerstraße 2
81241 München info@roboception.de
Deutschland www.roboception.com

Tutorials: https://tutorials.roboception.com
GitHub: https://github.com/roboception
Dokumentation: https://doc.rc-visard.com

https://doc.rc-viscore.com
https://doc.rc-cube.com
https://doc.rc-randomdot.com

Shop: https://roboception.com/shop

Für Kundensupport kontaktieren Sie

+49 89 889 50 790
(09:00-17:00 CET) support@roboception.de

	Einführung
	Überblick

	Sicherheit
	Allgemeine Sicherheitshinweise
	Bestimmungsgemäße Verwendung

	Installation
	Offline Installationsanleitung
	Voraussetzungen
	Installation von Ubuntu 24.04
	NVIDIA-Treiberinstallation
	Docker-Installation
	Installation des NVIDIA Container Toolkit
	Begrenzung der Docker Logdateigröße
	Installation der WIBU CodeMeter Runtime
	Erstellen von Netzwerkinterfaces
	Netzwerkeinstellungen für GigE Vision sicherstellen
	Laden der Container-Images
	Starten des Docker-Stacks
	Zugriff auf die Web GUI
	Fehlerbehebung

	Softwarelizenz
	Anschluss von Kameras

	Messprinzipien
	Stereovision
	Allgemeine Informationen zu 3D Daten
	Berechnung von Disparitätsbildern
	Berechnung von Tiefenbildern und Punktwolken
	Konfidenz- und Fehlerbilder

	Kamerapipelines
	Konfiguration der Kamerapipelines
	Konfiguration der verbundenen Kameras

	Softwaremodule
	Kamera Modul
	Rektifizierung
	Anzeigen und Herunterladen von Bildern
	Pipelinetypen rc_visard und rc_core
	Pipelinetyp stereo_ace
	Pipelinetyp orbbec
	Pipelinetyp zivid

	3D-Module
	Anzeigen und Herunterladen von Tiefenbildern und Punktwolken
	Stereo-Matching Modul
	Zivid Modul
	Orbbec Modul

	Detektions- und Messmodule
	Measure
	LoadCarrier
	TagDetect
	ItemPick und ItemPickAI
	BoxPick
	SilhouetteMatch und SilhouetteMatchAI
	CADMatch

	Konfigurationsmodule
	Hand-Auge-Kalibrierung
	CollisionCheck
	Kamerakalibrierung
	IOControl und Projektor-Kontrolle

	Datenbankmodule
	LoadCarrierDB
	RoiDB
	GripperDB

	Schnittstellen
	Web GUI
	Zugriff auf die Web GUI
	Kennenlernen der Web GUI
	Web GUI Zugriffskontrolle
	Herunterladen von Kamerabildern
	Herunterladen von Tiefenbildern und Punktwolken

	REST-API-Schnittstelle
	Allgemeine Struktur der Programmierschnittstelle (API)
	Verfügbare Ressourcen und Anfragen
	Datentyp-Definitionen
	Swagger UI

	Generic Robot Interface
	Job Definition
	Hand-Auge-Kalibrierung
	Spezifikation des Binären GRI Protokolls
	Integration mit einem Roboter
	Job und HEC_config API

	OPC UA Interface
	KUKA Ethernet KRL Schnittstelle
	Konfiguration der Ethernet-Verbindung
	Allgemeine XML-Struktur
	Services
	Parameter
	Beispielanwendungen
	Fehlerbehebung

	gRPC Bilddatenschnittstelle
	gRPC Servicedefinition
	Beispielclient

	Wartung
	Backup der Einstellungen
	Aktualisierung der Softwarelizenz
	Download der Logdateien

	Fehlerbehebung
	Probleme mit den Kamerabildern
	Probleme mit Tiefen-/Disparitäts-, Fehler- oder Konfidenzbildern

	Kontakt
	Support
	Downloads
	Adresse

	Anhang
	Formate für Posendaten
	Rotationsmatrix und Translationsvektor
	ABB Posenformat
	FANUC XYZ-WPR Format
	Franka Emika Posenformat
	Fruitcore HORST Posenformat
	Kawasaki XYZ-OAT Format
	KUKA XYZ-ABC Format
	Mitsubishi XYZ-ABC Format
	Universal Robots Posenformat
	Yaskawa Posenformat

	HTTP Routing Table
	Stichwortverzeichnis

